Functions of Number Theory - 27.10 Periodic Number-Theoretic Functions

From testwiki
Revision as of 17:49, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
27.10.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle s_{k}(n) = \sum_{m=1}^{k}a_{k}(m)e^{2\cpi\iunit mn/k}}
s_{k}(n) = \sum_{m=1}^{k}a_{k}(m)e^{2\cpi\iunit mn/k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
s[k](n) = sum(a[k](m)* exp(2*Pi*I*m*n/k), m = 1..k)
Subscript[s, k][n] == Sum[Subscript[a, k][m]* Exp[2*Pi*I*m*n/k], {m, 1, k}, GenerateConditions->None]
Failure Failure
Failed [297 / 300]
Result: 2971422279.-5146654356.*I
Test Values: {a[k] = 1/2*3^(1/2)+1/2*I, s[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 1}

Result: -1114283352.+1929995386.*I
Test Values: {a[k] = 1/2*3^(1/2)+1/2*I, s[k] = 1/2*3^(1/2)+1/2*I, k = 1, n = 2}

... skip entries to safe data
Failed [297 / 300]
Result: Indeterminate
Test Values: {Rule[k, 1], Rule[n, 1], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[k, 1], Rule[n, 2], Rule[Subscript[a, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[s, k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data