Results of Elementary Functions I

From testwiki
Revision as of 12:28, 22 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search
DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.2.E1 Ln ⁑ z = ∫ 1 z d t t multivalued-natural-logarithm 𝑧 superscript subscript 1 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle\operatorname{Ln}z=\int_{1}^{z}\frac{\mathrm{d}t}{% t}}}
\Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}
z β‰  0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
ln(z) = int((1)/(t), t = 1..z)
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E2 ln ⁑ z = ∫ 1 z d t t 𝑧 superscript subscript 1 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle\ln z=\int_{1}^{z}\frac{\mathrm{d}t}{t}}}
\ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t}

ln(z) = int((1)/(t), t = 1..z)
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E3 ln ⁑ z = ln ⁑ | z | + i ⁒ ph ⁑ z 𝑧 𝑧 imaginary-unit phase 𝑧 {\displaystyle{\displaystyle\ln z=\ln\left|z\right|+\mathrm{i}\operatorname{ph% }z}}
\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}
- Ο€ < ph ⁑ z , ph ⁑ z < Ο€ formulae-sequence πœ‹ phase 𝑧 phase 𝑧 πœ‹ {\displaystyle{\displaystyle-\pi<\operatorname{ph}z,\operatorname{ph}z<\pi}}
ln(z) = ln(abs(z))+ I*argument(z)
Log[z] == Log[Abs[z]]+ I*Arg[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E4 z = x 𝑧 π‘₯ {\displaystyle{\displaystyle z=x}}
z = x
- ∞ < x , x < 0 formulae-sequence π‘₯ π‘₯ 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
(x + y*I) = x
(x + y*I) == x
Skipped - no semantic math Skipped - no semantic math - -
4.2.E5 ln ⁑ z = ln ⁑ | z | + i ⁒ ph ⁑ z 𝑧 𝑧 imaginary-unit phase 𝑧 {\displaystyle{\displaystyle\ln z=\ln\left|z\right|+\mathrm{i}\operatorname{ph% }z}}
\ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z}
- Ο€ < ph ⁑ z , ph ⁑ z ≀ Ο€ formulae-sequence πœ‹ phase 𝑧 phase 𝑧 πœ‹ {\displaystyle{\displaystyle-\pi<\operatorname{ph}z,\operatorname{ph}z\leq\pi}}
ln(z) = ln(abs(z))+ I*argument(z)
Log[z] == Log[Abs[z]]+ I*Arg[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.2.E6 Ln ⁑ z = ln ⁑ z + 2 ⁒ k ⁒ Ο€ ⁒ i multivalued-natural-logarithm 𝑧 𝑧 2 π‘˜ πœ‹ imaginary-unit {\displaystyle{\displaystyle\operatorname{Ln}z=\ln z+2k\pi\mathrm{i}}}
\Ln@@{z} = \ln@@{z}+2k\pi\iunit

ln(z) = ln(z)+ 2*k*Pi*I
Log[z] == Log[z]+ 2*k*Pi*I
Failure Failure
Failed [21 / 21]
Result: -6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: -12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}

Result: -18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3}

Result: -6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1}

... skip entries to safe data
Failed [21 / 21]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.2.E7 ln ⁑ ( x + i ⁒ 0 ) = ln ⁑ | x | + i ⁒ Ο€ π‘₯ imaginary-unit 0 π‘₯ 𝑖 πœ‹ {\displaystyle{\displaystyle\ln\left(x+\mathrm{i}0\right)=\ln|x|+i\pi}}
\ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi
- ∞ < x , x < 0 formulae-sequence π‘₯ π‘₯ 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
ln(x + I*0) = ln(abs(x))+ I*Pi
Log[x + I*0] == Log[Abs[x]]+ I*Pi
Failure Successful Error Skip - symbolical successful subtest
4.2.E7 ln ⁑ ( x - i ⁒ 0 ) = ln ⁑ | x | - i ⁒ Ο€ π‘₯ imaginary-unit 0 π‘₯ 𝑖 πœ‹ {\displaystyle{\displaystyle\ln\left(x-\mathrm{i}0\right)=\ln|x|-i\pi}}
\ln@{x-\iunit 0} = \ln@@{|x|}- i\pi
- ∞ < x , x < 0 formulae-sequence π‘₯ π‘₯ 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
ln(x - I*0) = ln(abs(x))- I*Pi
Log[x - I*0] == Log[Abs[x]]- I*Pi
Failure Failure Error Skip - No test values generated
4.2.E8 log a ⁑ z = ln ⁑ z / ln ⁑ a π‘Ž 𝑧 𝑧 π‘Ž {\displaystyle{\displaystyle\operatorname{log}_{a}z=\ifrac{\ln z}{\ln a}}}
\genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}}

log[a](z) = (ln(z))/(ln(a))
Log[a,z] == Divide[Log[z],Log[a]]
Successful Successful - Successful [Tested: 42]
4.2.E9 log a ⁑ z = log b ⁑ z log b ⁑ a π‘Ž 𝑧 𝑏 𝑧 𝑏 π‘Ž {\displaystyle{\displaystyle\operatorname{log}_{a}z=\frac{\operatorname{log}_{% b}z}{\operatorname{log}_{b}a}}}
\genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}}

log[a](z) = (log[b](z))/(log[b](a))
Log[a,z] == Divide[Log[b,z],Log[b,a]]
Successful Successful - Successful [Tested: 252]
4.2.E10 log a ⁑ b = 1 log b ⁑ a π‘Ž 𝑏 1 𝑏 π‘Ž {\displaystyle{\displaystyle\operatorname{log}_{a}b=\frac{1}{\operatorname{log% }_{b}a}}}
\genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}}

log[a](b) = (1)/(log[b](a))
Log[a,b] == Divide[1,Log[b,a]]
Successful Successful - Successful [Tested: 36]
4.2.E11 e = 2.71828β€…18284β€…59045β€…23536 ⁒ … 𝑒 2.71828β€…18284β€…59045β€…23536 … {\displaystyle{\displaystyle e=2.71828\ 18284\ 59045\ 23536\dots}}
e = 2.71828\ 18284\ 59045\ 23536\dots

exp(1) = 2.71828182845904523536
E == 2.71828182845904523536
Successful Successful - Successful [Tested: 1]
4.2.E12 ln ⁑ e = 1 𝑒 1 {\displaystyle{\displaystyle\ln e=1}}
\ln@@{e} = 1

ln(exp(1)) = 1
Log[E] == 1
Successful Successful - Successful [Tested: 1]
4.2.E13 ∫ 1 e d t t = 1 superscript subscript 1 𝑒 𝑑 𝑑 1 {\displaystyle{\displaystyle\int_{1}^{e}\frac{\mathrm{d}t}{t}=1}}
\int_{1}^{e}\frac{\diff{t}}{t} = 1

int((1)/(t), t = 1..exp(1)) = 1
Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.2.E14 log e ⁑ z = ln ⁑ z 𝑒 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{log}_{e}z=\ln z}}
\genlog{e}@@{z} = \ln@@{z}

log[exp(1)](z) = ln(z)
Log[E,z] == Log[z]
Successful Successful - Successful [Tested: 7]
4.2.E15 log 10 ⁑ z = ( ln ⁑ z ) / ( ln ⁑ 10 ) 10 𝑧 𝑧 10 {\displaystyle{\displaystyle\operatorname{log}_{10}z=\ifrac{(\ln z)}{(\ln 10)}}}
\genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})}

log[10](z) = (ln(z))/(ln(10))
Log[10,z] == Divide[Log[z],Log[10]]
Successful Successful - Successful [Tested: 7]
4.2.E15 ( ln ⁑ z ) / ( ln ⁑ 10 ) = ( log 10 ⁑ e ) ⁒ ln ⁑ z 𝑧 10 10 𝑒 𝑧 {\displaystyle{\displaystyle\ifrac{(\ln z)}{(\ln 10)}=(\operatorname{log}_{10}% e)\ln z}}
\ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z}

(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)
Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]
Successful Successful - Successful [Tested: 7]
4.2.E16 ln ⁑ z = ( ln ⁑ 10 ) ⁒ log 10 ⁑ z 𝑧 10 10 𝑧 {\displaystyle{\displaystyle\ln z=(\ln 10)\operatorname{log}_{10}z}}
\ln@@{z} = (\ln@@{10})\genlog{10}@@{z}

ln(z) = (ln(10))*log[10](z)
Log[z] == (Log[10])*Log[10,z]
Successful Successful - Successful [Tested: 7]
4.2.E17 log 10 ⁑ e = 0.43429β€…44819β€…03251β€…82765 ⁒ … 10 𝑒 0.43429β€…44819β€…03251β€…82765 … {\displaystyle{\displaystyle\operatorname{log}_{10}e=0.43429\ 44819\ 03251\ 82% 765\dots}}
\genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots

log[10](exp(1)) = 0.43429448190325182765
Log[10,E] == 0.43429448190325182765
Failure Successful Successful [Tested: 0] Successful [Tested: 1]
4.2.E18 ln ⁑ 10 = 2.30258β€…50929β€…94045β€…68401 ⁒ … 10 2.30258β€…50929β€…94045β€…68401 … {\displaystyle{\displaystyle\ln 10=2.30258\ 50929\ 94045\ 68401\dots}}
\ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots

ln(10) = 2.30258509299404568401
Log[10] == 2.30258509299404568401
Successful Successful - Successful [Tested: 1]
4.2.E20 exp ⁑ ( z + 2 ⁒ Ο€ ⁒ i ) = exp ⁑ z 𝑧 2 πœ‹ 𝑖 𝑧 {\displaystyle{\displaystyle\exp\left(z+2\pi i\right)=\exp z}}
\exp@{z+2\pi i} = \exp@@{z}

exp(z + 2*Pi*I) = exp(z)
Exp[z + 2*Pi*I] == Exp[z]
Successful Successful - Successful [Tested: 7]
4.2.E21 exp ⁑ ( - z ) = 1 / exp ⁑ ( z ) 𝑧 1 𝑧 {\displaystyle{\displaystyle\exp\left(-z\right)=1/\exp\left(z\right)}}
\exp@{-z} = 1/\exp@{z}

exp(- z) = 1/exp(z)
Exp[- z] == 1/Exp[z]
Successful Successful - Successful [Tested: 7]
4.2.E22 | exp ⁑ z | = exp ⁑ ( β„œ ⁑ z ) 𝑧 𝑧 {\displaystyle{\displaystyle|\exp z|=\exp\left(\Re z\right)}}
|\exp@@{z}| = \exp@{\realpart@@{z}}

abs(exp(z)) = exp(Re(z))
Abs[Exp[z]] == Exp[Re[z]]
Successful Successful - Successful [Tested: 7]
4.2.E23 ph ⁑ ( exp ⁑ z ) = β„‘ ⁑ z + 2 ⁒ k ⁒ Ο€ phase 𝑧 𝑧 2 π‘˜ πœ‹ {\displaystyle{\displaystyle\operatorname{ph}\left(\exp z\right)=\Im z+2k\pi}}
\phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi

argument(exp(z)) = Im(z)+ 2*k*Pi
Arg[Exp[z]] == Im[z]+ 2*k*Pi
Failure Failure
Failed [21 / 21]
Result: -6.283185308
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: -12.56637062
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: -18.84955592
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: -6.283185308
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [7 / 7]
Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.2.E24 exp ⁑ z = e x ⁒ cos ⁑ y + i ⁒ e x ⁒ sin ⁑ y 𝑧 superscript 𝑒 π‘₯ 𝑦 𝑖 superscript 𝑒 π‘₯ 𝑦 {\displaystyle{\displaystyle\exp z=e^{x}\cos y+ie^{x}\sin y}}
\exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y}

exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)
Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]
Successful Successful - Successful [Tested: 18]
4.2.E26 z a = exp ⁑ ( a ⁒ Ln ⁑ z ) superscript 𝑧 π‘Ž π‘Ž multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle z^{a}=\exp\left(a\operatorname{Ln}z\right)}}
z^{a} = \exp@{a\Ln@@{z}}
z β‰  0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
(z)^(a) = exp(a*ln(z))
(z)^(a) == Exp[a*Log[z]]
Successful Successful - Successful [Tested: 42]
4.2.E28 z a = exp ⁑ ( a ⁒ ln ⁑ z ) superscript 𝑧 π‘Ž π‘Ž 𝑧 {\displaystyle{\displaystyle z^{a}=\exp\left(a\ln z\right)}}
z^{a} = \exp@{a\ln@@{z}}

(z)^(a) = exp(a*ln(z))
(z)^(a) == Exp[a*Log[z]]
Successful Successful - Successful [Tested: 42]
4.2.E29 | z a | = | z | β„œ ⁑ a ⁒ exp ⁑ ( - ( β„‘ ⁑ a ) ⁒ ph ⁑ z ) superscript 𝑧 π‘Ž superscript 𝑧 π‘Ž π‘Ž phase 𝑧 {\displaystyle{\displaystyle|z^{a}|=|z|^{\Re a}\exp\left(-(\Im a)\operatorname% {ph}z\right)}}
|z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}}

abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))
Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
4.2.E30 ph ⁑ ( z a ) = ( β„œ ⁑ a ) ⁒ ph ⁑ z + ( β„‘ ⁑ a ) ⁒ ln ⁑ | z | phase superscript 𝑧 π‘Ž π‘Ž phase 𝑧 π‘Ž 𝑧 {\displaystyle{\displaystyle\operatorname{ph}\left(z^{a}\right)=(\Re a)% \operatorname{ph}z+(\Im a)\ln|z|}}
\phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|}

argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))
Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]
Failure Failure
Failed [6 / 42]
Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}

Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
4.2#Ex1 | z a | = | z | a superscript 𝑧 π‘Ž superscript 𝑧 π‘Ž {\displaystyle{\displaystyle|z^{a}|=|z|^{a}}}
|z^{a}| = |z|^{a}

abs((z)^(a)) = (abs(z))^(a)
Abs[(z)^(a)] == (Abs[z])^(a)
Skipped - no semantic math Skipped - no semantic math - -
4.2#Ex2 ph ⁑ ( z a ) = a ⁒ ph ⁑ z phase superscript 𝑧 π‘Ž π‘Ž phase 𝑧 {\displaystyle{\displaystyle\operatorname{ph}\left(z^{a}\right)=a\operatorname% {ph}z}}
\phase@{z^{a}} = a\phase@@{z}

argument((z)^(a)) = a*argument(z)
Arg[(z)^(a)] == a*Arg[z]
Failure Failure
Failed [6 / 42]
Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}

Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}

Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
4.2.E32 e z = exp ⁑ z superscript 𝑒 𝑧 𝑧 {\displaystyle{\displaystyle e^{z}=\exp z}}
e^{z} = \exp@@{z}

exp(z) = exp(z)
Exp[z] == Exp[z]
Successful Successful - Successful [Tested: 7]
4.2.E33 e z = ( exp ⁑ z ) ⁒ exp ⁑ ( 2 ⁒ k ⁒ z ⁒ Ο€ ⁒ i ) superscript 𝑒 𝑧 𝑧 2 π‘˜ 𝑧 πœ‹ imaginary-unit {\displaystyle{\displaystyle e^{z}=(\exp z)\exp\left(2kz\pi\mathrm{i}\right)}}
e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit}

exp(z) = (exp(z))*exp(2*k*z*Pi*I)
Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I]
Failure Failure
Failed [16 / 21]
Result: 1.989606315+1.174241786*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: 2.084725711+1.143917762*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: 2.086486474+1.139979111*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: .3946493584+.4640329579*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [6 / 7]
Result: Complex[2.0864864733305994, 1.139979110702337]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.3929465878104918, 0.4620308216689905]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.2.E36 - Ο€ ≀ β„‘ ⁑ ( 1 a ⁒ Ln ⁑ w ) πœ‹ 1 π‘Ž multivalued-natural-logarithm 𝑀 {\displaystyle{\displaystyle-\pi\leq\Im\left(\frac{1}{a}\operatorname{Ln}w% \right)}}
-\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)}

- Pi <= Im((1)/(a)*ln(w))
- Pi <= Im[Divide[1,a]*Log[w]]
Failure Failure
Failed [5 / 60]
Result: -3.141592654 <= -4.188790204
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)}

Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -1.5}

Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -.5}

Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -2}

... skip entries to safe data
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: False
Test Values: {Rule[a, -0.5], Rule[w, -1.5]}

... skip entries to safe data
4.2.E36 β„‘ ⁑ ( 1 a ⁒ Ln ⁑ w ) ≀ Ο€ 1 π‘Ž multivalued-natural-logarithm 𝑀 πœ‹ {\displaystyle{\displaystyle\Im\left(\frac{1}{a}\operatorname{Ln}w\right)\leq% \pi}}
\imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi

Im((1)/(a)*ln(w)) <= Pi
Im[Divide[1,a]*Log[w]] <= Pi
Failure Failure
Failed [5 / 60]
Result: 5.235987758 <= 3.141592654
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I}

Result: 4.188790204 <= 3.141592654
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)}

Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -1.5}

Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -.5}

... skip entries to safe data
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: False
Test Values: {Rule[a, 0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.4.E1 ln ⁑ 1 = 0 1 0 {\displaystyle{\displaystyle\ln 1=0}}
\ln@@{1} = 0

ln(1) = 0
Log[1] == 0
Successful Successful - Successful [Tested: 1]
4.4.E2 ln ⁑ ( - 1 + i ⁒ 0 ) = + Ο€ ⁒ i 1 imaginary-unit 0 πœ‹ imaginary-unit {\displaystyle{\displaystyle\ln\left(-1+\mathrm{i}0\right)=+\pi\mathrm{i}}}
\ln@{-1+\iunit 0} = +\pi\iunit

ln(- 1 + I*0) = + Pi*I
Log[- 1 + I*0] == + Pi*I
Successful Successful Skip - symbolical successful subtest Successful [Tested: 1]
4.4.E2 ln ⁑ ( - 1 - i ⁒ 0 ) = - Ο€ ⁒ i 1 imaginary-unit 0 πœ‹ imaginary-unit {\displaystyle{\displaystyle\ln\left(-1-\mathrm{i}0\right)=-\pi\mathrm{i}}}
\ln@{-1-\iunit 0} = -\pi\iunit

ln(- 1 - I*0) = - Pi*I
Log[- 1 - I*0] == - Pi*I
Failure Failure
Failed [1 / 1]
Result: 6.283185308*I
Test Values: {}

