Lamé Functions - 29.11 Lamé Wave Equation

From testwiki
Revision as of 17:52, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
29.11.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}+(h-\nu(\nu+1)k^{2}\Jacobiellsnk^{2}@{z}{k}+k^{2}\omega^{2}\Jacobiellsnk^{4}@{z}{k})w = 0}
\deriv[2]{w}{z}+(h-\nu(\nu+1)k^{2}\Jacobiellsnk^{2}@{z}{k}+k^{2}\omega^{2}\Jacobiellsnk^{4}@{z}{k})w = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
diff(w, [z$(2)])+(h - nu*(nu + 1)*(k)^(2)* (JacobiSN(z, k))^(2)+ (k)^(2)* (omega)^(2)* (JacobiSN(z, k))^(4))*w = 0
D[w, {z, 2}]+(h - \[Nu]*(\[Nu]+ 1)*(k)^(2)* (JacobiSN[z, (k)^2])^(2)+ (k)^(2)* \[Omega]^(2)* (JacobiSN[z, (k)^2])^(4))*w == 0
Failure Failure
Failed [300 / 300]
Result: .4970479804-.2136667430*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -.5039614158-1.687364305*I
Test Values: {h = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, omega = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, k = 2}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.4970479802306743, -0.21366674241821534]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.5039614145885605, -1.6873643054323533]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[k, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ω, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data