DLMF:18.28.E19 (Q5994)

From testwiki
Revision as of 17:03, 30 December 2019 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:18.28.E19
No description defined

    Statements

    R n ( x ) = R n ( x ; α , β , γ , δ | q ) = = 0 n q ( q - n , α β q n + 1 ; q ) ( α q , β δ q , γ q , q ; q ) j = 0 - 1 ( 1 - q j x + γ δ q 2 j + 1 ) = ϕ 3 4 ( q - n , α β q n + 1 , q - y , γ δ q y + 1 α q , β δ q , γ q ; q , q ) , subscript 𝑅 𝑛 𝑥 q-Racah-polynomial-R 𝑛 𝑥 𝛼 𝛽 𝛾 𝛿 𝑞 superscript subscript 0 𝑛 superscript 𝑞 q-multiple-Pochhammer superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 𝑞 q-multiple-Pochhammer 𝛼 𝑞 𝛽 𝛿 𝑞 𝛾 𝑞 𝑞 𝑞 superscript subscript product 𝑗 0 1 1 superscript 𝑞 𝑗 𝑥 𝛾 𝛿 superscript 𝑞 2 𝑗 1 q-hypergeometric-rphis 4 3 superscript 𝑞 𝑛 𝛼 𝛽 superscript 𝑞 𝑛 1 superscript 𝑞 𝑦 𝛾 𝛿 superscript 𝑞 𝑦 1 𝛼 𝑞 𝛽 𝛿 𝑞 𝛾 𝑞 𝑞 𝑞 {\displaystyle{\displaystyle R_{n}(x)=R_{n}\left(x;\alpha,\beta,\gamma,\delta% \,|\,q\right)=\sum_{\ell=0}^{n}\frac{q^{\ell}\left(q^{-n},\alpha\beta q^{n+1};% q\right)_{\ell}}{\left(\alpha q,\beta\delta q,\gamma q,q;q\right)_{\ell}}\*% \prod_{j=0}^{\ell-1}(1-q^{j}x+\gamma\delta q^{2j+1})={{}_{4}\phi_{3}}\left({q^% {-n},\alpha\beta q^{n+1},q^{-y},\gamma\delta q^{y+1}\atop\alpha q,\beta\delta q% ,\gamma q};q,q\right),}}
    0 references
    0 references
    n = 0 , 1 , , N 𝑛 0 1 𝑁 {\displaystyle{\displaystyle n=0,1,\dots,N}}
    0 references