Failed [1 / 1]
Result: Complex[0.0, 6.283185307179586]
Test Values: {}

4.4.E3 ln ⁑ ( + i ) = + 1 2 ⁒ Ο€ ⁒ i imaginary-unit 1 2 πœ‹ imaginary-unit {\displaystyle{\displaystyle\ln\left(+\mathrm{i}\right)=+\tfrac{1}{2}\pi% \mathrm{i}}}
\ln@{+\iunit} = +\tfrac{1}{2}\pi\iunit

ln(+ I) = +(1)/(2)*Pi*I
Log[+ I] == +Divide[1,2]*Pi*I
Successful Successful - Successful [Tested: 1]
4.4.E3 ln ⁑ ( - i ) = - 1 2 ⁒ Ο€ ⁒ i imaginary-unit 1 2 πœ‹ imaginary-unit {\displaystyle{\displaystyle\ln\left(-\mathrm{i}\right)=-\tfrac{1}{2}\pi% \mathrm{i}}}
\ln@{-\iunit} = -\tfrac{1}{2}\pi\iunit

ln(- I) = -(1)/(2)*Pi*I
Log[- I] == -Divide[1,2]*Pi*I
Successful Successful - Successful [Tested: 1]
4.4.E4 e 0 = 1 superscript 𝑒 0 1 {\displaystyle{\displaystyle e^{0}=1}}
e^{0} = 1

exp(0) = 1
Exp[0] == 1
Skipped - no semantic math Skipped - no semantic math - -
4.4.E5 e + Ο€ ⁒ i = - 1 superscript 𝑒 πœ‹ imaginary-unit 1 {\displaystyle{\displaystyle e^{+\pi\mathrm{i}}=-1}}
e^{+\pi\iunit} = -1

exp(+ Pi*I) = - 1
Exp[+ Pi*I] == - 1
Successful Successful - Successful [Tested: 1]
4.4.E5 e - Ο€ ⁒ i = - 1 superscript 𝑒 πœ‹ imaginary-unit 1 {\displaystyle{\displaystyle e^{-\pi\mathrm{i}}=-1}}
e^{-\pi\iunit} = -1

exp(- Pi*I) = - 1
Exp[- Pi*I] == - 1
Successful Successful - Successful [Tested: 1]
4.4.E6 e + Ο€ ⁒ i / 2 = + i superscript 𝑒 πœ‹ imaginary-unit 2 imaginary-unit {\displaystyle{\displaystyle e^{+\pi\mathrm{i}/2}=+\mathrm{i}}}
e^{+\pi\iunit/2} = +\iunit

exp(+ Pi*I/2) = + I
Exp[+ Pi*I/2] == + I
Successful Successful - Successful [Tested: 1]
4.4.E6 e - Ο€ ⁒ i / 2 = - i superscript 𝑒 πœ‹ imaginary-unit 2 imaginary-unit {\displaystyle{\displaystyle e^{-\pi\mathrm{i}/2}=-\mathrm{i}}}
e^{-\pi\iunit/2} = -\iunit

exp(- Pi*I/2) = - I
Exp[- Pi*I/2] == - I
Successful Successful - Successful [Tested: 1]
4.4.E7 e 2 ⁒ Ο€ ⁒ k ⁒ i = 1 superscript 𝑒 2 πœ‹ π‘˜ imaginary-unit 1 {\displaystyle{\displaystyle e^{2\pi k\mathrm{i}}=1}}
e^{2\pi k\iunit} = 1

exp(2*Pi*k*I) = 1
Exp[2*Pi*k*I] == 1
Successful Successful - Successful [Tested: 1]
4.4.E8 e + Ο€ ⁒ i / 3 = 1 2 + i ⁒ 3 2 superscript 𝑒 πœ‹ imaginary-unit 3 1 2 imaginary-unit 3 2 {\displaystyle{\displaystyle e^{+\pi\mathrm{i}/3}=\frac{1}{2}+\mathrm{i}\frac{% \sqrt{3}}{2}}}
e^{+\pi\iunit/3} = \frac{1}{2}+\iunit\frac{\sqrt{3}}{2}

exp(+ Pi*I/3) = (1)/(2)+ I*(sqrt(3))/(2)
Exp[+ Pi*I/3] == Divide[1,2]+ I*Divide[Sqrt[3],2]
Successful Successful - Successful [Tested: 1]
4.4.E8 e - Ο€ ⁒ i / 3 = 1 2 - i ⁒ 3 2 superscript 𝑒 πœ‹ imaginary-unit 3 1 2 imaginary-unit 3 2 {\displaystyle{\displaystyle e^{-\pi\mathrm{i}/3}=\frac{1}{2}-\mathrm{i}\frac{% \sqrt{3}}{2}}}
e^{-\pi\iunit/3} = \frac{1}{2}-\iunit\frac{\sqrt{3}}{2}

exp(- Pi*I/3) = (1)/(2)- I*(sqrt(3))/(2)
Exp[- Pi*I/3] == Divide[1,2]- I*Divide[Sqrt[3],2]
Successful Successful - Successful [Tested: 1]
4.4.E9 e + 2 ⁒ Ο€ ⁒ i / 3 = - 1 2 + i ⁒ 3 2 superscript 𝑒 2 πœ‹ imaginary-unit 3 1 2 imaginary-unit 3 2 {\displaystyle{\displaystyle e^{+2\pi\mathrm{i}/3}=-\frac{1}{2}+\mathrm{i}% \frac{\sqrt{3}}{2}}}
e^{+ 2\pi\iunit/3} = -\frac{1}{2}+\iunit\frac{\sqrt{3}}{2}

exp(+ 2*Pi*I/3) = -(1)/(2)+ I*(sqrt(3))/(2)
Exp[+ 2*Pi*I/3] == -Divide[1,2]+ I*Divide[Sqrt[3],2]
Successful Successful - Successful [Tested: 1]
4.4.E9 e - 2 ⁒ Ο€ ⁒ i / 3 = - 1 2 - i ⁒ 3 2 superscript 𝑒 2 πœ‹ imaginary-unit 3 1 2 imaginary-unit 3 2 {\displaystyle{\displaystyle e^{-2\pi\mathrm{i}/3}=-\frac{1}{2}-\mathrm{i}% \frac{\sqrt{3}}{2}}}
e^{- 2\pi\iunit/3} = -\frac{1}{2}-\iunit\frac{\sqrt{3}}{2}

exp(- 2*Pi*I/3) = -(1)/(2)- I*(sqrt(3))/(2)
Exp[- 2*Pi*I/3] == -Divide[1,2]- I*Divide[Sqrt[3],2]
Successful Successful - Successful [Tested: 1]
4.4.E10 e + Ο€ ⁒ i / 4 = 1 2 + i ⁒ 1 2 superscript 𝑒 πœ‹ imaginary-unit 4 1 2 imaginary-unit 1 2 {\displaystyle{\displaystyle e^{+\pi\mathrm{i}/4}=\frac{1}{\sqrt{2}}+\mathrm{i% }\frac{1}{\sqrt{2}}}}
e^{+\pi\iunit/4} = \frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}

exp(+ Pi*I/4) = (1)/(sqrt(2))+ I*(1)/(sqrt(2))
Exp[+ Pi*I/4] == Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]
Successful Successful - Successful [Tested: 1]
4.4.E10 e - Ο€ ⁒ i / 4 = 1 2 - i ⁒ 1 2 superscript 𝑒 πœ‹ imaginary-unit 4 1 2 imaginary-unit 1 2 {\displaystyle{\displaystyle e^{-\pi\mathrm{i}/4}=\frac{1}{\sqrt{2}}-\mathrm{i% }\frac{1}{\sqrt{2}}}}
e^{-\pi\iunit/4} = \frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}

exp(- Pi*I/4) = (1)/(sqrt(2))- I*(1)/(sqrt(2))
Exp[- Pi*I/4] == Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]
Successful Successful - Successful [Tested: 1]
4.4.E11 e + 3 ⁒ Ο€ ⁒ i / 4 = - 1 2 + i ⁒ 1 2 superscript 𝑒 3 πœ‹ imaginary-unit 4 1 2 imaginary-unit 1 2 {\displaystyle{\displaystyle e^{+3\pi\mathrm{i}/4}=-\frac{1}{\sqrt{2}}+\mathrm% {i}\frac{1}{\sqrt{2}}}}
e^{+ 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}+\iunit\frac{1}{\sqrt{2}}

exp(+ 3*Pi*I/4) = -(1)/(sqrt(2))+ I*(1)/(sqrt(2))
Exp[+ 3*Pi*I/4] == -Divide[1,Sqrt[2]]+ I*Divide[1,Sqrt[2]]
Successful Successful - Successful [Tested: 1]
4.4.E11 e - 3 ⁒ Ο€ ⁒ i / 4 = - 1 2 - i ⁒ 1 2 superscript 𝑒 3 πœ‹ imaginary-unit 4 1 2 imaginary-unit 1 2 {\displaystyle{\displaystyle e^{-3\pi\mathrm{i}/4}=-\frac{1}{\sqrt{2}}-\mathrm% {i}\frac{1}{\sqrt{2}}}}
e^{- 3\pi\iunit/4} = -\frac{1}{\sqrt{2}}-\iunit\frac{1}{\sqrt{2}}

exp(- 3*Pi*I/4) = -(1)/(sqrt(2))- I*(1)/(sqrt(2))
Exp[- 3*Pi*I/4] == -Divide[1,Sqrt[2]]- I*Divide[1,Sqrt[2]]
Successful Successful - Successful [Tested: 1]
4.4.E12 i + i = e - Ο€ / 2 imaginary-unit imaginary-unit superscript 𝑒 πœ‹ 2 {\displaystyle{\displaystyle{\mathrm{i}^{+\mathrm{i}}}=e^{-\pi/2}}}
\iunit^{+\iunit} = e^{-\pi/2}

(I)^(+ I) = exp(- Pi/2)
(I)^(+ I) == Exp[- Pi/2]
Successful Successful - Successful [Tested: 1]
4.4.E12 i - i = e + Ο€ / 2 imaginary-unit imaginary-unit superscript 𝑒 πœ‹ 2 {\displaystyle{\displaystyle{\mathrm{i}^{-\mathrm{i}}}=e^{+\pi/2}}}
\iunit^{-\iunit} = e^{+\pi/2}

(I)^(- I) = exp(+ Pi/2)
(I)^(- I) == Exp[+ Pi/2]
Successful Successful - Successful [Tested: 1]
4.4.E13 lim x β†’ ∞ ⁑ x - a ⁒ ln ⁑ x = 0 subscript β†’ π‘₯ superscript π‘₯ π‘Ž π‘₯ 0 {\displaystyle{\displaystyle\lim_{x\to\infty}x^{-a}\ln x=0}}
\lim_{x\to\infty}x^{-a}\ln@@{x} = 0
β„œ ⁑ a > 0 π‘Ž 0 {\displaystyle{\displaystyle\Re a>0}}
limit((x)^(- a)* ln(x), x = infinity) = 0
Limit[(x)^(- a)* Log[x], x -> Infinity, GenerateConditions->None] == 0
Successful Successful - Successful [Tested: 3]
4.4.E14 lim x β†’ 0 ⁑ x a ⁒ ln ⁑ x = 0 subscript β†’ π‘₯ 0 superscript π‘₯ π‘Ž π‘₯ 0 {\displaystyle{\displaystyle\lim_{x\to 0}x^{a}\ln x=0}}
\lim_{x\to 0}x^{a}\ln@@{x} = 0
β„œ ⁑ a > 0 π‘Ž 0 {\displaystyle{\displaystyle\Re a>0}}
limit((x)^(a)* ln(x), x = 0) = 0
Limit[(x)^(a)* Log[x], x -> 0, GenerateConditions->None] == 0
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.4.E15 lim x β†’ ∞ ⁑ x a ⁒ e - x = 0 subscript β†’ π‘₯ superscript π‘₯ π‘Ž superscript 𝑒 π‘₯ 0 {\displaystyle{\displaystyle\lim_{x\to\infty}x^{a}e^{-x}=0}}
\lim_{x\to\infty}x^{a}e^{-x} = 0

limit((x)^(a)* exp(- x), x = infinity) = 0
Limit[(x)^(a)* Exp[- x], x -> Infinity, GenerateConditions->None] == 0
Skipped - no semantic math Skipped - no semantic math - -
4.4.E16 lim z β†’ ∞ ⁑ z a ⁒ e - z = 0 subscript β†’ 𝑧 superscript 𝑧 π‘Ž superscript 𝑒 𝑧 0 {\displaystyle{\displaystyle\lim_{z\to\infty}z^{a}e^{-z}=0}}
\lim_{z\to\infty}z^{a}e^{-z} = 0
| ph ⁑ z | ≀ 1 2 ⁒ Ο€ - Ξ΄ , 1 2 ⁒ Ο€ - Ξ΄ < 1 2 ⁒ Ο€ formulae-sequence phase 𝑧 1 2 πœ‹ 𝛿 1 2 πœ‹ 𝛿 1 2 πœ‹ {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\tfrac{1}{2}\pi-\delta,% \tfrac{1}{2}\pi-\delta<\tfrac{1}{2}\pi}}
limit((z)^(a)* exp(- z), z = infinity) = 0
Limit[(z)^(a)* Exp[- z], z -> Infinity, GenerateConditions->None] == 0
Skipped - no semantic math Skipped - no semantic math - -
4.4.E17 lim n β†’ ∞ ⁑ ( 1 + z n ) n = e z subscript β†’ 𝑛 superscript 1 𝑧 𝑛 𝑛 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n}=e^% {z}}}
\lim_{n\to\infty}\left(1+\frac{z}{n}\right)^{n} = e^{z}
z = 𝑧 absent {\displaystyle{\displaystyle z=}}
limit((1 +(z)/(n))^(n), n = infinity) = exp(z)
Limit[(1 +Divide[z,n])^(n), n -> Infinity, GenerateConditions->None] == Exp[z]
Skipped - no semantic math Skipped - no semantic math - -
4.4.E18 lim n β†’ ∞ ⁑ ( 1 + 1 n ) n = e subscript β†’ 𝑛 superscript 1 1 𝑛 𝑛 𝑒 {\displaystyle{\displaystyle\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n}=e}}
\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^{n} = e

limit((1 +(1)/(n))^(n), n = infinity) = exp(1)
Limit[(1 +Divide[1,n])^(n), n -> Infinity, GenerateConditions->None] == E
Skipped - no semantic math Skipped - no semantic math - -
4.4.E19 lim n β†’ ∞ ⁑ ( ( βˆ‘ k = 1 n 1 k ) - ln ⁑ n ) = Ξ³ subscript β†’ 𝑛 subscript superscript 𝑛 π‘˜ 1 1 π‘˜ 𝑛 {\displaystyle{\displaystyle\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1% }{k}\right)-\ln n\right)=\gamma}}
\lim_{n\to\infty}\left(\left(\sum^{n}_{k=1}\frac{1}{k}\right)-\ln@@{n}\right) = \EulerConstant

limit((sum((1)/(k), k = 1..n))- ln(n), n = infinity) = gamma
Limit[(Sum[Divide[1,k], {k, 1, n}, GenerateConditions->None])- Log[n], n -> Infinity, GenerateConditions->None] == EulerGamma
Successful Successful - Successful [Tested: 1]
4.4.E19 Ξ³ = 0.57721β€…56649β€…01532β€…86060 ⁒ … 0.57721β€…56649β€…01532β€…86060 … {\displaystyle{\displaystyle\gamma=0.57721\ 56649\ 01532\ 86060\dots}}
\EulerConstant = 0.57721\ 56649\ 01532\ 86060\dots

