Spheroidal Wave Functions - 30.14 Wave Equation in Oblate Spheroidal Coordinates
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
30.14#Ex4 | 0 < \xi |
|
0 < xi |
0 < \[Xi] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
30.14#Ex5 | -1 < \eta |
|
- 1 < eta |
- 1 < \[Eta] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
30.14#Ex6 | 0 \leq \phi |
|
0 <= phi |
0 <= \[Phi] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
30.14.E3 | h_{\xi}^{2} = \frac{c^{2}(\xi^{2}+\eta^{2})}{1+\xi^{2}} |
|
(h[xi])^(2) = ((c)^(2)*((xi)^(2)+ (eta)^(2)))/(1 + (xi)^(2)) |
(Subscript[h, \[Xi]])^(2) == Divide[(c)^(2)*(\[Xi]^(2)+ \[Eta]^(2)),1 + \[Xi]^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
30.14.E4 | h_{\eta}^{2} = \frac{c^{2}(\xi^{2}+\eta^{2})}{1-\eta^{2}} |
|
(h[eta])^(2) = ((c)^(2)*((xi)^(2)+ (eta)^(2)))/(1 - (eta)^(2)) |
(Subscript[h, \[Eta]])^(2) == Divide[(c)^(2)*(\[Xi]^(2)+ \[Eta]^(2)),1 - \[Eta]^(2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
30.14.E5 | h_{\phi}^{2} = c^{2}(\xi^{2}+1)(1-\eta^{2}) |
|
(h[phi])^(2) = (c)^(2)*((xi)^(2)+ 1)*(1 - (eta)^(2)) |
(Subscript[h, \[Phi]])^(2) == (c)^(2)*(\[Xi]^(2)+ 1)*(1 - \[Eta]^(2)) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
30.14.E7 | \deriv{}{\xi}\left((1+\xi^{2})\deriv{w_{1}}{\xi}\right)-\left(\lambda+\gamma^{2}(1+\xi^{2})-\frac{\mu^{2}}{1+\xi^{2}}\right)w_{1} = 0 |
|
diff(((1 + (xi)^(2))*diff(w[1], xi))-(lambda + (gamma)^(2)*(1 + (xi)^(2))-((mu)^(2))/(1 + (xi)^(2)))*w[1], xi) = 0
|
D[((1 + \[Xi]^(2))*D[Subscript[w, 1], \[Xi]])-(\[Lambda]+ \[Gamma]^(2)*(1 + \[Xi]^(2))-Divide[\[Mu]^(2),1 + \[Xi]^(2)])*Subscript[w, 1], \[Xi]] == 0
|
Failure | Failure | Failed [260 / 300] Result: -.6665112581-1.154431362*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, w[1] = 1/2*3^(1/2)+1/2*I}
Result: 1.154431362-.6665112581*I
Test Values: {gamma = 1/2*3^(1/2)+1/2*I, lambda = 1/2*3^(1/2)+1/2*I, mu = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, w[1] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.6666666666666664, -2.309401076758503]
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[2.309401076758503, 0.6666666666666662]
Test Values: {Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[w, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
30.14.E8 | w_{1}(\xi) = a_{1}\radsphwaveS{m}{1}{n}@{i\xi}{\gamma}+b_{1}\radsphwaveS{m}{2}{n}@{i\xi}{\gamma} |
|
Error
|
Subscript[w, 1][\[Xi]] == Subscript[a, 1]*SpheroidalS1[n, m, I*\[Xi], \[Gamma]]+ Subscript[b, 1]*SpheroidalS2[n, m, I*\[Xi], \[Gamma]]
|
Missing Macro Error | Failure | - | Skipped - Because timed out |
30.14.E9 | \radsphwaveS{m}{1}{n}@{\iunit\xi_{0}}{\gamma} = 0 |
|
Error
|
SpheroidalS1[n, m, I*Subscript[\[Xi], 0], \[Gamma]] == 0
|
Missing Macro Error | Failure | - | Failed [300 / 300]
Result: Complex[-0.30414296182717676, -0.005578569442222112]
Test Values: {Rule[j, 4], Rule[m, 1], Rule[n, 1], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ξ, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.05539464168732451, -0.030004541724887247]
Test Values: {Rule[j, 4], Rule[m, 1], Rule[n, 2], Rule[γ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[ξ, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |