Combinatorial Analysis - 26.11 Integer Partitions: Compositions

From testwiki
Revision as of 17:48, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
26.11.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ncompositions[m]@{0} = \Kroneckerdelta{0}{m}}
\ncompositions[m]@{0} = \Kroneckerdelta{0}{m}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
numbcomp(0, m) = KroneckerDelta[0, m]
Error
Error Missing Macro Error - -
26.11.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \ncompositions[m]@{n} = \binom{n-1}{m-1}}
\ncompositions[m]@{n} = \binom{n-1}{m-1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
numbcomp(n, m) = binomial(n - 1,m - 1)
Error
Error Missing Macro Error - -
26.11.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum_{n=0}^{\infty}\ncompositions[m]@{n}q^{n} = \frac{q^{m}}{(1-q)^{m}}}
\sum_{n=0}^{\infty}\ncompositions[m]@{n}q^{n} = \frac{q^{m}}{(1-q)^{m}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(numbcomp(n, m)*(q)^(n), n = 0..infinity) = ((q)^(m))/((1 - q)^(m))
Error
Error Missing Macro Error - -
26.11#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{0} = 0}
F_{0} = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
F[0] = 0
Subscript[F, 0] == 0
Skipped - no semantic math Skipped - no semantic math - -
26.11#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{1} = 1}
F_{1} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
F[1] = 1
Subscript[F, 1] == 1
Skipped - no semantic math Skipped - no semantic math - -
26.11#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{n} = F_{n-1}+F_{n-2}}
F_{n} = F_{n-1}+F_{n-2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle n \geq 2}
F[n] = F[n - 1]+ F[n - 2]
Subscript[F, n] == Subscript[F, n - 1]+ Subscript[F, n - 2]
Skipped - no semantic math Skipped - no semantic math - -
26.11.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle F_{n} = \frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n}\,\sqrt{5}}}
F_{n} = \frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n}\,\sqrt{5}}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
F[n] = ((1 +sqrt(5))^(n)-(1 -sqrt(5))^(n))/((2)^(n)*sqrt(5))
Subscript[F, n] == Divide[(1 +Sqrt[5])^(n)-(1 -Sqrt[5])^(n),(2)^(n)*Sqrt[5]]
Skipped - no semantic math Skipped - no semantic math - -