Bernoulli and Euler Polynomials - 24.19 Methods of Computation

From testwiki
Revision as of 17:45, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
24.19#Ex2 B 2 n = N 2 n D 2 n Bernoulli-number-B 2 𝑛 subscript 𝑁 2 𝑛 subscript 𝐷 2 𝑛 {\displaystyle{\displaystyle B_{2n}=\dfrac{N_{2n}}{D_{2n}}}}
\BernoullinumberB{2n} = \dfrac{N_{2n}}{D_{2n}}

bernoulli(2*n) = (N[2*n])/(D[2*n])
BernoulliB[2*n] == Divide[Subscript[N, 2*n],Subscript[D, 2*n]]
Failure Failure
Failed [300 / 300]
Result: -.8333333333
Test Values: {D[2*n] = 1/2*3^(1/2)+1/2*I, N[2*n] = 1/2*3^(1/2)+1/2*I, n = 1}

Result: -1.033333333
Test Values: {D[2*n] = 1/2*3^(1/2)+1/2*I, N[2*n] = 1/2*3^(1/2)+1/2*I, n = 2}

... skip entries to safe data
Failed [300 / 300]
Result: -0.8333333333333334
Test Values: {Rule[n, 1], Rule[Subscript[D, Times[2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[N, Times[2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: -1.0333333333333334
Test Values: {Rule[n, 2], Rule[Subscript[D, Times[2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[N, Times[2, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
24.19.E3 t 2 cosh t - 1 = - 2 n = 0 ( 2 n - 1 ) B 2 n t 2 n ( 2 n ) ! superscript 𝑡 2 𝑡 1 2 superscript subscript 𝑛 0 2 𝑛 1 Bernoulli-number-B 2 𝑛 superscript 𝑡 2 𝑛 2 𝑛 {\displaystyle{\displaystyle\frac{t^{2}}{\cosh t-1}=-2\sum_{n=0}^{\infty}(2n-1% )B_{2n}\frac{t^{2n}}{(2n)!}}}
\frac{t^{2}}{\cosh@@{t}-1} = -2\sum_{n=0}^{\infty}(2n-1)\BernoullinumberB{2n}\frac{t^{2n}}{(2n)!}

((t)^(2))/(cosh(t)- 1) = - 2*sum((2*n - 1)*bernoulli(2*n)*((t)^(2*n))/(factorial(2*n)), n = 0..infinity)
Divide[(t)^(2),Cosh[t]- 1] == - 2*Sum[(2*n - 1)*BernoulliB[2*n]*Divide[(t)^(2*n),(2*n)!], {n, 0, Infinity}, GenerateConditions->None]
Failure Aborted Successful [Tested: 6] Skipped - Because timed out