DLMF:22.12.E8 (Q7046)

From testwiki
Revision as of 21:41, 29 December 2019 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:22.12.E8
No description defined

    Statements

    2 K dc ( 2 K t , k ) = n = - π sin ( π ( t + 1 2 - n τ ) ) = n = - ( m = - ( - 1 ) m t + 1 2 - m - n τ ) , 2 𝐾 Jacobi-elliptic-dc 2 𝐾 𝑡 𝑘 superscript subscript 𝑛 𝜋 𝜋 𝑡 1 2 𝑛 𝜏 superscript subscript 𝑛 superscript subscript 𝑚 superscript 1 𝑚 𝑡 1 2 𝑚 𝑛 𝜏 {\displaystyle{\displaystyle 2K\operatorname{dc}\left(2Kt,k\right)=\sum_{n=-% \infty}^{\infty}\frac{\pi}{\sin\left(\pi(t+\frac{1}{2}-n\tau)\right)}=\sum_{n=% -\infty}^{\infty}\left(\sum_{m=-\infty}^{\infty}\frac{(-1)^{m}}{t+\frac{1}{2}-% m-n\tau}\right),}}
    0 references
    0 references