gamma = 0.57721566490153286060
EulerGamma == 0.57721566490153286060
Successful Successful - Successful [Tested: 1]
4.5.E1 x 1 + x < ln ⁑ ( 1 + x ) π‘₯ 1 π‘₯ 1 π‘₯ {\displaystyle{\displaystyle\frac{x}{1+x}<\ln\left(1+x\right)}}
\frac{x}{1+x} < \ln@{1+x}
x > - 1 , x β‰  0 formulae-sequence π‘₯ 1 π‘₯ 0 {\displaystyle{\displaystyle x>-1,x\neq 0}}
(x)/(1 + x) < ln(1 + x)
Divide[x,1 + x] < Log[1 + x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.5.E1 ln ⁑ ( 1 + x ) < x 1 π‘₯ π‘₯ {\displaystyle{\displaystyle\ln\left(1+x\right)<x}}
\ln@{1+x} < x
x > - 1 , x β‰  0 formulae-sequence π‘₯ 1 π‘₯ 0 {\displaystyle{\displaystyle x>-1,x\neq 0}}
ln(1 + x) < x
Log[1 + x] < x
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.5.E2 x < - ln ⁑ ( 1 - x ) π‘₯ 1 π‘₯ {\displaystyle{\displaystyle x<-\ln\left(1-x\right)}}
x < -\ln@{1-x}
x < 1 , x β‰  0 formulae-sequence π‘₯ 1 π‘₯ 0 {\displaystyle{\displaystyle x<1,x\neq 0}}
x < - ln(1 - x)
x < - Log[1 - x]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.5.E2 - ln ⁑ ( 1 - x ) < x 1 - x 1 π‘₯ π‘₯ 1 π‘₯ {\displaystyle{\displaystyle-\ln\left(1-x\right)<\frac{x}{1-x}}}
-\ln@{1-x} < \frac{x}{1-x}
x < 1 , x β‰  0 formulae-sequence π‘₯ 1 π‘₯ 0 {\displaystyle{\displaystyle x<1,x\neq 0}}
- ln(1 - x) < (x)/(1 - x)
- Log[1 - x] < Divide[x,1 - x]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.5.E3 | ln ⁑ ( 1 - x ) | < 3 2 ⁒ x 1 π‘₯ 3 2 π‘₯ {\displaystyle{\displaystyle|\ln\left(1-x\right)|<\tfrac{3}{2}x}}
|\ln@{1-x}| < \tfrac{3}{2}x
0 < x , x ≀ 0.5828 ⁒ … formulae-sequence 0 π‘₯ π‘₯ 0.5828 … {\displaystyle{\displaystyle 0<x,x\leq 0.5828\dots}}
abs(ln(1 - x)) < (3)/(2)*x
Abs[Log[1 - x]] < Divide[3,2]*x
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.5.E4 ln ⁑ x ≀ x - 1 π‘₯ π‘₯ 1 {\displaystyle{\displaystyle\ln x\leq x-1}}
\ln@@{x} \leq x-1
x > 0 π‘₯ 0 {\displaystyle{\displaystyle x>0}}
ln(x) <= x - 1
Log[x] <= x - 1
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.5.E5 ln ⁑ x ≀ a ⁒ ( x 1 / a - 1 ) π‘₯ π‘Ž superscript π‘₯ 1 π‘Ž 1 {\displaystyle{\displaystyle\ln x\leq a(x^{1/a}-1)}}
\ln@@{x} \leq a(x^{1/a}-1)
a > 0 , x > 0 formulae-sequence π‘Ž 0 π‘₯ 0 {\displaystyle{\displaystyle a>0,x>0}}
ln(x) <= a*((x)^(1/a)- 1)
Log[x] <= a*((x)^(1/a)- 1)
Error Failure - Successful [Tested: 9]
4.5.E6 | ln ⁑ ( 1 + z ) | ≀ - ln ⁑ ( 1 - | z | ) 1 𝑧 1 𝑧 {\displaystyle{\displaystyle|\ln\left(1+z\right)|\leq-\ln\left(1-|z|\right)}}
|\ln@{1+z}| \leq -\ln@{1-|z|}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
abs(ln(1 + z)) <= - ln(1 -abs(z))
Abs[Log[1 + z]] <= - Log[1 -Abs[z]]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.5.E7 e - x / ( 1 - x ) < 1 - x superscript 𝑒 π‘₯ 1 π‘₯ 1 π‘₯ {\displaystyle{\displaystyle e^{-x/(1-x)}<1-x}}
e^{-x/(1-x)} < 1-x
x < 1 π‘₯ 1 {\displaystyle{\displaystyle x<1}}
exp(- x/(1 - x)) < 1 - x
Exp[- x/(1 - x)] < 1 - x
Skipped - no semantic math Failure - Successful [Tested: 1]
4.5.E7 1 - x < e - x 1 π‘₯ superscript 𝑒 π‘₯ {\displaystyle{\displaystyle 1-x<e^{-x}}}
1-x < e^{-x}
x < 1 π‘₯ 1 {\displaystyle{\displaystyle x<1}}
1 - x < exp(- x)
1 - x < Exp[- x]
Error Failure - Successful [Tested: 1]
4.5.E8 1 + x < e x 1 π‘₯ superscript 𝑒 π‘₯ {\displaystyle{\displaystyle 1+x<e^{x}}}
1+x < e^{x}
- ∞ < x , x < ∞ formulae-sequence π‘₯ π‘₯ {\displaystyle{\displaystyle-\infty<x,x<\infty}}
1 + x < exp(x)
1 + x < Exp[x]
Skipped - no semantic math Failure - Successful [Tested: 3]
4.5.E9 e x < 1 1 - x superscript 𝑒 π‘₯ 1 1 π‘₯ {\displaystyle{\displaystyle e^{x}<\frac{1}{1-x}}}
e^{x} < \frac{1}{1-x}
x < 1 π‘₯ 1 {\displaystyle{\displaystyle x<1}}
exp(x) < (1)/(1 - x)
Exp[x] < Divide[1,1 - x]
Skipped - no semantic math Failure - Successful [Tested: 1]
4.5.E10 x 1 + x < 1 - e - x π‘₯ 1 π‘₯ 1 superscript 𝑒 π‘₯ {\displaystyle{\displaystyle\frac{x}{1+x}<1-e^{-x}}}
\frac{x}{1+x} < 1-e^{-x}
x > - 1 π‘₯ 1 {\displaystyle{\displaystyle x>-1}}
(x)/(1 + x) < 1 - exp(- x)
Divide[x,1 + x] < 1 - Exp[- x]
Skipped - no semantic math Failure - Successful [Tested: 3]
4.5.E10 1 - e - x < x 1 superscript 𝑒 π‘₯ π‘₯ {\displaystyle{\displaystyle 1-e^{-x}<x}}
1-e^{-x} < x
x > - 1 π‘₯ 1 {\displaystyle{\displaystyle x>-1}}
1 - exp(- x) < x
1 - Exp[- x] < x
Error Failure - Successful [Tested: 3]
4.5.E11 x < e x - 1 π‘₯ superscript 𝑒 π‘₯ 1 {\displaystyle{\displaystyle x<e^{x}-1}}
x < e^{x}-1
x < 1 π‘₯ 1 {\displaystyle{\displaystyle x<1}}
x < exp(x)- 1
x < Exp[x]- 1
Skipped - no semantic math Failure - Successful [Tested: 1]
4.5.E11 e x - 1 < x 1 - x superscript 𝑒 π‘₯ 1 π‘₯ 1 π‘₯ {\displaystyle{\displaystyle e^{x}-1<\frac{x}{1-x}}}
e^{x}-1 < \frac{x}{1-x}
x < 1 π‘₯ 1 {\displaystyle{\displaystyle x<1}}
exp(x)- 1 < (x)/(1 - x)
Exp[x]- 1 < Divide[x,1 - x]
Error Failure - Successful [Tested: 1]
4.5.E12 e x / ( 1 + x ) < 1 + x superscript 𝑒 π‘₯ 1 π‘₯ 1 π‘₯ {\displaystyle{\displaystyle e^{x/(1+x)}<1+x}}
e^{x/(1+x)} < 1+x
x > - 1 π‘₯ 1 {\displaystyle{\displaystyle x>-1}}
exp(x/(1 + x)) < 1 + x
Exp[x/(1 + x)] < 1 + x
Skipped - no semantic math Failure - Successful [Tested: 3]
4.5.E13 e x ⁒ y / ( x + y ) < ( 1 + x y ) y superscript 𝑒 π‘₯ 𝑦 π‘₯ 𝑦 superscript 1 π‘₯ 𝑦 𝑦 {\displaystyle{\displaystyle e^{xy/(x+y)}<\left(1+\frac{x}{y}\right)^{y}}}
e^{xy/(x+y)} < \left(1+\frac{x}{y}\right)^{y}
x > 0 , y > 0 formulae-sequence π‘₯ 0 𝑦 0 {\displaystyle{\displaystyle x>0,y>0}}
exp(x*y/(x + y)) < (1 +(x)/(y))^(y)
Exp[x*y/(x + y)] < (1 +Divide[x,y])^(y)
Skipped - no semantic math Failure - Successful [Tested: 9]
4.5.E13 ( 1 + x y ) y < e x superscript 1 π‘₯ 𝑦 𝑦 superscript 𝑒 π‘₯ {\displaystyle{\displaystyle\left(1+\frac{x}{y}\right)^{y}<e^{x}}}
\left(1+\frac{x}{y}\right)^{y} < e^{x}
x > 0 , y > 0 formulae-sequence π‘₯ 0 𝑦 0 {\displaystyle{\displaystyle x>0,y>0}}
(1 +(x)/(y))^(y) < exp(x)
(1 +Divide[x,y])^(y) < Exp[x]
Error Failure - Successful [Tested: 9]
4.5.E14 e - x < 1 - 1 2 ⁒ x superscript 𝑒 π‘₯ 1 1 2 π‘₯ {\displaystyle{\displaystyle e^{-x}<1-\tfrac{1}{2}x}}
e^{-x} < 1-\tfrac{1}{2}x
0 < x , x ≀ 1.5936 ⁒ … formulae-sequence 0 π‘₯ π‘₯ 1.5936 … {\displaystyle{\displaystyle 0<x,x\leq 1.5936\dots}}
exp(- x) < 1 -(1)/(2)*x
Exp[- x] < 1 -Divide[1,2]*x
Skipped - no semantic math Failure - Successful [Tested: 2]
4.5.E15 1 4 ⁒ | z | < | e z - 1 | 1 4 𝑧 superscript 𝑒 𝑧 1 {\displaystyle{\displaystyle\tfrac{1}{4}|z|<|e^{z}-1|}}
\tfrac{1}{4}|z| < |e^{z}-1|
0 < | z | , | z | < 1 formulae-sequence 0 𝑧 𝑧 1 {\displaystyle{\displaystyle 0<|z|,|z|<1}}
(1)/(4)*abs(z) < abs(exp(z)- 1)
Divide[1,4]*Abs[z] < Abs[Exp[z]- 1]
Skipped - no semantic math Failure - Successful [Tested: 1]
4.5.E15 | e z - 1 | < 7 4 ⁒ | z | superscript 𝑒 𝑧 1 7 4 𝑧 {\displaystyle{\displaystyle|e^{z}-1|<\tfrac{7}{4}|z|}}
|e^{z}-1| < \tfrac{7}{4}|z|
0 < | z | , | z | < 1 formulae-sequence 0 𝑧 𝑧 1 {\displaystyle{\displaystyle 0<|z|,|z|<1}}
abs(exp(z)- 1) < (7)/(4)*abs(z)
Abs[Exp[z]- 1] < Divide[7,4]*Abs[z]
Error Failure - Successful [Tested: 1]
4.5.E16 | e z - 1 | ≀ e | z | - 1 superscript 𝑒 𝑧 1 superscript 𝑒 𝑧 1 {\displaystyle{\displaystyle|e^{z}-1|\leq e^{|z|}-1}}
|e^{z}-1| \leq e^{|z|}-1

abs(exp(z)- 1) <= exp(abs(z))- 1
Abs[Exp[z]- 1] <= Exp[Abs[z]]- 1
Skipped - no semantic math Failure - Successful [Tested: 1]
4.5.E16 e | z | - 1 ≀ | z | ⁒ e | z | superscript 𝑒 𝑧 1 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle e^{|z|}-1\leq|z|e^{|z|}}}
e^{|z|}-1 \leq |z|e^{|z|}

exp(abs(z))- 1 <= abs(z)*exp(abs(z))
Exp[Abs[z]]- 1 <= Abs[z]*Exp[Abs[z]]
Error Failure - Successful [Tested: 1]
4.7.E1 d d z ⁑ ln ⁑ z = 1 z derivative 𝑧 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\ln z=\frac{1}{z}}}
\deriv{}{z}\ln@@{z} = \frac{1}{z}

diff(ln(z), z) = (1)/(z)
D[Log[z], z] == Divide[1,z]
Successful Successful - Successful [Tested: 7]
4.7.E2 d d z ⁑ Ln ⁑ z = 1 z derivative 𝑧 multivalued-natural-logarithm 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\operatorname{Ln}z=% \frac{1}{z}}}
\deriv{}{z}\Ln@@{z} = \frac{1}{z}

diff(ln(z), z) = (1)/(z)
D[Log[z], z] == Divide[1,z]
Successful Successful - Successful [Tested: 7]
4.7.E3 d n d z n ⁑ ln ⁑ z = ( - 1 ) n - 1 ⁒ ( n - 1 ) ! ⁒ z - n derivative 𝑧 𝑛 𝑧 superscript 1 𝑛 1 𝑛 1 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\ln z=(-% 1)^{n-1}(n-1)!z^{-n}}}
\deriv[n]{}{z}\ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}

diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)
D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
4.7.E4 d n d z n ⁑ Ln ⁑ z = ( - 1 ) n - 1 ⁒ ( n - 1 ) ! ⁒ z - n derivative 𝑧 𝑛 multivalued-natural-logarithm 𝑧 superscript 1 𝑛 1 𝑛 1 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}% \operatorname{Ln}z=(-1)^{n-1}(n-1)!z^{-n}}}
\deriv[n]{}{z}\Ln@@{z} = (-1)^{n-1}(n-1)!z^{-n}

diff(ln(z), [z$(n)]) = (- 1)^(n - 1)*factorial(n - 1)*(z)^(- n)
D[Log[z], {z, n}] == (- 1)^(n - 1)*(n - 1)!*(z)^(- n)
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
4.7.E7 d d z ⁑ e z = e z derivative 𝑧 superscript 𝑒 𝑧 superscript 𝑒 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}e^{z}=e^{z}}}
\deriv{}{z}e^{z} = e^{z}

diff(exp(z), z) = exp(z)
D[Exp[z], z] == Exp[z]
Successful Successful - Successful [Tested: 7]
4.7.E8 d d z ⁑ e a ⁒ z = a ⁒ e a ⁒ z derivative 𝑧 superscript 𝑒 π‘Ž 𝑧 π‘Ž superscript 𝑒 π‘Ž 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}e^{az}=ae^{az}}}
\deriv{}{z}e^{az} = ae^{az}

diff(exp(a*z), z) = a*exp(a*z)
D[Exp[a*z], z] == a*Exp[a*z]
Successful Successful - Successful [Tested: 42]
4.7.E9 d d z ⁑ a z = a z ⁒ ln ⁑ a derivative 𝑧 superscript π‘Ž 𝑧 superscript π‘Ž 𝑧 π‘Ž {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}a^{z}=a^{z}\ln a}}
\deriv{}{z}a^{z} = a^{z}\ln@@{a}
a β‰  0 π‘Ž 0 {\displaystyle{\displaystyle a\neq 0}}
diff((a)^(z), z) = (a)^(z)* ln(a)
D[(a)^(z), z] == (a)^(z)* Log[a]
Successful Successful - Successful [Tested: 42]
4.7.E10 d d z ⁑ z a = a ⁒ z a - 1 derivative 𝑧 superscript 𝑧 π‘Ž π‘Ž superscript 𝑧 π‘Ž 1 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}z^{a}=az^{a-1}}}
\deriv{}{z}z^{a} = az^{a-1}

diff((z)^(a), z) = a*(z)^(a - 1)
D[(z)^(a), z] == a*(z)^(a - 1)
Successful Successful - Successful [Tested: 42]
4.7.E14 d 2 w d z 2 = a ⁒ w derivative 𝑀 𝑧 2 π‘Ž 𝑀 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}=aw}}
\deriv[2]{w}{z} = aw
a β‰  0 π‘Ž 0 {\displaystyle{\displaystyle a\neq 0}}
diff(w, [z$(2)]) = a*w
D[w, {z, 2}] == a*w
Failure Failure
Failed [300 / 300]
Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: 1.299038106+.7500000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.299038105676658, 0.7499999999999999]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.7.E15 w = A ⁒ e a ⁒ z + B ⁒ e - a ⁒ z 𝑀 𝐴 superscript 𝑒 π‘Ž 𝑧 𝐡 superscript 𝑒 π‘Ž 𝑧 {\displaystyle{\displaystyle w=Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}}}
w = Ae^{\sqrt{a}z}+Be^{-\sqrt{a}z}

w = A*exp(sqrt(a)*z)+ B*exp(-sqrt(a)*z)
w == A*Exp[Sqrt[a]*z]+ B*Exp[-Sqrt[a]*z]
Skipped - no semantic math Skipped - no semantic math - -
4.8.E1 Ln ⁑ ( z 1 ⁒ z 2 ) = Ln ⁑ z 1 + Ln ⁑ z 2 multivalued-natural-logarithm subscript 𝑧 1 subscript 𝑧 2 multivalued-natural-logarithm subscript 𝑧 1 multivalued-natural-logarithm subscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{Ln}\left(z_{1}z_{2}\right)=% \operatorname{Ln}z_{1}+\operatorname{Ln}z_{2}}}
\Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}}

ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]
Failure Failure
Failed [25 / 100]
Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}

Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}

Result: -.1e-9-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -2}

Result: .133199999e-10-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -1.5]}

Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}

... skip entries to safe data
4.8.E2 ln ⁑ ( z 1 ⁒ z 2 ) = ln ⁑ z 1 + ln ⁑ z 2 subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle\ln\left(z_{1}z_{2}\right)=\ln z_{1}+\ln z_{2}}}
\ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}}
- Ο€ ≀ ph ⁑ z 1 + ph ⁑ z 2 , ph ⁑ z 1 + ph ⁑ z 2 ≀ Ο€ formulae-sequence πœ‹ phase subscript 𝑧 1 phase subscript 𝑧 2 phase subscript 𝑧 1 phase subscript 𝑧 2 πœ‹ {\displaystyle{\displaystyle-\pi\leq\operatorname{ph}z_{1}+\operatorname{ph}z_% {2},\operatorname{ph}z_{1}+\operatorname{ph}z_{2}\leq\pi}}
ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]
Failure Failure Successful [Tested: 59] Successful [Tested: 75]
4.8.E3 Ln ⁑ z 1 z 2 = Ln ⁑ z 1 - Ln ⁑ z 2 multivalued-natural-logarithm subscript 𝑧 1 subscript 𝑧 2 multivalued-natural-logarithm subscript 𝑧 1 multivalued-natural-logarithm subscript 𝑧 2 {\displaystyle{\displaystyle\operatorname{Ln}\frac{z_{1}}{z_{2}}=\operatorname% {Ln}z_{1}-\operatorname{Ln}z_{2}}}
\Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}}

ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]
Failure Failure
Failed [25 / 100]
Result: 0.-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}

Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

Result: .1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1.5}

Result: -.1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -.5}

... skip entries to safe data
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.8.E4 ln ⁑ z 1 z 2 = ln ⁑ z 1 - ln ⁑ z 2 subscript 𝑧 1 subscript 𝑧 2 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle\ln\frac{z_{1}}{z_{2}}=\ln z_{1}-\ln z_{2}}}
\ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}}
- Ο€ ≀ ph ⁑ z 1 - ph ⁑ z 2 , ph ⁑ z 1 - ph ⁑ z 2 ≀ Ο€ formulae-sequence πœ‹ phase subscript 𝑧 1 phase subscript 𝑧 2 phase subscript 𝑧 1 phase subscript 𝑧 2 πœ‹ {\displaystyle{\displaystyle-\pi\leq\operatorname{ph}z_{1}-\operatorname{ph}z_% {2},\operatorname{ph}z_{1}-\operatorname{ph}z_{2}\leq\pi}}
ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]
Failure Failure
Failed [3 / 70]
Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}

Result: 0.+6.283185308*I
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}

Result: 6.283185308*I
Test Values: {z[1] = 2, z[2] = -2}

Failed [11 / 86]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.8.E5 Ln ⁑ ( z n ) = n ⁒ Ln ⁑ z multivalued-natural-logarithm superscript 𝑧 𝑛 𝑛 multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle\operatorname{Ln}\left(z^{n}\right)=n\operatorname% {Ln}z}}
\Ln@{z^{n}} = n\Ln@@{z}

ln((z)^(n)) = n*ln(z)
Log[(z)^(n)] == n*Log[z]
Failure Failure
Failed [5 / 21]
Result: .133199999e-10-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}

Result: .4399599996e-9-6.283185306*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}

Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}

Result: .133199999e-10+6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2, n = 3}

