Elementary Functions - 4.14 Definitions and Periodicity

From testwiki
Revision as of 16:34, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.14.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}}
\sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sin(z) = (exp(I*z)- exp(- I*z))/(2*I)
Sin[z] == Divide[Exp[I*z]- Exp[- I*z],2*I]
Successful Successful - Successful [Tested: 7]
4.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}}
\cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
cos(z) = (exp(I*z)+ exp(- I*z))/(2)
Cos[z] == Divide[Exp[I*z]+ Exp[- I*z],2]
Successful Successful - Successful [Tested: 7]
4.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{z}+ i\sin@@{z} = e^{+ iz}}
\cos@@{z}+ i\sin@@{z} = e^{+ iz}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
cos(z)+ I*sin(z) = exp(+ I*z)
Cos[z]+ I*Sin[z] == Exp[+ I*z]
Successful Successful - Successful [Tested: 7]
4.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@@{z}- i\sin@@{z} = e^{- iz}}
\cos@@{z}- i\sin@@{z} = e^{- iz}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
cos(z)- I*sin(z) = exp(- I*z)
Cos[z]- I*Sin[z] == Exp[- I*z]
Successful Successful - Successful [Tested: 7]
4.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}}
\tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
tan(z) = (sin(z))/(cos(z))
Tan[z] == Divide[Sin[z],Cos[z]]
Successful Successful - Successful [Tested: 7]
4.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \csc@@{z} = \frac{1}{\sin@@{z}}}
\csc@@{z} = \frac{1}{\sin@@{z}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
csc(z) = (1)/(sin(z))
Csc[z] == Divide[1,Sin[z]]
Successful Successful - Successful [Tested: 7]
4.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sec@@{z} = \frac{1}{\cos@@{z}}}
\sec@@{z} = \frac{1}{\cos@@{z}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sec(z) = (1)/(cos(z))
Sec[z] == Divide[1,Cos[z]]
Successful Successful - Successful [Tested: 7]
4.14.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}}
\cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
cot(z) = (cos(z))/(sin(z))
Cot[z] == Divide[Cos[z],Sin[z]]
Successful Successful - Successful [Tested: 7]
4.14.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}}
\frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(cos(z))/(sin(z)) = (1)/(tan(z))
Divide[Cos[z],Sin[z]] == Divide[1,Tan[z]]
Successful Successful - Successful [Tested: 7]
4.14.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sin@{z+2k\pi} = \sin@@{z}}
\sin@{z+2k\pi} = \sin@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sin(z + 2*k*Pi) = sin(z)
Sin[z + 2*k*Pi] == Sin[z]
Successful Failure - Successful [Tested: 21]
4.14.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \cos@{z+2k\pi} = \cos@@{z}}
\cos@{z+2k\pi} = \cos@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
cos(z + 2*k*Pi) = cos(z)
Cos[z + 2*k*Pi] == Cos[z]
Successful Failure - Successful [Tested: 21]
4.14.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \tan@{z+k\pi} = \tan@@{z}}
\tan@{z+k\pi} = \tan@@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
tan(z + k*Pi) = tan(z)
Tan[z + k*Pi] == Tan[z]
Successful Failure - Successful [Tested: 21]