DLMF:18.10.E6 (Q5630)

From testwiki
Revision as of 14:27, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:18.10.E6
No description defined

    Statements

    L n ( α ) ( x 2 ) = 2 ( - 1 ) n π 1 2 Γ ( α + 1 2 ) n ! 0 0 π ( x 2 - r 2 + 2 i x r cos ϕ ) n e - r 2 r 2 α + 1 ( sin ϕ ) 2 α d ϕ d r , Laguerre-polynomial-L 𝛼 𝑛 superscript 𝑥 2 2 superscript 1 𝑛 superscript 𝜋 1 2 Euler-Gamma 𝛼 1 2 𝑛 superscript subscript 0 superscript subscript 0 𝜋 superscript superscript 𝑥 2 superscript 𝑟 2 2 𝑖 𝑥 𝑟 italic-ϕ 𝑛 superscript 𝑒 superscript 𝑟 2 superscript 𝑟 2 𝛼 1 superscript italic-ϕ 2 𝛼 italic-ϕ 𝑟 {\displaystyle{\displaystyle L^{(\alpha)}_{n}\left(x^{2}\right)=\frac{2(-1)^{n% }}{\pi^{\frac{1}{2}}\Gamma\left(\alpha+\tfrac{1}{2}\right)n!}\*\int_{0}^{% \infty}\int_{0}^{\pi}{(x^{2}-r^{2}+2ixr\cos\phi)^{n}}\*e^{-r^{2}}r^{2\alpha+1}% (\sin\phi)^{2\alpha}\mathrm{d}\phi\mathrm{d}r,}}
    0 references
    0 references
    α > - 1 2 𝛼 1 2 {\displaystyle{\displaystyle\alpha>-\frac{1}{2}}}
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2acdec
    0 references
    L n ( α ) ( x ) Laguerre-polynomial-L 𝛼 𝑛 𝑥 {\displaystyle{\displaystyle L^{(\NVar{\alpha})}_{\NVar{n}}\left(\NVar{x}% \right)}}
    C18.S3.T1.t1.r12.m2adec
    0 references
    π {\displaystyle{\displaystyle\pi}}
    C3.S12.E1.m2aedec
    0 references
    cos z 𝑧 {\displaystyle{\displaystyle\cos\NVar{z}}}
    C4.S14.E2.m2aedec
    0 references
    d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1aedec
    0 references
    e {\displaystyle{\displaystyle\mathrm{e}}}
    C4.S2.E11.m2adec
    0 references
    ! {\displaystyle{\displaystyle!}}
    introduction.Sx4.p1.t1.r15.m5adec
    0 references