... skip entries to safe data
Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.8.E6 ln ⁑ ( z n ) = n ⁒ ln ⁑ z superscript 𝑧 𝑛 𝑛 𝑧 {\displaystyle{\displaystyle\ln\left(z^{n}\right)=n\ln z}}
\ln@{z^{n}} = n\ln@@{z}
- Ο€ ≀ n ⁒ ph ⁑ z , n ⁒ ph ⁑ z ≀ Ο€ formulae-sequence πœ‹ 𝑛 phase 𝑧 𝑛 phase 𝑧 πœ‹ {\displaystyle{\displaystyle-\pi\leq n\operatorname{ph}z,n\operatorname{ph}z% \leq\pi}}
ln((z)^(n)) = n*ln(z)
Log[(z)^(n)] == n*Log[z]
Failure Failure
Failed [1 / 17]
Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}

Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.8.E7 ln ⁑ 1 z = - ln ⁑ z 1 𝑧 𝑧 {\displaystyle{\displaystyle\ln\frac{1}{z}=-\ln z}}
\ln@@{\frac{1}{z}} = -\ln@@{z}
| ph ⁑ z | ≀ Ο€ phase 𝑧 πœ‹ {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\pi}}
ln((1)/(z)) = - ln(z)
Log[Divide[1,z]] == - Log[z]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.8.E8 Ln ⁑ ( exp ⁑ z ) = z + 2 ⁒ k ⁒ Ο€ ⁒ i multivalued-natural-logarithm 𝑧 𝑧 2 π‘˜ πœ‹ imaginary-unit {\displaystyle{\displaystyle\operatorname{Ln}\left(\exp z\right)=z+2k\pi% \mathrm{i}}}
\Ln@{\exp@@{z}} = z+2k\pi\iunit

ln(exp(z)) = z + 2*k*Pi*I
Log[Exp[z]] == z + 2*k*Pi*I
Failure Failure
Failed [21 / 21]
Result: -.1e-9-6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: -.1e-9-12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: -.1e-9-18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: 0.-6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.8.E9 ln ⁑ ( exp ⁑ z ) = z 𝑧 𝑧 {\displaystyle{\displaystyle\ln\left(\exp z\right)=z}}
\ln@{\exp@@{z}} = z
- Ο€ ≀ β„‘ ⁑ z , β„‘ ⁑ z ≀ Ο€ formulae-sequence πœ‹ 𝑧 𝑧 πœ‹ {\displaystyle{\displaystyle-\pi\leq\Im z,\Im z\leq\pi}}
ln(exp(z)) = z
Log[Exp[z]] == z
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.8.E10 exp ⁑ ( ln ⁑ z ) = exp ⁑ ( Ln ⁑ z ) 𝑧 multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle\exp\left(\ln z\right)=\exp\left(\operatorname{Ln}% z\right)}}
\exp@{\ln@@{z}} = \exp@{\Ln@@{z}}

exp(ln(z)) = exp(ln(z))
Exp[Log[z]] == Exp[Log[z]]
Successful Successful - Successful [Tested: 7]
4.8.E10 exp ⁑ ( Ln ⁑ z ) = z multivalued-natural-logarithm 𝑧 𝑧 {\displaystyle{\displaystyle\exp\left(\operatorname{Ln}z\right)=z}}
\exp@{\Ln@@{z}} = z

exp(ln(z)) = z
Exp[Log[z]] == z
Successful Successful - Successful [Tested: 7]
4.8.E11 Ln ⁑ ( a z ) = z ⁒ Ln ⁑ a + 2 ⁒ k ⁒ Ο€ ⁒ i multivalued-natural-logarithm superscript π‘Ž 𝑧 𝑧 multivalued-natural-logarithm π‘Ž 2 π‘˜ πœ‹ imaginary-unit {\displaystyle{\displaystyle\operatorname{Ln}\left(a^{z}\right)=z\operatorname% {Ln}a+2k\pi\mathrm{i}}}
\Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit

ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I
Failure Failure
Failed [126 / 126]
Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}

Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}

Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}

Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}

... skip entries to safe data
Failed [42 / 42]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.8.E12 ln ⁑ ( a z ) = z ⁒ ln ⁑ a + 2 ⁒ k ⁒ Ο€ ⁒ i superscript π‘Ž 𝑧 𝑧 π‘Ž 2 π‘˜ πœ‹ imaginary-unit {\displaystyle{\displaystyle\ln\left(a^{z}\right)=z\ln a+2k\pi\mathrm{i}}}
\ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit

ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I
Failure Failure
Failed [126 / 126]
Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}

Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}

Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3}

Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1}

... skip entries to safe data
Failed [126 / 126]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.8.E13 ln ⁑ ( a x ) = x ⁒ ln ⁑ a superscript π‘Ž π‘₯ π‘₯ π‘Ž {\displaystyle{\displaystyle\ln\left(a^{x}\right)=x\ln a}}
\ln@{a^{x}} = x\ln@@{a}
a > 0 π‘Ž 0 {\displaystyle{\displaystyle a>0}}
ln((a)^(x)) = x*ln(a)
Log[(a)^(x)] == x*Log[a]
Successful Failure - Successful [Tested: 9]
4.8.E14 a z 1 ⁒ a z 2 = a z 1 + z 2 superscript π‘Ž subscript 𝑧 1 superscript π‘Ž subscript 𝑧 2 superscript π‘Ž subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle a^{z_{1}}a^{z_{2}}=a^{z_{1}+z_{2}}}}
a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}}
a β‰  0 π‘Ž 0 {\displaystyle{\displaystyle a\neq 0}}
(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2])
(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2])
Skipped - no semantic math Skipped - no semantic math - -
4.8.E15 a z ⁒ b z = ( a ⁒ b ) z superscript π‘Ž 𝑧 superscript 𝑏 𝑧 superscript π‘Ž 𝑏 𝑧 {\displaystyle{\displaystyle a^{z}b^{z}=(ab)^{z}}}
a^{z}b^{z} = (ab)^{z}
- Ο€ ≀ ph ⁑ a + ph ⁑ b , ph ⁑ a + ph ⁑ b ≀ Ο€ formulae-sequence πœ‹ phase π‘Ž phase 𝑏 phase π‘Ž phase 𝑏 πœ‹ {\displaystyle{\displaystyle-\pi\leq\operatorname{ph}a+\operatorname{ph}b,% \operatorname{ph}a+\operatorname{ph}b\leq\pi}}
(a)^(z)* (b)^(z) = (a*b)^(z)
(a)^(z)* (b)^(z) == (a*b)^(z)
Skipped - no semantic math Skipped - no semantic math - -
4.8.E16 e z 1 ⁒ e z 2 = e z 1 + z 2 superscript 𝑒 subscript 𝑧 1 superscript 𝑒 subscript 𝑧 2 superscript 𝑒 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle e^{z_{1}}e^{z_{2}}=e^{z_{1}+z_{2}}}}
e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}}

exp(z[1])*exp(z[2]) = exp(z[1]+ z[2])
Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]]
Skipped - no semantic math Skipped - no semantic math - -
4.8.E17 ( e z 1 ) z 2 = e z 1 ⁒ z 2 superscript superscript 𝑒 subscript 𝑧 1 subscript 𝑧 2 superscript 𝑒 subscript 𝑧 1 subscript 𝑧 2 {\displaystyle{\displaystyle(e^{z_{1}})^{z_{2}}=e^{z_{1}z_{2}}}}
(e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}}
- Ο€ ≀ β„‘ ⁑ z 1 , β„‘ ⁑ z 1 ≀ Ο€ formulae-sequence πœ‹ subscript 𝑧 1 subscript 𝑧 1 πœ‹ {\displaystyle{\displaystyle-\pi\leq\Im z_{1},\Im z_{1}\leq\pi}}
(exp(z[1]))^(z[2]) = exp(z[1]*z[2])
(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]]
Skipped - no semantic math Skipped - no semantic math - -
4.10.E1 ∫ d z z = ln ⁑ z 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{z}=\ln z}}
\int\frac{\diff{z}}{z} = \ln@@{z}

int((1)/(z), z) = ln(z)
Integrate[Divide[1,z], z, GenerateConditions->None] == Log[z]
Successful Successful - Successful [Tested: 7]
4.10.E2 ∫ ln ⁑ z ⁒ d z = z ⁒ ln ⁑ z - z 𝑧 𝑧 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\int\ln z\mathrm{d}z=z\ln z-z}}
\int\ln@@{z}\diff{z} = z\ln@@{z}-z

int(ln(z), z) = z*ln(z)- z
Integrate[Log[z], z, GenerateConditions->None] == z*Log[z]- z
Successful Successful - Successful [Tested: 7]
4.10.E3 ∫ z n ⁒ ln ⁑ z ⁒ d z = z n + 1 n + 1 ⁒ ln ⁑ z - z n + 1 ( n + 1 ) 2 superscript 𝑧 𝑛 𝑧 𝑧 superscript 𝑧 𝑛 1 𝑛 1 𝑧 superscript 𝑧 𝑛 1 superscript 𝑛 1 2 {\displaystyle{\displaystyle\int z^{n}\ln z\mathrm{d}z=\frac{z^{n+1}}{n+1}\ln z% -\frac{z^{n+1}}{(n+1)^{2}}}}
\int z^{n}\ln@@{z}\diff{z} = \frac{z^{n+1}}{n+1}\ln@@{z}-\frac{z^{n+1}}{(n+1)^{2}}
n β‰  - 1 𝑛 1 {\displaystyle{\displaystyle n\neq-1}}
int((z)^(n)* ln(z), z) = ((z)^(n + 1))/(n + 1)*ln(z)-((z)^(n + 1))/((n + 1)^(2))
Integrate[(z)^(n)* Log[z], z, GenerateConditions->None] == Divide[(z)^(n + 1),n + 1]*Log[z]-Divide[(z)^(n + 1),(n + 1)^(2)]
Successful Successful - Successful [Tested: 21]
4.10.E4 ∫ d z z ⁒ ln ⁑ z = ln ⁑ ( ln ⁑ z ) 𝑧 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{z\ln z}=\ln\left(\ln z% \right)}}
\int\frac{\diff{z}}{z\ln@@{z}} = \ln@{\ln@@{z}}

int((1)/(z*ln(z)), z) = ln(ln(z))
Integrate[Divide[1,z*Log[z]], z, GenerateConditions->None] == Log[Log[z]]
Successful Successful - Successful [Tested: 7]
4.10.E5 ∫ 0 1 ln ⁑ t 1 - t ⁒ d t = - Ο€ 2 6 superscript subscript 0 1 𝑑 1 𝑑 𝑑 superscript πœ‹ 2 6 {\displaystyle{\displaystyle\int_{0}^{1}\frac{\ln t}{1-t}\mathrm{d}t=-\frac{% \pi^{2}}{6}}}
\int_{0}^{1}\frac{\ln@@{t}}{1-t}\diff{t} = -\frac{\pi^{2}}{6}

int((ln(t))/(1 - t), t = 0..1) = -((Pi)^(2))/(6)
Integrate[Divide[Log[t],1 - t], {t, 0, 1}, GenerateConditions->None] == -Divide[(Pi)^(2),6]
Successful Successful - Successful [Tested: 1]
4.10.E6 ∫ 0 1 ln ⁑ t 1 + t ⁒ d t = - Ο€ 2 12 superscript subscript 0 1 𝑑 1 𝑑 𝑑 superscript πœ‹ 2 12 {\displaystyle{\displaystyle\int_{0}^{1}\frac{\ln t}{1+t}\mathrm{d}t=-\frac{% \pi^{2}}{12}}}
\int_{0}^{1}\frac{\ln@@{t}}{1+t}\diff{t} = -\frac{\pi^{2}}{12}

int((ln(t))/(1 + t), t = 0..1) = -((Pi)^(2))/(12)
Integrate[Divide[Log[t],1 + t], {t, 0, 1}, GenerateConditions->None] == -Divide[(Pi)^(2),12]
Successful Successful - Successful [Tested: 1]
4.10.E8 ∫ e a ⁒ z ⁒ d z = e a ⁒ z a superscript 𝑒 π‘Ž 𝑧 𝑧 superscript 𝑒 π‘Ž 𝑧 π‘Ž {\displaystyle{\displaystyle\int e^{az}\mathrm{d}z=\frac{e^{az}}{a}}}
\int e^{az}\diff{z} = \frac{e^{az}}{a}

int(exp(a*z), z) = (exp(a*z))/(a)
Integrate[Exp[a*z], z, GenerateConditions->None] == Divide[Exp[a*z],a]
Successful Successful - Successful [Tested: 42]
4.10.E9 ∫ d z e a ⁒ z + b = 1 a ⁒ b ⁒ ( a ⁒ z - ln ⁑ ( e a ⁒ z + b ) ) 𝑧 superscript 𝑒 π‘Ž 𝑧 𝑏 1 π‘Ž 𝑏 π‘Ž 𝑧 superscript 𝑒 π‘Ž 𝑧 𝑏 {\displaystyle{\displaystyle\int\frac{\mathrm{d}z}{e^{az}+b}=\frac{1}{ab}(az-% \ln\left(e^{az}+b\right))}}
\int\frac{\diff{z}}{e^{az}+b} = \frac{1}{ab}(az-\ln@{e^{az}+b})

int((1)/(exp(a*z)+ b), z) = (1)/(a*b)*(a*z - ln(exp(a*z)+ b))
Integrate[Divide[1,Exp[a*z]+ b], z, GenerateConditions->None] == Divide[1,a*b]*(a*z - Log[Exp[a*z]+ b])
Failure Successful Successful [Tested: 252] Successful [Tested: 252]
4.10.E10 ∫ e a ⁒ z - 1 e a ⁒ z + 1 ⁒ d z = 2 a ⁒ ln ⁑ ( e a ⁒ z / 2 + e - a ⁒ z / 2 ) superscript 𝑒 π‘Ž 𝑧 1 superscript 𝑒 π‘Ž 𝑧 1 𝑧 2 π‘Ž superscript 𝑒 π‘Ž 𝑧 2 superscript 𝑒 π‘Ž 𝑧 2 {\displaystyle{\displaystyle\int\frac{e^{az}-1}{e^{az}+1}\mathrm{d}z=\frac{2}{% a}\ln\left(e^{az/2}+e^{-az/2}\right)}}
\int\frac{e^{az}-1}{e^{az}+1}\diff{z} = \frac{2}{a}\ln@{e^{az/2}+e^{-az/2}}

int((exp(a*z)- 1)/(exp(a*z)+ 1), z) = (2)/(a)*ln(exp(a*z/2)+ exp(- a*z/2))
Integrate[Divide[Exp[a*z]- 1,Exp[a*z]+ 1], z, GenerateConditions->None] == Divide[2,a]*Log[Exp[a*z/2]+ Exp[- a*z/2]]
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
4.10.E11 ∫ - ∞ ∞ e - c ⁒ x 2 ⁒ d x = Ο€ c superscript subscript superscript 𝑒 𝑐 superscript π‘₯ 2 π‘₯ πœ‹ 𝑐 {\displaystyle{\displaystyle\int_{-\infty}^{\infty}e^{-cx^{2}}\mathrm{d}x=% \sqrt{\frac{\pi}{c}}}}
\int_{-\infty}^{\infty}e^{-cx^{2}}\diff{x} = \sqrt{\frac{\pi}{c}}
β„œ ⁑ c > 0 𝑐 0 {\displaystyle{\displaystyle\Re c>0}}
int(exp(- c*(x)^(2)), x = - infinity..infinity) = sqrt((Pi)/(c))
Integrate[Exp[- c*(x)^(2)], {x, - Infinity, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,c]]
Successful Successful - Successful [Tested: 3]
4.10.E12 ∫ 0 ln ⁑ 2 x ⁒ e x e x - 1 ⁒ d x = Ο€ 2 12 superscript subscript 0 2 π‘₯ superscript 𝑒 π‘₯ superscript 𝑒 π‘₯ 1 π‘₯ superscript πœ‹ 2 12 {\displaystyle{\displaystyle\int_{0}^{\ln 2}\frac{xe^{x}}{e^{x}-1}\mathrm{d}x=% \frac{\pi^{2}}{12}}}
\int_{0}^{\ln@@{2}}\frac{xe^{x}}{e^{x}-1}\diff{x} = \frac{\pi^{2}}{12}

int((x*exp(x))/(exp(x)- 1), x = 0..ln(2)) = ((Pi)^(2))/(12)
Integrate[Divide[x*Exp[x],Exp[x]- 1], {x, 0, Log[2]}, GenerateConditions->None] == Divide[(Pi)^(2),12]
Successful Successful - Successful [Tested: 1]
4.10.E13 ∫ 0 ∞ d x e x + 1 = ln ⁑ 2 superscript subscript 0 π‘₯ superscript 𝑒 π‘₯ 1 2 {\displaystyle{\displaystyle\int_{0}^{\infty}\frac{\mathrm{d}x}{e^{x}+1}=\ln 2}}
\int_{0}^{\infty}\frac{\diff{x}}{e^{x}+1} = \ln@@{2}

int((1)/(exp(x)+ 1), x = 0..infinity) = ln(2)
Integrate[Divide[1,Exp[x]+ 1], {x, 0, Infinity}, GenerateConditions->None] == Log[2]
Successful Successful - Successful [Tested: 1]
4.12.E1 Ο• ⁒ ( x + 1 ) = e Ο• ⁒ ( x ) italic-Ο• π‘₯ 1 superscript 𝑒 italic-Ο• π‘₯ {\displaystyle{\displaystyle\phi(x+1)=e^{\phi(x)}}}
\phi(x+1) = e^{\phi(x)}
- 1 < x , x < ∞ formulae-sequence 1 π‘₯ π‘₯ {\displaystyle{\displaystyle-1<x,x<\infty}}
phi(x + 1) = exp(phi(x))
\[Phi][x + 1] == Exp[\[Phi][x]]
Skipped - no semantic math Skipped - no semantic math - -
4.12.E2 Ο• ⁒ ( 0 ) = 0 italic-Ο• 0 0 {\displaystyle{\displaystyle\phi(0)=0}}
\phi(0) = 0

phi(0) = 0
\[Phi][0] == 0
Skipped - no semantic math Skipped - no semantic math - -
4.12.E3 ψ ⁒ ( e x ) = 1 + ψ ⁒ ( x ) πœ“ superscript 𝑒 π‘₯ 1 πœ“ π‘₯ {\displaystyle{\displaystyle\psi(e^{x})=1+\psi(x)}}
\psi(e^{x}) = 1+\psi(x)
- ∞ < x , x < ∞ formulae-sequence π‘₯ π‘₯ {\displaystyle{\displaystyle-\infty<x,x<\infty}}
psi(exp(x)) = 1 + psi(x)
\[Psi][Exp[x]] == 1 + \[Psi][x]
Skipped - no semantic math Skipped - no semantic math - -
4.12.E4 ψ ⁒ ( 0 ) = 0 πœ“ 0 0 {\displaystyle{\displaystyle\psi(0)=0}}
\psi(0) = 0

psi(0) = 0
\[Psi][0] == 0
Skipped - no semantic math Skipped - no semantic math - -
4.12.E5 Ο• ⁒ ( x ) = ψ ⁒ ( x ) italic-Ο• π‘₯ πœ“ π‘₯ {\displaystyle{\displaystyle\phi(x)=\psi(x)}}
\phi(x) = \psi(x)
0 ≀ x , x ≀ 1 formulae-sequence 0 π‘₯ π‘₯ 1 {\displaystyle{\displaystyle 0\leq x,x\leq 1}}
phi(x) = psi(x)
\[Phi][x] == \[Psi][x]
Skipped - no semantic math Skipped - no semantic math - -
4.12.E6 Ο• ⁒ ( x ) = ln ⁑ ( x + 1 ) italic-Ο• π‘₯ π‘₯ 1 {\displaystyle{\displaystyle\phi(x)=\ln\left(x+1\right)}}
\phi(x) = \ln@{x+1}
- 1 < x , x < 0 formulae-sequence 1 π‘₯ π‘₯ 0 {\displaystyle{\displaystyle-1<x,x<0}}
phi(x) = ln(x + 1)
\[Phi][x] == Log[x + 1]
Failure Failure Error Skip - No test values generated
4.12.E8 ψ ⁒ ( x ) = e x - 1 πœ“ π‘₯ superscript 𝑒 π‘₯ 1 {\displaystyle{\displaystyle\psi(x)=e^{x}-1}}
\psi(x) = e^{x}-1
- ∞ < x , x < 0 formulae-sequence π‘₯ π‘₯ 0 {\displaystyle{\displaystyle-\infty<x,x<0}}
psi(x) = exp(x)- 1
\[Psi][x] == Exp[x]- 1
Skipped - no semantic math Skipped - no semantic math - -
4.13.E1 W ⁒ e W = x π‘Š superscript 𝑒 π‘Š π‘₯ {\displaystyle{\displaystyle We^{W}=x}}
We^{W} = x

