Combinatorial Analysis - 26.10 Integer Partitions: Other Restrictions

From testwiki
Revision as of 17:48, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \prod_{j=1}^{\infty}(1+q^{j}) = \prod_{j=1}^{\infty}\frac{1}{1-q^{2j-1}}}
\prod_{j=1}^{\infty}(1+q^{j}) = \prod_{j=1}^{\infty}\frac{1}{1-q^{2j-1}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
product(1 + (q)^(j), j = 1..infinity) = product((1)/(1 - (q)^(2*j - 1)), j = 1..infinity)
Product[1 + (q)^(j), {j, 1, Infinity}, GenerateConditions->None] == Product[Divide[1,1 - (q)^(2*j - 1)], {j, 1, Infinity}, GenerateConditions->None]
Failure Failure Error
Failed [1 / 10]
Result: DirectedInfinity[]
Test Values: {Rule[q, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

26.10.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{m=0}^{k}\qbinom{k}{m}{q}q^{m(m+1)/2}x^{m} = \prod_{j=1}^{k}(1+x\,q^{j})}
\sum_{m=0}^{k}\qbinom{k}{m}{q}q^{m(m+1)/2}x^{m} = \prod_{j=1}^{k}(1+x\,q^{j})
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |x| < 1}
sum(QBinomial(k, m, q)*(q)^(m*(m + 1)/2)* (x)^(m), m = 0..k) = product(1 + x*(q)^(j), j = 1..k)
Sum[QBinomial[k,m,q]*(q)^(m*(m + 1)/2)* (x)^(m), {m, 0, k}, GenerateConditions->None] == Product[1 + x*(q)^(j), {j, 1, k}, GenerateConditions->None]
Failure Failure Error Successful [Tested: 30]