q -Hypergeometric and Related Functions - 17.3 -Elementary and -Special Functions

From testwiki
Revision as of 17:19, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
17.3.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\frac{(1-q)^{n}x^{n}}{\qPochhammer{q}{q}{n}} = \frac{1}{\qPochhammer{(1-q)x}{q}{\infty}}}
\sum_{n=0}^{\infty}\frac{(1-q)^{n}x^{n}}{\qPochhammer{q}{q}{n}} = \frac{1}{\qPochhammer{(1-q)x}{q}{\infty}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(((1 - q)^(n)* (x)^(n))/(QPochhammer(q, q, n)), n = 0..infinity) = (1)/(QPochhammer((1 - q)*x, q, infinity))
Sum[Divide[(1 - q)^(n)* (x)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None] == Divide[1,QPochhammer[(1 - q)*x, q, Infinity]]
Failure Aborted Error Skipped - Because timed out
17.3.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\frac{(1-q)^{n}q^{\binom{n}{2}}x^{n}}{\qPochhammer{q}{q}{n}} = \qPochhammer{-(1-q)x}{q}{\infty}}
\sum_{n=0}^{\infty}\frac{(1-q)^{n}q^{\binom{n}{2}}x^{n}}{\qPochhammer{q}{q}{n}} = \qPochhammer{-(1-q)x}{q}{\infty}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(((1 - q)^(n)* (q)^(binomial(n,2))* (x)^(n))/(QPochhammer(q, q, n)), n = 0..infinity) = QPochhammer(-(1 - q)*x, q, infinity)
Sum[Divide[(1 - q)^(n)* (q)^(Binomial[n,2])* (x)^(n),QPochhammer[q, q, n]], {n, 0, Infinity}, GenerateConditions->None] == QPochhammer[-(1 - q)*x, q, Infinity]
Failure Aborted Error Skipped - Because timed out