W*exp(W) = x
W*Exp[W] == x
Failure Failure
Failed [30 / 30]
Result: -.263026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: .736973970+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = .5}

Result: -.763026030+2.030302705*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, x = 2}

Result: -2.096603674+.1092863076*I
Test Values: {W = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.2630260306572938, 2.0303027048207967]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[0.7369739693427062, 2.0303027048207967]
Test Values: {Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13#Ex1 Wp ⁑ ( - 1 / e ) = Wm ⁑ ( - 1 / e ) Lambert-Wp 1 𝑒 Lambert-Wm 1 𝑒 {\displaystyle{\displaystyle\mathrm{Wp}\left(-1/e\right)=\mathrm{Wm}\left(-1/e% \right)}}
\LambertWp@{-1/e} = \LambertWm@{-1/e}

LambertW(0, - 1/exp(1)) = LambertW(-1, - 1/exp(1))
ProductLog[0, - 1/E] == ProductLog[-1, - 1/E]
Successful Successful - Successful [Tested: 1]
4.13#Ex1 Wm ⁑ ( - 1 / e ) = - 1 Lambert-Wm 1 𝑒 1 {\displaystyle{\displaystyle\mathrm{Wm}\left(-1/e\right)=-1}}
\LambertWm@{-1/e} = -1

LambertW(-1, - 1/exp(1)) = - 1
ProductLog[-1, - 1/E] == - 1
Successful Successful - Successful [Tested: 1]
4.13#Ex2 Wp ⁑ ( 0 ) = 0 Lambert-Wp 0 0 {\displaystyle{\displaystyle\mathrm{Wp}\left(0\right)=0}}
\LambertWp@{0} = 0

LambertW(0, 0) = 0
ProductLog[0, 0] == 0
Successful Successful - Successful [Tested: 1]
4.13#Ex3 Wp ⁑ ( e ) = 1 Lambert-Wp 𝑒 1 {\displaystyle{\displaystyle\mathrm{Wp}\left(e\right)=1}}
\LambertWp@{e} = 1

LambertW(0, exp(1)) = 1
ProductLog[0, E] == 1
Successful Successful - Successful [Tested: 1]
4.13#Ex4 U + ln ⁑ U = x π‘ˆ π‘ˆ π‘₯ {\displaystyle{\displaystyle U+\ln U=x}}
U+\ln@@{U} = x

U + ln(U) = x
U + Log[U] == x
Failure Failure
Failed [30 / 30]
Result: -.6339745958+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: .3660254042+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}

Result: -1.133974596+1.023598776*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}

Result: -2.000000000+2.960420506*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.6339745962155613, 1.0235987755982987]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[0.3660254037844387, 1.0235987755982987]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13#Ex5 U = U ⁒ ( x ) π‘ˆ π‘ˆ π‘₯ {\displaystyle{\displaystyle U=U(x)}}
U = U(x)

U = U*(x)
U == U*(x)
Failure Failure
Failed [30 / 30]
Result: -.4330127020-.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: .4330127020+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}

Result: -.8660254040-.5000000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}

Result: .2500000000-.4330127020*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[-0.4330127018922193, -0.24999999999999994]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[0.43301270189221935, 0.24999999999999997]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13#Ex5 U ⁒ ( x ) = W ⁑ ( e x ) π‘ˆ π‘₯ Lambert-W superscript 𝑒 π‘₯ {\displaystyle{\displaystyle U(x)=W\left(e^{x}\right)}}
U(x) = \LambertW@{e^{x}}

U(x) = LambertW(exp(x))
U[x] == ProductLog[Exp[x]]
Failure Failure
Failed [30 / 30]
Result: .34078386e-1+.7500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 1.5}

Result: -.3332359062+.2500000000*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = .5}

Result: .174905209+1.*I
Test Values: {U = 1/2*3^(1/2)+1/2*I, x = 2}

Result: -2.014959720+1.299038106*I
Test Values: {U = -1/2+1/2*I*3^(1/2), x = 1.5}

... skip entries to safe data
Failed [30 / 30]
Result: Complex[0.0340783855511575, 0.7499999999999999]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5]}

Result: Complex[-0.333235906269531, 0.24999999999999997]
Test Values: {Rule[U, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 0.5]}

... skip entries to safe data
4.13.E5 Wp ⁑ ( x ) = βˆ‘ n = 1 ∞ ( - 1 ) n - 1 ⁒ n n - 2 ( n - 1 ) ! ⁒ x n Lambert-Wp π‘₯ superscript subscript 𝑛 1 superscript 1 𝑛 1 superscript 𝑛 𝑛 2 𝑛 1 superscript π‘₯ 𝑛 {\displaystyle{\displaystyle\mathrm{Wp}\left(x\right)=\sum_{n=1}^{\infty}(-1)^% {n-1}\frac{n^{n-2}}{(n-1)!}x^{n}}}
\LambertWp@{x} = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{n^{n-2}}{(n-1)!}x^{n}
| x | < 1 e π‘₯ 1 𝑒 {\displaystyle{\displaystyle|x|<\dfrac{1}{e}}}
LambertW(0, x) = sum((- 1)^(n - 1)*((n)^(n - 2))/(factorial(n - 1))*(x)^(n), n = 1..infinity)
ProductLog[0, x] == Sum[(- 1)^(n - 1)*Divide[(n)^(n - 2),(n - 1)!]*(x)^(n), {n, 1, Infinity}, GenerateConditions->None]
Failure Successful Error Successful [Tested: 0]
4.13.E6 W ⁑ ( - e - 1 - ( t 2 / 2 ) ) = βˆ‘ n = 0 ∞ ( - 1 ) n - 1 ⁒ c n ⁒ t n Lambert-W superscript 𝑒 1 superscript 𝑑 2 2 superscript subscript 𝑛 0 superscript 1 𝑛 1 subscript 𝑐 𝑛 superscript 𝑑 𝑛 {\displaystyle{\displaystyle W\left(-e^{-1-(t^{2}/2)}\right)=\sum_{n=0}^{% \infty}(-1)^{n-1}c_{n}t^{n}}}
\LambertW@{-e^{-1-(t^{2}/2)}} = \sum_{n=0}^{\infty}(-1)^{n-1}c_{n}t^{n}
| t | < 2 ⁒ Ο€ 𝑑 2 πœ‹ {\displaystyle{\displaystyle|t|<2\sqrt{\pi}}}
LambertW(- exp(- 1 -((t)^(2)/2))) = sum((- 1)^(n - 1)* c[n]*(t)^(n), n = 0..infinity)
ProductLog[- Exp[- 1 -((t)^(2)/2)]] == Sum[(- 1)^(n - 1)* Subscript[c, n]*(t)^(n), {n, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [60 / 60]
Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2*3^(1/2)+1/2*I}

Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2+1/2*I*3^(1/2)}

Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = 1/2-1/2*I*3^(1/2)}

Result: Float(infinity)+Float(infinity)*I
Test Values: {t = -1.5, c[n] = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [60 / 60]
Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[-0.13696418431579768, Times[-1.0, NSum[Times[Power[-1.5, n], Power[-1, Plus[-1, n]], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]
Test Values: {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[t, -1.5], Rule[Subscript[c, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.13.E7 c 0 = 1 , c 1 subscript 𝑐 0 1 subscript 𝑐 1 {\displaystyle{\displaystyle c_{0}=1,c_{1}}}
c_{0} = 1,c_{1}

c[0] = 1; c[1]
Subscript[c, 0] == 1
 Subscript[c, 1]
Skipped - no semantic math Skipped - no semantic math - -
4.13.E8 c n = 1 n + 1 ⁒ ( c n - 1 - βˆ‘ k = 2 n - 1 k ⁒ c k ⁒ c n + 1 - k ) subscript 𝑐 𝑛 1 𝑛 1 subscript 𝑐 𝑛 1 superscript subscript π‘˜ 2 𝑛 1 π‘˜ subscript 𝑐 π‘˜ subscript 𝑐 𝑛 1 π‘˜ {\displaystyle{\displaystyle c_{n}=\frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}% kc_{k}c_{n+1-k}\right)}}
c_{n} = \frac{1}{n+1}\left(c_{n-1}-\sum_{k=2}^{n-1}kc_{k}c_{n+1-k}\right)
n β‰₯ 2 𝑛 2 {\displaystyle{\displaystyle n\geq 2}}
c[n] = (1)/(n + 1)*(c[n - 1]- sum(k*c[k]*c[n + 1 - k], k = 2..n - 1))
Subscript[c, n] == Divide[1,n + 1]*(Subscript[c, n - 1]- Sum[k*Subscript[c, k]*Subscript[c, n + 1 - k], {k, 2, n - 1}, GenerateConditions->None])
Skipped - no semantic math Skipped - no semantic math - -
4.13.E9 1 β‹… 3 β‹… 5 ⁒ β‹― ⁒ ( 2 ⁒ n + 1 ) ⁒ c 2 ⁒ n + 1 = g n β‹… 1 3 5 β‹― 2 𝑛 1 subscript 𝑐 2 𝑛 1 subscript 𝑔 𝑛 {\displaystyle{\displaystyle 1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1}=g_{n}}}
1\cdot 3\cdot 5\cdots(2n+1)c_{2n+1} = g_{n}

1 * 3 * 5*(2*n + 1)*c[2*n + 1] = g[n]
1 * 3 * 5*(2*n + 1)*Subscript[c, 2*n + 1] == Subscript[g, n]
Skipped - no semantic math Skipped - no semantic math - -
4.14.E1 sin ⁑ z = e i ⁒ z - e - i ⁒ z 2 ⁒ i 𝑧 superscript 𝑒 imaginary-unit 𝑧 superscript 𝑒 imaginary-unit 𝑧 2 imaginary-unit {\displaystyle{\displaystyle\sin z=\frac{e^{\mathrm{i}z}-e^{-\mathrm{i}z}}{2% \mathrm{i}}}}
\sin@@{z} = \frac{e^{\iunit z}-e^{-\iunit z}}{2\iunit}

sin(z) = (exp(I*z)- exp(- I*z))/(2*I)
Sin[z] == Divide[Exp[I*z]- Exp[- I*z],2*I]
Successful Successful - Successful [Tested: 7]
4.14.E2 cos ⁑ z = e i ⁒ z + e - i ⁒ z 2 𝑧 superscript 𝑒 imaginary-unit 𝑧 superscript 𝑒 imaginary-unit 𝑧 2 {\displaystyle{\displaystyle\cos z=\frac{e^{\mathrm{i}z}+e^{-\mathrm{i}z}}{2}}}
\cos@@{z} = \frac{e^{\iunit z}+e^{-\iunit z}}{2}

cos(z) = (exp(I*z)+ exp(- I*z))/(2)
Cos[z] == Divide[Exp[I*z]+ Exp[- I*z],2]
Successful Successful - Successful [Tested: 7]
4.14.E3 cos ⁑ z + i ⁒ sin ⁑ z = e + i ⁒ z 𝑧 𝑖 𝑧 superscript 𝑒 𝑖 𝑧 {\displaystyle{\displaystyle\cos z+i\sin z=e^{+iz}}}
\cos@@{z}+ i\sin@@{z} = e^{+ iz}

cos(z)+ I*sin(z) = exp(+ I*z)
Cos[z]+ I*Sin[z] == Exp[+ I*z]
Successful Successful - Successful [Tested: 7]
4.14.E3 cos ⁑ z - i ⁒ sin ⁑ z = e - i ⁒ z 𝑧 𝑖 𝑧 superscript 𝑒 𝑖 𝑧 {\displaystyle{\displaystyle\cos z-i\sin z=e^{-iz}}}
\cos@@{z}- i\sin@@{z} = e^{- iz}

cos(z)- I*sin(z) = exp(- I*z)
Cos[z]- I*Sin[z] == Exp[- I*z]
Successful Successful - Successful [Tested: 7]
4.14.E4 tan ⁑ z = sin ⁑ z cos ⁑ z 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\tan z=\frac{\sin z}{\cos z}}}
\tan@@{z} = \frac{\sin@@{z}}{\cos@@{z}}

tan(z) = (sin(z))/(cos(z))
Tan[z] == Divide[Sin[z],Cos[z]]
Successful Successful - Successful [Tested: 7]
4.14.E5 csc ⁑ z = 1 sin ⁑ z 𝑧 1 𝑧 {\displaystyle{\displaystyle\csc z=\frac{1}{\sin z}}}
\csc@@{z} = \frac{1}{\sin@@{z}}

csc(z) = (1)/(sin(z))
Csc[z] == Divide[1,Sin[z]]
Successful Successful - Successful [Tested: 7]
4.14.E6 sec ⁑ z = 1 cos ⁑ z 𝑧 1 𝑧 {\displaystyle{\displaystyle\sec z=\frac{1}{\cos z}}}
\sec@@{z} = \frac{1}{\cos@@{z}}

sec(z) = (1)/(cos(z))
Sec[z] == Divide[1,Cos[z]]
Successful Successful - Successful [Tested: 7]
4.14.E7 cot ⁑ z = cos ⁑ z sin ⁑ z 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\cot z=\frac{\cos z}{\sin z}}}
\cot@@{z} = \frac{\cos@@{z}}{\sin@@{z}}

cot(z) = (cos(z))/(sin(z))
Cot[z] == Divide[Cos[z],Sin[z]]
Successful Successful - Successful [Tested: 7]
4.14.E7 cos ⁑ z sin ⁑ z = 1 tan ⁑ z 𝑧 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{\cos z}{\sin z}=\frac{1}{\tan z}}}
\frac{\cos@@{z}}{\sin@@{z}} = \frac{1}{\tan@@{z}}

