Exponential, Logarithmic, Sine, and Cosine Integrals - 6.15 Sums

From testwiki
Revision as of 16:45, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
6.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\cosint@{\pi n} = \tfrac{1}{2}(\ln@@{2}-\EulerConstant)}
\sum_{n=1}^{\infty}\cosint@{\pi n} = \tfrac{1}{2}(\ln@@{2}-\EulerConstant)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(Ci(Pi*n), n = 1..infinity) = (1)/(2)*(ln(2)- gamma)
Sum[CosIntegral[Pi*n], {n, 1, Infinity}, GenerateConditions->None] == Divide[1,2]*(Log[2]- EulerGamma)
Failure Failure Successful [Tested: 0]
Failed [1 / 1]
Result: Plus[-0.05796575782920621, NSum[CosIntegral[Times[n, Pi]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {}

6.15.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}\frac{\shiftsinint@{\pi n}}{n} = \tfrac{1}{2}\pi(\ln@@{\pi}-1)}
\sum_{n=1}^{\infty}\frac{\shiftsinint@{\pi n}}{n} = \tfrac{1}{2}\pi(\ln@@{\pi}-1)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum((Ssi(Pi*n))/(n), n = 1..infinity) = (1)/(2)*Pi*(ln(Pi)- 1)
Sum[Divide[SinIntegral[Pi*n] - Pi/2,n], {n, 1, Infinity}, GenerateConditions->None] == Divide[1,2]*Pi*(Log[Pi]- 1)
Failure Failure Successful [Tested: 0]
Failed [1 / 1]
Result: Plus[-0.22734117306968246, NSum[Times[Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[n, Pi]]]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {}

6.15.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}(-1)^{n}\cosint@{2\pi n} = 1-\ln@@{2}-\tfrac{1}{2}\EulerConstant}
\sum_{n=1}^{\infty}(-1)^{n}\cosint@{2\pi n} = 1-\ln@@{2}-\tfrac{1}{2}\EulerConstant
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum((- 1)^(n)* Ci(2*Pi*n), n = 1..infinity) = 1 - ln(2)-(1)/(2)*gamma
Sum[(- 1)^(n)* CosIntegral[2*Pi*n], {n, 1, Infinity}, GenerateConditions->None] == 1 - Log[2]-Divide[1,2]*EulerGamma
Failure Failure Successful [Tested: 0]
Failed [1 / 1]
Result: Plus[-0.018244986989288337, NSum[Times[Power[-1, n], CosIntegral[Times[2, n, Pi]]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {}

6.15.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=1}^{\infty}(-1)^{n}\frac{\shiftsinint@{2\pi n}}{n} = \pi(\tfrac{3}{2}\ln@@{2}-1)}
\sum_{n=1}^{\infty}(-1)^{n}\frac{\shiftsinint@{2\pi n}}{n} = \pi(\tfrac{3}{2}\ln@@{2}-1)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum((- 1)^(n)*(Ssi(2*Pi*n))/(n), n = 1..infinity) = Pi*((3)/(2)*ln(2)- 1)
Sum[(- 1)^(n)*Divide[SinIntegral[2*Pi*n] - Pi/2,n], {n, 1, Infinity}, GenerateConditions->None] == Pi*(Divide[3,2]*Log[2]- 1)
Failure Failure Successful [Tested: 0]
Failed [1 / 1]
Result: Plus[-0.12478648186560967, NSum[Times[Power[-1, n], Power[n, -1], Plus[Times[Rational[-1, 2], Pi], SinIntegral[Times[2, n, Pi]]]]
Test Values: {n, 1, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], {}