Bessel Functions - 10.15 Derivatives with Respect to Order

From testwiki
Revision as of 16:55, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\BesselJ{+\nu}@{z}}{\nu} = +\BesselJ{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!}}
\pderiv{\BesselJ{+\nu}@{z}}{\nu} = +\BesselJ{+\nu}@{z}\ln@{\tfrac{1}{2}z}-(\tfrac{1}{2}z)^{+\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{k+1+\nu}}{\EulerGamma@{k+1+\nu}}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(k+1+\nu)} > 0}
diff(BesselJ(+ nu, z), nu) = + BesselJ(+ nu, z)*ln((1)/(2)*z)-((1)/(2)*z)^(+ nu)* sum((- 1)^(k)*(Psi(k + 1 + nu))/(GAMMA(k + 1 + nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)
D[BesselJ[+ \[Nu], z], \[Nu]] == + BesselJ[+ \[Nu], z]*Log[Divide[1,2]*z]-(Divide[1,2]*z)^(+ \[Nu])* Sum[(- 1)^(k)*Divide[PolyGamma[k + 1 + \[Nu]],Gamma[k + 1 + \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, -2]}

... skip entries to safe data
10.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\BesselJ{-\nu}@{z}}{\nu} = -\BesselJ{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!}}
\pderiv{\BesselJ{-\nu}@{z}}{\nu} = -\BesselJ{-\nu}@{z}\ln@{\tfrac{1}{2}z}+(\tfrac{1}{2}z)^{-\nu}\sum_{k=0}^{\infty}(-1)^{k}\frac{\digamma@{k+1-\nu}}{\EulerGamma@{k+1-\nu}}\frac{(\tfrac{1}{4}z^{2})^{k}}{k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(k+1+\nu)} > 0, \realpart@@{((-\nu)+k+1)} > 0, \realpart@@{(k+1-\nu)} > 0}
diff(BesselJ(- nu, z), nu) = - BesselJ(- nu, z)*ln((1)/(2)*z)+((1)/(2)*z)^(- nu)* sum((- 1)^(k)*(Psi(k + 1 - nu))/(GAMMA(k + 1 - nu))*(((1)/(4)*(z)^(2))^(k))/(factorial(k)), k = 0..infinity)
D[BesselJ[- \[Nu], z], \[Nu]] == - BesselJ[- \[Nu], z]*Log[Divide[1,2]*z]+(Divide[1,2]*z)^(- \[Nu])* Sum[(- 1)^(k)*Divide[PolyGamma[k + 1 - \[Nu]],Gamma[k + 1 - \[Nu]]]*Divide[(Divide[1,4]*(z)^(2))^(k),(k)!], {k, 0, Infinity}, GenerateConditions->None]
Failure Failure Skipped - Because timed out
Failed [7 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[ν, 2]}

... skip entries to safe data
10.15.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \pderiv{\BesselY{\nu}@{z}}{\nu} = \cot@{\nu\pi}\left(\pderiv{\BesselJ{\nu}@{z}}{\nu}-\pi\BesselY{\nu}@{z}\right)-\csc@{\nu\pi}\pderiv{\BesselJ{-\nu}@{z}}{\nu}-\pi\BesselJ{\nu}@{z}}
\pderiv{\BesselY{\nu}@{z}}{\nu} = \cot@{\nu\pi}\left(\pderiv{\BesselJ{\nu}@{z}}{\nu}-\pi\BesselY{\nu}@{z}\right)-\csc@{\nu\pi}\pderiv{\BesselJ{-\nu}@{z}}{\nu}-\pi\BesselJ{\nu}@{z}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \realpart@@{(\nu+k+1)} > 0, \realpart@@{((-\nu)+k+1)} > 0}
diff(BesselY(nu, z), nu) = cot(nu*Pi)*(diff(BesselJ(nu, z), nu)- Pi*BesselY(nu, z))- csc(nu*Pi)*diff(BesselJ(- nu, z), nu)- Pi*BesselJ(nu, z)
D[BesselY[\[Nu], z], \[Nu]] == Cot[\[Nu]*Pi]*(D[BesselJ[\[Nu], z], \[Nu]]- Pi*BesselY[\[Nu], z])- Csc[\[Nu]*Pi]*D[BesselJ[- \[Nu], z], \[Nu]]- Pi*BesselJ[\[Nu], z]
Successful Failure -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}

... skip entries to safe data