(cos(z))/(sin(z)) = (1)/(tan(z))
Divide[Cos[z],Sin[z]] == Divide[1,Tan[z]]
Successful Successful - Successful [Tested: 7]
4.14.E8 sin ⁑ ( z + 2 ⁒ k ⁒ Ο€ ) = sin ⁑ z 𝑧 2 π‘˜ πœ‹ 𝑧 {\displaystyle{\displaystyle\sin\left(z+2k\pi\right)=\sin z}}
\sin@{z+2k\pi} = \sin@@{z}

sin(z + 2*k*Pi) = sin(z)
Sin[z + 2*k*Pi] == Sin[z]
Successful Failure - Successful [Tested: 21]
4.14.E9 cos ⁑ ( z + 2 ⁒ k ⁒ Ο€ ) = cos ⁑ z 𝑧 2 π‘˜ πœ‹ 𝑧 {\displaystyle{\displaystyle\cos\left(z+2k\pi\right)=\cos z}}
\cos@{z+2k\pi} = \cos@@{z}

cos(z + 2*k*Pi) = cos(z)
Cos[z + 2*k*Pi] == Cos[z]
Successful Failure - Successful [Tested: 21]
4.14.E10 tan ⁑ ( z + k ⁒ Ο€ ) = tan ⁑ z 𝑧 π‘˜ πœ‹ 𝑧 {\displaystyle{\displaystyle\tan\left(z+k\pi\right)=\tan z}}
\tan@{z+k\pi} = \tan@@{z}

tan(z + k*Pi) = tan(z)
Tan[z + k*Pi] == Tan[z]
Successful Failure - Successful [Tested: 21]
4.15.E1 cos ⁑ ( x + i ⁒ y ) = sin ⁑ ( x + 1 2 ⁒ Ο€ + i ⁒ y ) π‘₯ 𝑖 𝑦 π‘₯ 1 2 πœ‹ 𝑖 𝑦 {\displaystyle{\displaystyle\cos\left(x+iy\right)=\sin\left(x+\tfrac{1}{2}\pi+% iy\right)}}
\cos@{x+iy} = \sin@{x+\tfrac{1}{2}\pi+iy}

cos(x + I*y) = sin(x +(1)/(2)*Pi + I*y)
Cos[x + I*y] == Sin[x +Divide[1,2]*Pi + I*y]
Successful Successful - Successful [Tested: 18]
4.15.E2 cot ⁑ ( x + i ⁒ y ) = - tan ⁑ ( x + 1 2 ⁒ Ο€ + i ⁒ y ) π‘₯ 𝑖 𝑦 π‘₯ 1 2 πœ‹ 𝑖 𝑦 {\displaystyle{\displaystyle\cot\left(x+iy\right)=-\tan\left(x+\tfrac{1}{2}\pi% +iy\right)}}
\cot@{x+iy} = -\tan@{x+\tfrac{1}{2}\pi+iy}

cot(x + I*y) = - tan(x +(1)/(2)*Pi + I*y)
Cot[x + I*y] == - Tan[x +Divide[1,2]*Pi + I*y]
Successful Successful - Successful [Tested: 18]
4.15.E3 sec ⁑ ( x + i ⁒ y ) = csc ⁑ ( x + 1 2 ⁒ Ο€ + i ⁒ y ) π‘₯ 𝑖 𝑦 π‘₯ 1 2 πœ‹ 𝑖 𝑦 {\displaystyle{\displaystyle\sec\left(x+iy\right)=\csc\left(x+\tfrac{1}{2}\pi+% iy\right)}}
\sec@{x+iy} = \csc@{x+\tfrac{1}{2}\pi+iy}

sec(x + I*y) = csc(x +(1)/(2)*Pi + I*y)
Sec[x + I*y] == Csc[x +Divide[1,2]*Pi + I*y]
Successful Successful - Successful [Tested: 18]
4.17.E1 lim z β†’ 0 ⁑ sin ⁑ z z = 1 subscript β†’ 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\sin z}{z}=1}}
\lim_{z\to 0}\frac{\sin@@{z}}{z} = 1

limit((sin(z))/(z), z = 0) = 1
Limit[Divide[Sin[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.17.E2 lim z β†’ 0 ⁑ tan ⁑ z z = 1 subscript β†’ 𝑧 0 𝑧 𝑧 1 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{\tan z}{z}=1}}
\lim_{z\to 0}\frac{\tan@@{z}}{z} = 1

limit((tan(z))/(z), z = 0) = 1
Limit[Divide[Tan[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.17.E3 lim z β†’ 0 ⁑ 1 - cos ⁑ z z 2 = 1 2 subscript β†’ 𝑧 0 1 𝑧 superscript 𝑧 2 1 2 {\displaystyle{\displaystyle\lim_{z\to 0}\frac{1-\cos z}{z^{2}}=\frac{1}{2}}}
\lim_{z\to 0}\frac{1-\cos@@{z}}{z^{2}} = \frac{1}{2}

limit((1 - cos(z))/((z)^(2)), z = 0) = (1)/(2)
Limit[Divide[1 - Cos[z],(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]
Successful Successful - Successful [Tested: 1]
4.18.E1 2 ⁒ x Ο€ ≀ sin ⁑ x 2 π‘₯ πœ‹ π‘₯ {\displaystyle{\displaystyle\frac{2x}{\pi}\leq\sin x}}
\frac{2x}{\pi} \leq \sin@@{x}
0 ≀ x , x ≀ 1 2 ⁒ Ο€ formulae-sequence 0 π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle 0\leq x,x\leq\frac{1}{2}\pi}}
(2*x)/(Pi) <= sin(x)
Divide[2*x,Pi] <= Sin[x]
Failure Failure Successful [Tested: 2] Successful [Tested: 2]
4.18.E1 sin ⁑ x ≀ x π‘₯ π‘₯ {\displaystyle{\displaystyle\sin x\leq x}}
\sin@@{x} \leq x
0 ≀ x , x ≀ 1 2 ⁒ Ο€ formulae-sequence 0 π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle 0\leq x,x\leq\frac{1}{2}\pi}}
sin(x) <= x
Sin[x] <= x
Failure Failure Successful [Tested: 2] Successful [Tested: 2]
4.18.E2 x ≀ tan ⁑ x π‘₯ π‘₯ {\displaystyle{\displaystyle x\leq\tan x}}
x \leq \tan@@{x}
0 ≀ x , x < 1 2 ⁒ Ο€ formulae-sequence 0 π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle 0\leq x,x<\frac{1}{2}\pi}}
x <= tan(x)
x <= Tan[x]
Failure Failure Successful [Tested: 2] Successful [Tested: 2]
4.18.E3 cos ⁑ x ≀ sin ⁑ x x π‘₯ π‘₯ π‘₯ {\displaystyle{\displaystyle\cos x\leq\frac{\sin x}{x}}}
\cos@@{x} \leq \frac{\sin@@{x}}{x}
0 ≀ x , x ≀ Ο€ formulae-sequence 0 π‘₯ π‘₯ πœ‹ {\displaystyle{\displaystyle 0\leq x,x\leq\pi}}
cos(x) <= (sin(x))/(x)
Cos[x] <= Divide[Sin[x],x]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.18.E3 sin ⁑ x x ≀ 1 π‘₯ π‘₯ 1 {\displaystyle{\displaystyle\frac{\sin x}{x}\leq 1}}
\frac{\sin@@{x}}{x} \leq 1
0 ≀ x , x ≀ Ο€ formulae-sequence 0 π‘₯ π‘₯ πœ‹ {\displaystyle{\displaystyle 0\leq x,x\leq\pi}}
(sin(x))/(x) <= 1
Divide[Sin[x],x] <= 1
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.18.E4 Ο€ < sin ⁑ ( Ο€ ⁒ x ) x ⁒ ( 1 - x ) πœ‹ πœ‹ π‘₯ π‘₯ 1 π‘₯ {\displaystyle{\displaystyle\pi<\frac{\sin\left(\pi x\right)}{x(1-x)}}}
\pi < \frac{\sin@{\pi x}}{x(1-x)}
0 < x , x < 1 formulae-sequence 0 π‘₯ π‘₯ 1 {\displaystyle{\displaystyle 0<x,x<1}}
Pi < (sin(Pi*x))/(x*(1 - x))
Pi < Divide[Sin[Pi*x],x*(1 - x)]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.18.E4 sin ⁑ ( Ο€ ⁒ x ) x ⁒ ( 1 - x ) ≀ 4 πœ‹ π‘₯ π‘₯ 1 π‘₯ 4 {\displaystyle{\displaystyle\frac{\sin\left(\pi x\right)}{x(1-x)}\leq 4}}
\frac{\sin@{\pi x}}{x(1-x)} \leq 4
0 < x , x < 1 formulae-sequence 0 π‘₯ π‘₯ 1 {\displaystyle{\displaystyle 0<x,x<1}}
(sin(Pi*x))/(x*(1 - x)) <= 4
Divide[Sin[Pi*x],x*(1 - x)] <= 4
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.18.E5 | sinh ⁑ y | ≀ | sin ⁑ z | ≀ cosh ⁑ y 𝑦 𝑧 𝑦 {\displaystyle{\displaystyle|\sinh y|\leq|\sin z|\leq\cosh y}}
|\sinh@@{y}| \leq |\sin@@{z}|\leq\cosh@@{y}

abs(sinh(y)) <= abs(sin(x + y*I)) <= cosh(y)
Abs[Sinh[y]] <= Abs[Sin[x + y*I]] <= Cosh[y]
Failure Failure Error Successful [Tested: 18]
4.18.E6 | sinh ⁑ y | ≀ | cos ⁑ z | ≀ cosh ⁑ y 𝑦 𝑧 𝑦 {\displaystyle{\displaystyle|\sinh y|\leq|\cos z|\leq\cosh y}}
|\sinh@@{y}| \leq |\cos@@{z}|\leq\cosh@@{y}

abs(sinh(y)) <= abs(cos(x + y*I)) <= cosh(y)
Abs[Sinh[y]] <= Abs[Cos[x + y*I]] <= Cosh[y]
Failure Failure Error Successful [Tested: 18]
4.18.E7 | csc ⁑ z | ≀ csch ⁑ | y | 𝑧 𝑦 {\displaystyle{\displaystyle|\csc z|\leq\operatorname{csch}|y|}}
|\csc@@{z}| \leq \csch@@{|y|}

abs(csc(x + y*I)) <= csch(abs(y))
Abs[Csc[x + y*I]] <= Csch[Abs[y]]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
4.18.E8 | cos ⁑ z | ≀ cosh ⁑ | z | 𝑧 𝑧 {\displaystyle{\displaystyle|\cos z|\leq\cosh|z|}}
|\cos@@{z}| \leq \cosh@@{|z|}

abs(cos(z)) <= cosh(abs(z))
Abs[Cos[z]] <= Cosh[Abs[z]]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.18.E9 | sin ⁑ z | ≀ sinh ⁑ | z | 𝑧 𝑧 {\displaystyle{\displaystyle|\sin z|\leq\sinh|z|}}
|\sin@@{z}| \leq \sinh@@{|z|}

abs(sin(z)) <= sinh(abs(z))
Abs[Sin[z]] <= Sinh[Abs[z]]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.18#Ex1 | cos ⁑ z | < 2 𝑧 2 {\displaystyle{\displaystyle|\cos z|<2}}
|\cos@@{z}| < 2

abs(cos(z)) < 2
Abs[Cos[z]] < 2
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.18#Ex2 | sin ⁑ z | ≀ 6 5 ⁒ | z | 𝑧 6 5 𝑧 {\displaystyle{\displaystyle|\sin z|\leq\tfrac{6}{5}|z|}}
|\sin@@{z}| \leq \tfrac{6}{5}|z|
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
abs(sin(z)) <= (6)/(5)*abs(z)
Abs[Sin[z]] <= Divide[6,5]*Abs[z]
Failure Failure Successful [Tested: 1] Successful [Tested: 1]
4.19.E7 ln ⁑ ( sin ⁑ z z ) = βˆ‘ n = 1 ∞ ( - 1 ) n ⁒ 2 2 ⁒ n - 1 ⁒ B 2 ⁒ n n ⁒ ( 2 ⁒ n ) ! ⁒ z 2 ⁒ n 𝑧 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 2 2 𝑛 1 Bernoulli-number-B 2 𝑛 𝑛 2 𝑛 superscript 𝑧 2 𝑛 {\displaystyle{\displaystyle\ln\left(\frac{\sin z}{z}\right)=\sum_{n=1}^{% \infty}\frac{(-1)^{n}2^{2n-1}B_{2n}}{n(2n)!}z^{2n}}}
\ln@{\frac{\sin@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}\BernoullinumberB{2n}}{n(2n)!}z^{2n}
| z | < Ο€ 𝑧 πœ‹ {\displaystyle{\displaystyle|z|<\pi}}
ln((sin(z))/(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)* bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)
Log[Divide[Sin[z],z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)* BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.19.E8 ln ⁑ ( cos ⁑ z ) = βˆ‘ n = 1 ∞ ( - 1 ) n ⁒ 2 2 ⁒ n - 1 ⁒ ( 2 2 ⁒ n - 1 ) ⁒ B 2 ⁒ n n ⁒ ( 2 ⁒ n ) ! ⁒ z 2 ⁒ n 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 2 2 𝑛 1 superscript 2 2 𝑛 1 Bernoulli-number-B 2 𝑛 𝑛 2 𝑛 superscript 𝑧 2 𝑛 {\displaystyle{\displaystyle\ln\left(\cos z\right)=\sum_{n=1}^{\infty}\frac{(-% 1)^{n}2^{2n-1}(2^{2n}-1)B_{2n}}{n(2n)!}z^{2n}}}
\ln@{\cos@@{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n}2^{2n-1}(2^{2n}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}
| z | < 1 2 ⁒ Ο€ 𝑧 1 2 πœ‹ {\displaystyle{\displaystyle|z|<\frac{1}{2}\pi}}
ln(cos(z)) = sum(((- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)
Log[Cos[z]] == Sum[Divide[(- 1)^(n)* (2)^(2*n - 1)*((2)^(2*n)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
Failure Failure Manual Skip! Successful [Tested: 6]
4.19.E9 ln ⁑ ( tan ⁑ z z ) = βˆ‘ n = 1 ∞ ( - 1 ) n - 1 ⁒ 2 2 ⁒ n ⁒ ( 2 2 ⁒ n - 1 - 1 ) ⁒ B 2 ⁒ n n ⁒ ( 2 ⁒ n ) ! ⁒ z 2 ⁒ n 𝑧 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 1 superscript 2 2 𝑛 superscript 2 2 𝑛 1 1 Bernoulli-number-B 2 𝑛 𝑛 2 𝑛 superscript 𝑧 2 𝑛 {\displaystyle{\displaystyle\ln\left(\frac{\tan z}{z}\right)=\sum_{n=1}^{% \infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)B_{2n}}{n(2n)!}z^{2n}}}
\ln@{\frac{\tan@@{z}}{z}} = \sum_{n=1}^{\infty}\frac{(-1)^{n-1}2^{2n}(2^{2n-1}-1)\BernoullinumberB{2n}}{n(2n)!}z^{2n}
| z | < 1 2 ⁒ Ο€ 𝑧 1 2 πœ‹ {\displaystyle{\displaystyle|z|<\frac{1}{2}\pi}}
ln((tan(z))/(z)) = sum(((- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*bernoulli(2*n))/(n*factorial(2*n))*(z)^(2*n), n = 1..infinity)
Log[Divide[Tan[z],z]] == Sum[Divide[(- 1)^(n - 1)* (2)^(2*n)*((2)^(2*n - 1)- 1)*BernoulliB[2*n],n*(2*n)!]*(z)^(2*n), {n, 1, Infinity}, GenerateConditions->None]
Failure Failure Manual Skip! Successful [Tested: 6]
4.20.E1 d d z ⁑ sin ⁑ z = cos ⁑ z derivative 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\sin z=\cos z}}
\deriv{}{z}\sin@@{z} = \cos@@{z}

diff(sin(z), z) = cos(z)
D[Sin[z], z] == Cos[z]
Successful Successful - Successful [Tested: 7]
4.20.E2 d d z ⁑ cos ⁑ z = - sin ⁑ z derivative 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\cos z=-\sin z}}
\deriv{}{z}\cos@@{z} = -\sin@@{z}

diff(cos(z), z) = - sin(z)
D[Cos[z], z] == - Sin[z]
Successful Successful - Successful [Tested: 7]
4.20.E3 d d z ⁑ tan ⁑ z = sec 2 ⁑ z derivative 𝑧 𝑧 2 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\tan z={\sec^{2}}z}}
\deriv{}{z}\tan@@{z} = \sec^{2}@@{z}

diff(tan(z), z) = (sec(z))^(2)
D[Tan[z], z] == (Sec[z])^(2)
Successful Successful - Successful [Tested: 7]
4.20.E4 d d z ⁑ csc ⁑ z = - csc ⁑ z ⁒ cot ⁑ z derivative 𝑧 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\csc z=-\csc z\cot z}}
\deriv{}{z}\csc@@{z} = -\csc@@{z}\cot@@{z}

diff(csc(z), z) = - csc(z)*cot(z)
D[Csc[z], z] == - Csc[z]*Cot[z]
Successful Successful - Successful [Tested: 7]
4.20.E5 d d z ⁑ sec ⁑ z = sec ⁑ z ⁒ tan ⁑ z derivative 𝑧 𝑧 𝑧 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\sec z=\sec z\tan z}}
\deriv{}{z}\sec@@{z} = \sec@@{z}\tan@@{z}

diff(sec(z), z) = sec(z)*tan(z)
D[Sec[z], z] == Sec[z]*Tan[z]
Successful Successful - Successful [Tested: 7]
4.20.E6 d d z ⁑ cot ⁑ z = - csc 2 ⁑ z derivative 𝑧 𝑧 2 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}\cot z=-{\csc^{2}}z}}
\deriv{}{z}\cot@@{z} = -\csc^{2}@@{z}

diff(cot(z), z) = - (csc(z))^(2)
D[Cot[z], z] == - (Csc[z])^(2)
Successful Successful - Successful [Tested: 7]
4.20.E7 d n d z n ⁑ sin ⁑ z = sin ⁑ ( z + 1 2 ⁒ n ⁒ Ο€ ) derivative 𝑧 𝑛 𝑧 𝑧 1 2 𝑛 πœ‹ {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\sin z=% \sin\left(z+\tfrac{1}{2}n\pi\right)}}
\deriv[n]{}{z}\sin@@{z} = \sin@{z+\tfrac{1}{2}n\pi}

diff(sin(z), [z$(n)]) = sin(z +(1)/(2)*n*Pi)
D[Sin[z], {z, n}] == Sin[z +Divide[1,2]*n*Pi]
Successful Successful - Successful [Tested: 21]
4.20.E8 d n d z n ⁑ cos ⁑ z = cos ⁑ ( z + 1 2 ⁒ n ⁒ Ο€ ) derivative 𝑧 𝑛 𝑧 𝑧 1 2 𝑛 πœ‹ {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\cos z=% \cos\left(z+\tfrac{1}{2}n\pi\right)}}
\deriv[n]{}{z}\cos@@{z} = \cos@{z+\tfrac{1}{2}n\pi}

diff(cos(z), [z$(n)]) = cos(z +(1)/(2)*n*Pi)
D[Cos[z], {z, n}] == Cos[z +Divide[1,2]*n*Pi]
Successful Successful - Successful [Tested: 21]
4.20.E9 d 2 w d z 2 + a 2 ⁒ w = 0 derivative 𝑀 𝑧 2 superscript π‘Ž 2 𝑀 0 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}z}^{2}}+a^{2}w% =0}}
\deriv[2]{w}{z}+a^{2}w = 0

diff(w, [z$(2)])+ (a)^(2)* w = 0
D[w, {z, 2}]+ (a)^(2)* w == 0
Failure Failure
Failed [300 / 300]
Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: 1.948557159+1.125000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.948557158514987, 1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.948557158514987, 1.1249999999999998]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.20.E10 ( d w d z ) 2 + a 2 ⁒ w 2 = 1 superscript derivative 𝑀 𝑧 2 superscript π‘Ž 2 superscript 𝑀 2 1 {\displaystyle{\displaystyle\left(\frac{\mathrm{d}w}{\mathrm{d}z}\right)^{2}+a% ^{2}w^{2}=1}}
\left(\deriv{w}{z}\right)^{2}+a^{2}w^{2} = 1

