Spheroidal Wave Functions - 30.15 Signal Analysis

From testwiki
Revision as of 12:10, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
30.15.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \acos@@{\sqrt{\mathrm{B}}}+\acos@@{\sqrt{\alpha}} = \acos@@{\sqrt{\Lambda_{0}}}}
\acos@@{\sqrt{\mathrm{B}}}+\acos@@{\sqrt{\alpha}} = \acos@@{\sqrt{\Lambda_{0}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
arccos(sqrt(B))+ arccos(sqrt(alpha)) = arccos(sqrt(Lambda[0]))
ArcCos[Sqrt[B]]+ ArcCos[Sqrt[\[Alpha]]] == ArcCos[Sqrt[Subscript[\[CapitalLambda], 0]]]
Failure Failure
Failed [300 / 300]
Result: .6584789493*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, Lambda = 1/2*3^(1/2)+1/2*I, alpha = 3/2, Lambda[0] = 1/2*3^(1/2)+1/2*I}

Result: -.6623382543+1.000904144*I
Test Values: {B = 1/2*3^(1/2)+1/2*I, Lambda = 1/2*3^(1/2)+1/2*I, alpha = 3/2, Lambda[0] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.0, 0.6584789484624083]
Test Values: {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[Λ, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.6623382542357523, 1.0009041434383552]
Test Values: {Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[α, 1.5], Rule[Λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[Λ, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
30.15.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mathrm{B} = \left(\sqrt{\Lambda_{0}\alpha}+\sqrt{1-\Lambda_{0}}\sqrt{1-\alpha}\right)^{2}}
\mathrm{B} = \left(\sqrt{\Lambda_{0}\alpha}+\sqrt{1-\Lambda_{0}}\sqrt{1-\alpha}\right)^{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
B = (sqrt(Lambda[0]*alpha)+sqrt(1 - Lambda[0])*sqrt(1 - alpha))^(2)
B == (Sqrt[Subscript[\[CapitalLambda], 0]*\[Alpha]]+Sqrt[1 - Subscript[\[CapitalLambda], 0]]*Sqrt[1 - \[Alpha]])^(2)
Skipped - no semantic math Skipped - no semantic math - -
30.15#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a = \sqrt{\frac{\alpha}{\Lambda_{0}}}}
a = \sqrt{\frac{\alpha}{\Lambda_{0}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
a = sqrt((alpha)/(Lambda[0]))
a == Sqrt[Divide[\[Alpha],Subscript[\[CapitalLambda], 0]]]
Skipped - no semantic math Skipped - no semantic math - -
30.15#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle b = \sqrt{\frac{1-\alpha}{1-\Lambda_{0}}}}
b = \sqrt{\frac{1-\alpha}{1-\Lambda_{0}}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
b = sqrt((1 - alpha)/(1 - Lambda[0]))
b == Sqrt[Divide[1 - \[Alpha],1 - Subscript[\[CapitalLambda], 0]]]
Skipped - no semantic math Skipped - no semantic math - -