DLMF:13.2.E9 (Q4299)

From testwiki
Revision as of 14:35, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:13.2.E9
No description defined

    Statements

    U ( a , n + 1 , z ) = ( - 1 ) n + 1 n ! Γ ( a - n ) k = 0 ( a ) k ( n + 1 ) k k ! z k ( ln z + ψ ( a + k ) - ψ ( 1 + k ) - ψ ( n + k + 1 ) ) + 1 Γ ( a ) k = 1 n ( k - 1 ) ! ( 1 - a + k ) n - k ( n - k ) ! z - k . Kummer-confluent-hypergeometric-U 𝑎 𝑛 1 𝑧 superscript 1 𝑛 1 𝑛 Euler-Gamma 𝑎 𝑛 superscript subscript 𝑘 0 Pochhammer 𝑎 𝑘 Pochhammer 𝑛 1 𝑘 𝑘 superscript 𝑧 𝑘 𝑧 digamma 𝑎 𝑘 digamma 1 𝑘 digamma 𝑛 𝑘 1 1 Euler-Gamma 𝑎 superscript subscript 𝑘 1 𝑛 𝑘 1 Pochhammer 1 𝑎 𝑘 𝑛 𝑘 𝑛 𝑘 superscript 𝑧 𝑘 {\displaystyle{\displaystyle U\left(a,n+1,z\right)=\frac{(-1)^{n+1}}{n!\Gamma% \left(a-n\right)}\sum_{k=0}^{\infty}\frac{{\left(a\right)_{k}}}{{\left(n+1% \right)_{k}}k!}z^{k}\left(\ln z+\psi\left(a+k\right)-\psi\left(1+k\right)-\psi% \left(n+k+1\right)\right)+\frac{1}{\Gamma\left(a\right)}\sum_{k=1}^{n}\frac{(k% -1)!{\left(1-a+k\right)_{n-k}}}{(n-k)!}z^{-k}.}}
    0 references
    0 references
    Γ ( z ) Euler-Gamma 𝑧 {\displaystyle{\displaystyle\Gamma\left(\NVar{z}\right)}}
    C5.S2.E1.m2acdec
    0 references
    U ( a , b , z ) Kummer-confluent-hypergeometric-U 𝑎 𝑏 𝑧 {\displaystyle{\displaystyle U\left(\NVar{a},\NVar{b},\NVar{z}\right)}}
    C13.S2.E6.m2acdec
    0 references
    ( a ) n Pochhammer 𝑎 𝑛 {\displaystyle{\displaystyle{\left(\NVar{a}\right)_{\NVar{n}}}}}
    C5.S2.SS3.m1aedec
    0 references
    ψ ( z ) digamma 𝑧 {\displaystyle{\displaystyle\psi\left(\NVar{z}\right)}}
    C5.S2.E2.m2adec
    0 references
    ! {\displaystyle{\displaystyle!}}
    introduction.Sx4.p1.t1.r15.m5acdec
    0 references
    ln z 𝑧 {\displaystyle{\displaystyle\ln\NVar{z}}}
    C4.S2.E2.m2adec
    0 references
    n 𝑛 {\displaystyle{\displaystyle n}}
    C13.S1.XMD2.m1cdec
    0 references