(diff(w, z))^(2)+ (a)^(2)* (w)^(2) = 1
(D[w, z])^(2)+ (a)^(2)* (w)^(2) == 1
Failure Failure
Failed [272 / 300]
Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: .125000001+1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [272 / 300]
Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.12500000000000022, 1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.20.E11 d w d z - a 2 ⁒ w 2 = 1 derivative 𝑀 𝑧 superscript π‘Ž 2 superscript 𝑀 2 1 {\displaystyle{\displaystyle\frac{\mathrm{d}w}{\mathrm{d}z}-a^{2}w^{2}=1}}
\deriv{w}{z}-a^{2}w^{2} = 1

diff(w, z)- (a)^(2)* (w)^(2) = 1
D[w, z]- (a)^(2)* (w)^(2) == 1
Failure Failure
Failed [300 / 300]
Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -2.125000001-1.948557159*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-2.125, -1.9485571585149868]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.20.E12 w = A ⁒ cos ⁑ ( a ⁒ z ) + B ⁒ sin ⁑ ( a ⁒ z ) 𝑀 𝐴 π‘Ž 𝑧 𝐡 π‘Ž 𝑧 {\displaystyle{\displaystyle w=A\cos\left(az\right)+B\sin\left(az\right)}}
w = A\cos@{az}+B\sin@{az}

w = A*cos(a*z)+ B*sin(a*z)
w == A*Cos[a*z]+ B*Sin[a*z]
Failure Failure
Failed [300 / 300]
Result: 1.138704571+1.826991634*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.586785764-.8180862806*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: 1.979513822-1.625744019*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -.8007246334+.1975056737*I
Test Values: {A = 1/2*3^(1/2)+1/2*I, B = 1/2*3^(1/2)+1/2*I, a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.138704570618858, 1.8269916342928783]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.5867857625486925, -0.8180862808059206]
Test Values: {Rule[a, -1.5], Rule[A, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[B, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.20.E13 w = ( 1 / a ) ⁒ sin ⁑ ( a ⁒ z + c ) 𝑀 1 π‘Ž π‘Ž 𝑧 𝑐 {\displaystyle{\displaystyle w=(1/a)\sin\left(az+c\right)}}
w = (1/a)\sin@{az+c}

w = (1/a)*sin(a*z + c)
w == (1/a)*Sin[a*z + c]
Failure Failure
Failed [300 / 300]
Result: .5761075690+1.016359912*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -.288669860e-1-.3275339707*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.1554713530-.2104590960*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: .6937358929+1.037178419*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[0.5761075684969701, 1.0163599120046827]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.028866985825810376, -0.3275339701177746]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.20.E14 w = ( 1 / a ) ⁒ tan ⁑ ( a ⁒ z + c ) 𝑀 1 π‘Ž π‘Ž 𝑧 𝑐 {\displaystyle{\displaystyle w=(1/a)\tan\left(az+c\right)}}
w = (1/a)\tan@{az+c}

w = (1/a)*tan(a*z + c)
w == (1/a)*Tan[a*z + c]
Failure Failure
Failed [300 / 300]
Result: 1.000937702+.460093509e-1*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: .7686167751-.1524919258*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: .9655903492+1.180557377*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: .7863384613+.9337431086*I
Test Values: {a = -1.5, c = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [300 / 300]
Result: Complex[1.0009377022129278, 0.04600935086169866]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.7686167748870922, -0.1524919257161706]
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E1 sin ⁑ u + cos ⁑ u = 2 ⁒ sin ⁑ ( u + 1 4 ⁒ Ο€ ) 𝑒 𝑒 2 𝑒 1 4 πœ‹ {\displaystyle{\displaystyle\sin u+\cos u=\sqrt{2}\sin\left(u+\tfrac{1}{4}\pi% \right)}}
\sin@@{u}+\cos@@{u} = \sqrt{2}\sin@{u+\tfrac{1}{4}\pi}

sin(u)+ cos(u) = sqrt(2)*sin(u +(1)/(4)*Pi)
Sin[u]+ Cos[u] == Sqrt[2]*Sin[u +Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E1 sin ⁑ u - cos ⁑ u = 2 ⁒ sin ⁑ ( u - 1 4 ⁒ Ο€ ) 𝑒 𝑒 2 𝑒 1 4 πœ‹ {\displaystyle{\displaystyle\sin u-\cos u=\sqrt{2}\sin\left(u-\tfrac{1}{4}\pi% \right)}}
\sin@@{u}-\cos@@{u} = \sqrt{2}\sin@{u-\tfrac{1}{4}\pi}

sin(u)- cos(u) = sqrt(2)*sin(u -(1)/(4)*Pi)
Sin[u]- Cos[u] == Sqrt[2]*Sin[u -Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E1 2 ⁒ sin ⁑ ( u + 1 4 ⁒ Ο€ ) = + 2 ⁒ cos ⁑ ( u - 1 4 ⁒ Ο€ ) 2 𝑒 1 4 πœ‹ 2 𝑒 1 4 πœ‹ {\displaystyle{\displaystyle\sqrt{2}\sin\left(u+\tfrac{1}{4}\pi\right)=+\sqrt{% 2}\cos\left(u-\tfrac{1}{4}\pi\right)}}
\sqrt{2}\sin@{u+\tfrac{1}{4}\pi} = +\sqrt{2}\cos@{u-\tfrac{1}{4}\pi}

sqrt(2)*sin(u +(1)/(4)*Pi) = +sqrt(2)*cos(u -(1)/(4)*Pi)
Sqrt[2]*Sin[u +Divide[1,4]*Pi] == +Sqrt[2]*Cos[u -Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E1 2 ⁒ sin ⁑ ( u - 1 4 ⁒ Ο€ ) = - 2 ⁒ cos ⁑ ( u + 1 4 ⁒ Ο€ ) 2 𝑒 1 4 πœ‹ 2 𝑒 1 4 πœ‹ {\displaystyle{\displaystyle\sqrt{2}\sin\left(u-\tfrac{1}{4}\pi\right)=-\sqrt{% 2}\cos\left(u+\tfrac{1}{4}\pi\right)}}
\sqrt{2}\sin@{u-\tfrac{1}{4}\pi} = -\sqrt{2}\cos@{u+\tfrac{1}{4}\pi}

sqrt(2)*sin(u -(1)/(4)*Pi) = -sqrt(2)*cos(u +(1)/(4)*Pi)
Sqrt[2]*Sin[u -Divide[1,4]*Pi] == -Sqrt[2]*Cos[u +Divide[1,4]*Pi]
Successful Successful - Successful [Tested: 10]
4.21.E2 sin ⁑ ( u + v ) = sin ⁑ u ⁒ cos ⁑ v + cos ⁑ u ⁒ sin ⁑ v 𝑒 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle\sin\left(u+v\right)=\sin u\cos v+\cos u\sin v}}
\sin@{u+ v} = \sin@@{u}\cos@@{v}+\cos@@{u}\sin@@{v}

sin(u + v) = sin(u)*cos(v)+ cos(u)*sin(v)
Sin[u + v] == Sin[u]*Cos[v]+ Cos[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E2 sin ⁑ ( u - v ) = sin ⁑ u ⁒ cos ⁑ v - cos ⁑ u ⁒ sin ⁑ v 𝑒 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle\sin\left(u-v\right)=\sin u\cos v-\cos u\sin v}}
\sin@{u- v} = \sin@@{u}\cos@@{v}-\cos@@{u}\sin@@{v}

sin(u - v) = sin(u)*cos(v)- cos(u)*sin(v)
Sin[u - v] == Sin[u]*Cos[v]- Cos[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E3 cos ⁑ ( u + v ) = cos ⁑ u ⁒ cos ⁑ v - sin ⁑ u ⁒ sin ⁑ v 𝑒 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle\cos\left(u+v\right)=\cos u\cos v-\sin u\sin v}}
\cos@{u+ v} = \cos@@{u}\cos@@{v}-\sin@@{u}\sin@@{v}

cos(u + v) = cos(u)*cos(v)- sin(u)*sin(v)
Cos[u + v] == Cos[u]*Cos[v]- Sin[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E3 cos ⁑ ( u - v ) = cos ⁑ u ⁒ cos ⁑ v + sin ⁑ u ⁒ sin ⁑ v 𝑒 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle\cos\left(u-v\right)=\cos u\cos v+\sin u\sin v}}
\cos@{u- v} = \cos@@{u}\cos@@{v}+\sin@@{u}\sin@@{v}

cos(u - v) = cos(u)*cos(v)+ sin(u)*sin(v)
Cos[u - v] == Cos[u]*Cos[v]+ Sin[u]*Sin[v]
Successful Successful - Successful [Tested: 100]
4.21.E4 tan ⁑ ( u + v ) = tan ⁑ u + tan ⁑ v 1 - tan ⁑ u ⁒ tan ⁑ v 𝑒 𝑣 𝑒 𝑣 1 𝑒 𝑣 {\displaystyle{\displaystyle\tan\left(u+v\right)=\frac{\tan u+\tan v}{1-\tan u% \tan v}}}
\tan@{u+ v} = \frac{\tan@@{u}+\tan@@{v}}{1-\tan@@{u}\tan@@{v}}

tan(u + v) = (tan(u)+ tan(v))/(1 - tan(u)*tan(v))
Tan[u + v] == Divide[Tan[u]+ Tan[v],1 - Tan[u]*Tan[v]]
Successful Successful - Successful [Tested: 100]
4.21.E4 tan ⁑ ( u - v ) = tan ⁑ u - tan ⁑ v 1 + tan ⁑ u ⁒ tan ⁑ v 𝑒 𝑣 𝑒 𝑣 1 𝑒 𝑣 {\displaystyle{\displaystyle\tan\left(u-v\right)=\frac{\tan u-\tan v}{1+\tan u% \tan v}}}
\tan@{u- v} = \frac{\tan@@{u}-\tan@@{v}}{1+\tan@@{u}\tan@@{v}}

tan(u - v) = (tan(u)- tan(v))/(1 + tan(u)*tan(v))
Tan[u - v] == Divide[Tan[u]- Tan[v],1 + Tan[u]*Tan[v]]
Successful Successful - Successful [Tested: 100]
4.21.E5 cot ⁑ ( u + v ) = + cot ⁑ u ⁒ cot ⁑ v - 1 cot ⁑ u + cot ⁑ v 𝑒 𝑣 𝑒 𝑣 1 𝑒 𝑣 {\displaystyle{\displaystyle\cot\left(u+v\right)=\frac{+\cot u\cot v-1}{\cot u% +\cot v}}}
\cot@{u+ v} = \frac{+\cot@@{u}\cot@@{v}-1}{\cot@@{u}+\cot@@{v}}

cot(u + v) = (+ cot(u)*cot(v)- 1)/(cot(u)+ cot(v))
Cot[u + v] == Divide[+ Cot[u]*Cot[v]- 1,Cot[u]+ Cot[v]]
Successful Successful -
Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

Result: Complex[1.9674787081851645*^15, 2.0439439417914815*^15]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E5 cot ⁑ ( u - v ) = - cot ⁑ u ⁒ cot ⁑ v - 1 cot ⁑ u - cot ⁑ v 𝑒 𝑣 𝑒 𝑣 1 𝑒 𝑣 {\displaystyle{\displaystyle\cot\left(u-v\right)=\frac{-\cot u\cot v-1}{\cot u% -\cot v}}}
\cot@{u- v} = \frac{-\cot@@{u}\cot@@{v}-1}{\cot@@{u}-\cot@@{v}}

cot(u - v) = (- cot(u)*cot(v)- 1)/(cot(u)- cot(v))
Cot[u - v] == Divide[- Cot[u]*Cot[v]- 1,Cot[u]- Cot[v]]
Successful Successful -
Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E6 sin ⁑ u + sin ⁑ v = 2 ⁒ sin ⁑ ( u + v 2 ) ⁒ cos ⁑ ( u - v 2 ) 𝑒 𝑣 2 𝑒 𝑣 2 𝑒 𝑣 2 {\displaystyle{\displaystyle\sin u+\sin v=2\sin\left(\frac{u+v}{2}\right)\cos% \left(\frac{u-v}{2}\right)}}
\sin@@{u}+\sin@@{v} = 2\sin@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}

sin(u)+ sin(v) = 2*sin((u + v)/(2))*cos((u - v)/(2))
Sin[u]+ Sin[v] == 2*Sin[Divide[u + v,2]]*Cos[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E7 sin ⁑ u - sin ⁑ v = 2 ⁒ cos ⁑ ( u + v 2 ) ⁒ sin ⁑ ( u - v 2 ) 𝑒 𝑣 2 𝑒 𝑣 2 𝑒 𝑣 2 {\displaystyle{\displaystyle\sin u-\sin v=2\cos\left(\frac{u+v}{2}\right)\sin% \left(\frac{u-v}{2}\right)}}
\sin@@{u}-\sin@@{v} = 2\cos@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}

sin(u)- sin(v) = 2*cos((u + v)/(2))*sin((u - v)/(2))
Sin[u]- Sin[v] == 2*Cos[Divide[u + v,2]]*Sin[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E8 cos ⁑ u + cos ⁑ v = 2 ⁒ cos ⁑ ( u + v 2 ) ⁒ cos ⁑ ( u - v 2 ) 𝑒 𝑣 2 𝑒 𝑣 2 𝑒 𝑣 2 {\displaystyle{\displaystyle\cos u+\cos v=2\cos\left(\frac{u+v}{2}\right)\cos% \left(\frac{u-v}{2}\right)}}
\cos@@{u}+\cos@@{v} = 2\cos@{\frac{u+v}{2}}\cos@{\frac{u-v}{2}}

cos(u)+ cos(v) = 2*cos((u + v)/(2))*cos((u - v)/(2))
Cos[u]+ Cos[v] == 2*Cos[Divide[u + v,2]]*Cos[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E9 cos ⁑ u - cos ⁑ v = - 2 ⁒ sin ⁑ ( u + v 2 ) ⁒ sin ⁑ ( u - v 2 ) 𝑒 𝑣 2 𝑒 𝑣 2 𝑒 𝑣 2 {\displaystyle{\displaystyle\cos u-\cos v=-2\sin\left(\frac{u+v}{2}\right)\sin% \left(\frac{u-v}{2}\right)}}
\cos@@{u}-\cos@@{v} = -2\sin@{\frac{u+v}{2}}\sin@{\frac{u-v}{2}}

cos(u)- cos(v) = - 2*sin((u + v)/(2))*sin((u - v)/(2))
Cos[u]- Cos[v] == - 2*Sin[Divide[u + v,2]]*Sin[Divide[u - v,2]]
Successful Successful - Successful [Tested: 100]
4.21.E10 tan ⁑ u + tan ⁑ v = sin ⁑ ( u + v ) cos ⁑ u ⁒ cos ⁑ v 𝑒 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle\tan u+\tan v=\frac{\sin\left(u+v\right)}{\cos u% \cos v}}}
\tan@@{u}+\tan@@{v} = \frac{\sin@{u+ v}}{\cos@@{u}\cos@@{v}}

tan(u)+ tan(v) = (sin(u + v))/(cos(u)*cos(v))
Tan[u]+ Tan[v] == Divide[Sin[u + v],Cos[u]*Cos[v]]
Successful Successful - Successful [Tested: 100]
4.21.E10 tan ⁑ u - tan ⁑ v = sin ⁑ ( u - v ) cos ⁑ u ⁒ cos ⁑ v 𝑒 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle\tan u-\tan v=\frac{\sin\left(u-v\right)}{\cos u% \cos v}}}
\tan@@{u}-\tan@@{v} = \frac{\sin@{u- v}}{\cos@@{u}\cos@@{v}}

tan(u)- tan(v) = (sin(u - v))/(cos(u)*cos(v))
Tan[u]- Tan[v] == Divide[Sin[u - v],Cos[u]*Cos[v]]
Successful Successful - Successful [Tested: 100]
4.21.E11 cot ⁑ u + cot ⁑ v = sin ⁑ ( v + u ) sin ⁑ u ⁒ sin ⁑ v 𝑒 𝑣 𝑣 𝑒 𝑒 𝑣 {\displaystyle{\displaystyle\cot u+\cot v=\frac{\sin\left(v+u\right)}{\sin u% \sin v}}}
\cot@@{u}+\cot@@{v} = \frac{\sin@{v+ u}}{\sin@@{u}\sin@@{v}}

cot(u)+ cot(v) = (sin(v + u))/(sin(u)*sin(v))
Cot[u]+ Cot[v] == Divide[Sin[v + u],Sin[u]*Sin[v]]
Successful Successful - Successful [Tested: 100]
4.21.E11 cot ⁑ u - cot ⁑ v = sin ⁑ ( v - u ) sin ⁑ u ⁒ sin ⁑ v 𝑒 𝑣 𝑣 𝑒 𝑒 𝑣 {\displaystyle{\displaystyle\cot u-\cot v=\frac{\sin\left(v-u\right)}{\sin u% \sin v}}}
\cot@@{u}-\cot@@{v} = \frac{\sin@{v- u}}{\sin@@{u}\sin@@{v}}

cot(u)- cot(v) = (sin(v - u))/(sin(u)*sin(v))
Cot[u]- Cot[v] == Divide[Sin[v - u],Sin[u]*Sin[v]]
Successful Successful - Successful [Tested: 100]
4.21.E12 sin 2 ⁑ z + cos 2 ⁑ z = 1 2 𝑧 2 𝑧 1 {\displaystyle{\displaystyle{\sin^{2}}z+{\cos^{2}}z=1}}
\sin^{2}@@{z}+\cos^{2}@@{z} = 1

(sin(z))^(2)+ (cos(z))^(2) = 1
(Sin[z])^(2)+ (Cos[z])^(2) == 1
Successful Successful - Successful [Tested: 7]
4.21.E13 sec 2 ⁑ z = 1 + tan 2 ⁑ z 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle{\sec^{2}}z=1+{\tan^{2}}z}}
\sec^{2}@@{z} = 1+\tan^{2}@@{z}

(sec(z))^(2) = 1 + (tan(z))^(2)
(Sec[z])^(2) == 1 + (Tan[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E14 csc 2 ⁑ z = 1 + cot 2 ⁑ z 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle{\csc^{2}}z=1+{\cot^{2}}z}}
\csc^{2}@@{z} = 1+\cot^{2}@@{z}

(csc(z))^(2) = 1 + (cot(z))^(2)
(Csc[z])^(2) == 1 + (Cot[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E15 2 ⁒ sin ⁑ u ⁒ sin ⁑ v = cos ⁑ ( u - v ) - cos ⁑ ( u + v ) 2 𝑒 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle 2\sin u\sin v=\cos\left(u-v\right)-\cos\left(u+v% \right)}}
2\sin@@{u}\sin@@{v} = \cos@{u-v}-\cos@{u+v}

