Elementary Functions - 4.14 Definitions and Periodicity
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.14.E1 | \sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit} |
|
sin(z) = (exp(I*z)- exp(- I*z))/(2*I)
|
Sin[z] == Divide[Exp[I*z]- Exp[- I*z],2*I]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E2 | \cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2} |
|
cos(z) = (exp(I*z)+ exp(- I*z))/(2)
|
Cos[z] == Divide[Exp[I*z]+ Exp[- I*z],2]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E3 | \cos@@{z}+ i\sin@@{z} = e^{+ iz} |
|
cos(z)+ I*sin(z) = exp(+ I*z)
|
Cos[z]+ I*Sin[z] == Exp[+ I*z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E3 | \cos@@{z}- i\sin@@{z} = e^{- iz} |
|
cos(z)- I*sin(z) = exp(- I*z)
|
Cos[z]- I*Sin[z] == Exp[- I*z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E4 | \tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}} |
|
tan(z) = (sin(z))/(cos(z))
|
Tan[z] == Divide[Sin[z],Cos[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E5 | \csc@@{z} = \frac{1}{\sin@@{z}} |
|
csc(z) = (1)/(sin(z))
|
Csc[z] == Divide[1,Sin[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E6 | \sec@@{z} = \frac{1}{\cos@@{z}} |
|
sec(z) = (1)/(cos(z))
|
Sec[z] == Divide[1,Cos[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E7 | \cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}} |
|
cot(z) = (cos(z))/(sin(z))
|
Cot[z] == Divide[Cos[z],Sin[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E7 | \frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}} |
|
(cos(z))/(sin(z)) = (1)/(tan(z))
|
Divide[Cos[z],Sin[z]] == Divide[1,Tan[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.14.E8 | \sin@{z+2k\pi} = \sin@@{z} |
|
sin(z + 2*k*Pi) = sin(z)
|
Sin[z + 2*k*Pi] == Sin[z]
|
Successful | Failure | - | Successful [Tested: 21] |
4.14.E9 | \cos@{z+2k\pi} = \cos@@{z} |
|
cos(z + 2*k*Pi) = cos(z)
|
Cos[z + 2*k*Pi] == Cos[z]
|
Successful | Failure | - | Successful [Tested: 21] |
4.14.E10 | \tan@{z+k\pi} = \tan@@{z} |
|
tan(z + k*Pi) = tan(z)
|
Tan[z + k*Pi] == Tan[z]
|
Successful | Failure | - | Successful [Tested: 21] |