2*sin(u)*sin(v) = cos(u - v)- cos(u + v)
2*Sin[u]*Sin[v] == Cos[u - v]- Cos[u + v]
Successful Successful - Successful [Tested: 100]
4.21.E16 2 ⁒ cos ⁑ u ⁒ cos ⁑ v = cos ⁑ ( u - v ) + cos ⁑ ( u + v ) 2 𝑒 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle 2\cos u\cos v=\cos\left(u-v\right)+\cos\left(u+v% \right)}}
2\cos@@{u}\cos@@{v} = \cos@{u-v}+\cos@{u+v}

2*cos(u)*cos(v) = cos(u - v)+ cos(u + v)
2*Cos[u]*Cos[v] == Cos[u - v]+ Cos[u + v]
Successful Successful - Successful [Tested: 100]
4.21.E17 2 ⁒ sin ⁑ u ⁒ cos ⁑ v = sin ⁑ ( u - v ) + sin ⁑ ( u + v ) 2 𝑒 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle 2\sin u\cos v=\sin\left(u-v\right)+\sin\left(u+v% \right)}}
2\sin@@{u}\cos@@{v} = \sin@{u-v}+\sin@{u+v}

2*sin(u)*cos(v) = sin(u - v)+ sin(u + v)
2*Sin[u]*Cos[v] == Sin[u - v]+ Sin[u + v]
Successful Successful - Successful [Tested: 100]
4.21.E18 sin 2 ⁑ u - sin 2 ⁑ v = sin ⁑ ( u + v ) ⁒ sin ⁑ ( u - v ) 2 𝑒 2 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle{\sin^{2}}u-{\sin^{2}}v=\sin\left(u+v\right)\sin% \left(u-v\right)}}
\sin^{2}@@{u}-\sin^{2}@@{v} = \sin@{u+v}\sin@{u-v}

(sin(u))^(2)- (sin(v))^(2) = sin(u + v)*sin(u - v)
(Sin[u])^(2)- (Sin[v])^(2) == Sin[u + v]*Sin[u - v]
Successful Successful - Successful [Tested: 100]
4.21.E19 cos 2 ⁑ u - cos 2 ⁑ v = - sin ⁑ ( u + v ) ⁒ sin ⁑ ( u - v ) 2 𝑒 2 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle{\cos^{2}}u-{\cos^{2}}v=-\sin\left(u+v\right)\sin% \left(u-v\right)}}
\cos^{2}@@{u}-\cos^{2}@@{v} = -\sin@{u+v}\sin@{u-v}

(cos(u))^(2)- (cos(v))^(2) = - sin(u + v)*sin(u - v)
(Cos[u])^(2)- (Cos[v])^(2) == - Sin[u + v]*Sin[u - v]
Successful Successful - Successful [Tested: 100]
4.21.E20 cos 2 ⁑ u - sin 2 ⁑ v = cos ⁑ ( u + v ) ⁒ cos ⁑ ( u - v ) 2 𝑒 2 𝑣 𝑒 𝑣 𝑒 𝑣 {\displaystyle{\displaystyle{\cos^{2}}u-{\sin^{2}}v=\cos\left(u+v\right)\cos% \left(u-v\right)}}
\cos^{2}@@{u}-\sin^{2}@@{v} = \cos@{u+v}\cos@{u-v}

(cos(u))^(2)- (sin(v))^(2) = cos(u + v)*cos(u - v)
(Cos[u])^(2)- (Sin[v])^(2) == Cos[u + v]*Cos[u - v]
Successful Successful - Successful [Tested: 100]
4.21.E21 sin ⁑ z 2 = + ( 1 - cos ⁑ z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\sin\frac{z}{2}=+\left(\frac{1-\cos z}{2}\right)^{% 1/2}}}
\sin@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}

sin((z)/(2)) = +((1 - cos(z))/(2))^(1/2)
Sin[Divide[z,2]] == +(Divide[1 - Cos[z],2])^(1/2)
Failure Failure
Failed [2 / 7]
Result: -.5419255224+.8655716642*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -.8655770340-.4585952894*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-0.541925522457336, 0.8655716640572733]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.8655770337160631, -0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.21.E21 sin ⁑ z 2 = - ( 1 - cos ⁑ z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\sin\frac{z}{2}=-\left(\frac{1-\cos z}{2}\right)^{% 1/2}}}
\sin@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{2}\right)^{1/2}

sin((z)/(2)) = -((1 - cos(z))/(2))^(1/2)
Sin[Divide[z,2]] == -(Divide[1 - Cos[z],2])^(1/2)
Failure Failure
Failed [5 / 7]
Result: .8655770340+.4585952894*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .5419255224-.8655716642*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 1.363277520
Test Values: {z = 1.5}

Result: .4948079184
Test Values: {z = .5}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[0.8655770337160631, 0.4585952893468805]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.5419255224573365, -0.8655716640572731]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E22 cos ⁑ z 2 = + ( 1 + cos ⁑ z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\cos\frac{z}{2}=+\left(\frac{1+\cos z}{2}\right)^{% 1/2}}}
\cos@@{\frac{z}{2}} = +\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}

cos((z)/(2)) = +((1 + cos(z))/(2))^(1/2)
Cos[Divide[z,2]] == +(Divide[1 + Cos[z],2])^(1/2)
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.21.E22 cos ⁑ z 2 = - ( 1 + cos ⁑ z 2 ) 1 / 2 𝑧 2 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\cos\frac{z}{2}=-\left(\frac{1+\cos z}{2}\right)^{% 1/2}}}
\cos@@{\frac{z}{2}} = -\left(\frac{1+\cos@@{z}}{2}\right)^{1/2}

cos((z)/(2)) = -((1 + cos(z))/(2))^(1/2)
Cos[Divide[z,2]] == -(Divide[1 + Cos[z],2])^(1/2)
Failure Failure
Failed [7 / 7]
Result: 1.872439139-.2119959694*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: 2.122352334+.2210167318*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: 2.122352334+.2210167318*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 1.872439139-.2119959694*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[1.872439138961815, -0.2119959693051084]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[2.1223523339444896, 0.22101673165487346]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E23 tan ⁑ z 2 = + ( 1 - cos ⁑ z 1 + cos ⁑ z ) 1 / 2 𝑧 2 superscript 1 𝑧 1 𝑧 1 2 {\displaystyle{\displaystyle\tan\frac{z}{2}=+\left(\frac{1-\cos z}{1+\cos z}% \right)^{1/2}}}
\tan@@{\frac{z}{2}} = +\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}

tan((z)/(2)) = +((1 - cos(z))/(1 + cos(z)))^(1/2)
Tan[Divide[z,2]] == +(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)
Failure Failure
Failed [2 / 7]
Result: -.4211742148+.8595320616*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: -.8580864930-.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[-0.4211742148849969, 0.8595320613685856]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[-0.858086492859854, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.21.E23 tan ⁑ z 2 = - ( 1 - cos ⁑ z 1 + cos ⁑ z ) 1 / 2 𝑧 2 superscript 1 𝑧 1 𝑧 1 2 {\displaystyle{\displaystyle\tan\frac{z}{2}=-\left(\frac{1-\cos z}{1+\cos z}% \right)^{1/2}}}
\tan@@{\frac{z}{2}} = -\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2}

tan((z)/(2)) = -((1 - cos(z))/(1 + cos(z)))^(1/2)
Tan[Divide[z,2]] == -(Divide[1 - Cos[z],1 + Cos[z]])^(1/2)
Failure Failure
Failed [5 / 7]
Result: .8580864930+.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .4211742148-.8595320616*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 1.863192920
Test Values: {z = 1.5}

Result: .5106838424
Test Values: {z = .5}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[0.858086492859854, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.4211742148849973, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E23 + ( 1 - cos ⁑ z 1 + cos ⁑ z ) 1 / 2 = 1 - cos ⁑ z sin ⁑ z superscript 1 𝑧 1 𝑧 1 2 1 𝑧 𝑧 {\displaystyle{\displaystyle+\left(\frac{1-\cos z}{1+\cos z}\right)^{1/2}=% \frac{1-\cos z}{\sin z}}}
+\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}

+((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))
+(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]
Failure Failure
Failed [2 / 7]
Result: .4211742148-.8595320615*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Result: .8580864930+.5869891489*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

Failed [2 / 7]
Result: Complex[0.42117421488499684, -0.8595320613685857]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

Result: Complex[0.8580864928598539, 0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

4.21.E23 - ( 1 - cos ⁑ z 1 + cos ⁑ z ) 1 / 2 = 1 - cos ⁑ z sin ⁑ z superscript 1 𝑧 1 𝑧 1 2 1 𝑧 𝑧 {\displaystyle{\displaystyle-\left(\frac{1-\cos z}{1+\cos z}\right)^{1/2}=% \frac{1-\cos z}{\sin z}}}
-\left(\frac{1-\cos@@{z}}{1+\cos@@{z}}\right)^{1/2} = \frac{1-\cos@@{z}}{\sin@@{z}}

-((1 - cos(z))/(1 + cos(z)))^(1/2) = (1 - cos(z))/(sin(z))
-(Divide[1 - Cos[z],1 + Cos[z]])^(1/2) == Divide[1 - Cos[z],Sin[z]]
Failure Failure
Failed [5 / 7]
Result: -.8580864930-.5869891489*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -.4211742148+.8595320615*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: -1.863192920
Test Values: {z = 1.5}

Result: -.5106838424
Test Values: {z = .5}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[-0.8580864928598539, -0.5869891488727426]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-0.4211742148849972, 0.8595320613685855]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

... skip entries to safe data
4.21.E23 1 - cos ⁑ z sin ⁑ z = sin ⁑ z 1 + cos ⁑ z 1 𝑧 𝑧 𝑧 1 𝑧 {\displaystyle{\displaystyle\frac{1-\cos z}{\sin z}=\frac{\sin z}{1+\cos z}}}
\frac{1-\cos@@{z}}{\sin@@{z}} = \frac{\sin@@{z}}{1+\cos@@{z}}

(1 - cos(z))/(sin(z)) = (sin(z))/(1 + cos(z))
Divide[1 - Cos[z],Sin[z]] == Divide[Sin[z],1 + Cos[z]]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
4.21.E24 sin ⁑ ( - z ) = - sin ⁑ z 𝑧 𝑧 {\displaystyle{\displaystyle\sin\left(-z\right)=-\sin z}}
\sin@{-z} = -\sin@@{z}

sin(- z) = - sin(z)
Sin[- z] == - Sin[z]
Successful Successful - Successful [Tested: 7]
4.21.E25 cos ⁑ ( - z ) = cos ⁑ z 𝑧 𝑧 {\displaystyle{\displaystyle\cos\left(-z\right)=\cos z}}
\cos@{-z} = \cos@@{z}

cos(- z) = cos(z)
Cos[- z] == Cos[z]
Successful Successful - Successful [Tested: 7]
4.21.E26 tan ⁑ ( - z ) = - tan ⁑ z 𝑧 𝑧 {\displaystyle{\displaystyle\tan\left(-z\right)=-\tan z}}
\tan@{-z} = -\tan@@{z}

tan(- z) = - tan(z)
Tan[- z] == - Tan[z]
Successful Successful - Successful [Tested: 7]
4.21.E27 sin ⁑ ( 2 ⁒ z ) = 2 ⁒ sin ⁑ z ⁒ cos ⁑ z 2 𝑧 2 𝑧 𝑧 {\displaystyle{\displaystyle\sin\left(2z\right)=2\sin z\cos z}}
\sin@{2z} = 2\sin@@{z}\cos@@{z}

sin(2*z) = 2*sin(z)*cos(z)
Sin[2*z] == 2*Sin[z]*Cos[z]
Successful Successful - Successful [Tested: 7]
4.21.E27 2 ⁒ sin ⁑ z ⁒ cos ⁑ z = 2 ⁒ tan ⁑ z 1 + tan 2 ⁑ z 2 𝑧 𝑧 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle 2\sin z\cos z=\frac{2\tan z}{1+{\tan^{2}}z}}}
2\sin@@{z}\cos@@{z} = \frac{2\tan@@{z}}{1+\tan^{2}@@{z}}

2*sin(z)*cos(z) = (2*tan(z))/(1 + (tan(z))^(2))
2*Sin[z]*Cos[z] == Divide[2*Tan[z],1 + (Tan[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.21.E28 cos ⁑ ( 2 ⁒ z ) = 2 ⁒ cos 2 ⁑ z - 1 2 𝑧 2 2 𝑧 1 {\displaystyle{\displaystyle\cos\left(2z\right)=2{\cos^{2}}z-1}}
\cos@{2z} = 2\cos^{2}@@{z}-1

cos(2*z) = 2*(cos(z))^(2)- 1
Cos[2*z] == 2*(Cos[z])^(2)- 1
Successful Successful - Successful [Tested: 7]
4.21.E28 2 ⁒ cos 2 ⁑ z - 1 = 1 - 2 ⁒ sin 2 ⁑ z 2 2 𝑧 1 1 2 2 𝑧 {\displaystyle{\displaystyle 2{\cos^{2}}z-1=1-2{\sin^{2}}z}}
2\cos^{2}@@{z}-1 = 1-2\sin^{2}@@{z}

2*(cos(z))^(2)- 1 = 1 - 2*(sin(z))^(2)
2*(Cos[z])^(2)- 1 == 1 - 2*(Sin[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E28 1 - 2 ⁒ sin 2 ⁑ z = cos 2 ⁑ z - sin 2 ⁑ z 1 2 2 𝑧 2 𝑧 2 𝑧 {\displaystyle{\displaystyle 1-2{\sin^{2}}z={\cos^{2}}z-{\sin^{2}}z}}
1-2\sin^{2}@@{z} = \cos^{2}@@{z}-\sin^{2}@@{z}

1 - 2*(sin(z))^(2) = (cos(z))^(2)- (sin(z))^(2)
1 - 2*(Sin[z])^(2) == (Cos[z])^(2)- (Sin[z])^(2)
Successful Successful - Successful [Tested: 7]
4.21.E28 cos 2 ⁑ z - sin 2 ⁑ z = 1 - tan 2 ⁑ z 1 + tan 2 ⁑ z 2 𝑧 2 𝑧 1 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle{\cos^{2}}z-{\sin^{2}}z=\frac{1-{\tan^{2}}z}{1+{% \tan^{2}}z}}}
\cos^{2}@@{z}-\sin^{2}@@{z} = \frac{1-\tan^{2}@@{z}}{1+\tan^{2}@@{z}}

(cos(z))^(2)- (sin(z))^(2) = (1 - (tan(z))^(2))/(1 + (tan(z))^(2))
(Cos[z])^(2)- (Sin[z])^(2) == Divide[1 - (Tan[z])^(2),1 + (Tan[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.21.E29 tan ⁑ ( 2 ⁒ z ) = 2 ⁒ tan ⁑ z 1 - tan 2 ⁑ z 2 𝑧 2 𝑧 1 2 𝑧 {\displaystyle{\displaystyle\tan\left(2z\right)=\frac{2\tan z}{1-{\tan^{2}}z}}}
\tan@{2z} = \frac{2\tan@@{z}}{1-\tan^{2}@@{z}}

tan(2*z) = (2*tan(z))/(1 - (tan(z))^(2))
Tan[2*z] == Divide[2*Tan[z],1 - (Tan[z])^(2)]
Successful Successful - Successful [Tested: 7]
4.21.E29 2 ⁒ tan ⁑ z 1 - tan 2 ⁑ z = 2 ⁒ cot ⁑ z cot 2 ⁑ z - 1 2 𝑧 1 2 𝑧 2 𝑧 2 𝑧 1 {\displaystyle{\displaystyle\frac{2\tan z}{1-{\tan^{2}}z}=\frac{2\cot z}{{\cot% ^{2}}z-1}}}
\frac{2\tan@@{z}}{1-\tan^{2}@@{z}} = \frac{2\cot@@{z}}{\cot^{2}@@{z}-1}

(2*tan(z))/(1 - (tan(z))^(2)) = (2*cot(z))/((cot(z))^(2)- 1)
Divide[2*Tan[z],1 - (Tan[z])^(2)] == Divide[2*Cot[z],(Cot[z])^(2)- 1]
Successful Successful - Successful [Tested: 7]
4.21.E29 2 ⁒ cot ⁑ z cot 2 ⁑ z - 1 = 2 cot ⁑ z - tan ⁑ z 2 𝑧 2 𝑧 1 2 𝑧 𝑧 {\displaystyle{\displaystyle\frac{2\cot z}{{\cot^{2}}z-1}=\frac{2}{\cot z-\tan z% }}}
\frac{2\cot@@{z}}{\cot^{2}@@{z}-1} = \frac{2}{\cot@@{z}-\tan@@{z}}

(2*cot(z))/((cot(z))^(2)- 1) = (2)/(cot(z)- tan(z))
Divide[2*Cot[z],(Cot[z])^(2)- 1] == Divide[2,Cot[z]- Tan[z]]
Successful Successful - Successful [Tested: 7]
4.21.E30 sin ⁑ ( 3 ⁒ z ) = 3 ⁒ sin ⁑ z - 4 ⁒ sin 3 ⁑ z 3 𝑧 3 𝑧 4 3 𝑧 {\displaystyle{\displaystyle\sin\left(3z\right)=3\sin z-4{\sin^{3}}z}}
\sin@{3z} = 3\sin@@{z}-4\sin^{3}@@{z}

sin(3*z) = 3*sin(z)- 4*(sin(z))^(3)
Sin[3*z] == 3*Sin[z]- 4*(Sin[z])^(3)
Successful Successful - Successful [Tested: 7]
4.21.E31 cos ⁑ ( 3 ⁒ z ) = - 3 ⁒ cos ⁑ z + 4 ⁒ cos 3 ⁑ z 3 𝑧 3 𝑧 4 3 𝑧 {\displaystyle{\displaystyle\cos\left(3z\right)=-3\cos z+4{\cos^{3}}z}}
\cos@{3z} = -3\cos@@{z}+4\cos^{3}@@{z}

cos(3*z) = - 3*cos(z)+ 4*(cos(z))^(3)
Cos[3*z] == - 3*Cos[z]+ 4*(Cos[z])^(3)
Successful Successful - Successful [Tested: 7]
4.21.E32 sin ⁑ ( 4 ⁒ z ) = 8 ⁒ cos 3 ⁑ z ⁒ sin ⁑ z - 4 ⁒ cos ⁑ z ⁒ sin ⁑ z 4 𝑧 8 3 𝑧 𝑧 4 𝑧 𝑧 {\displaystyle{\displaystyle\sin\left(4z\right)=8{\cos^{3}}z\sin z-4\cos z\sin z}}
\sin@{4z} = 8\cos^{3}@@{z}\sin@@{z}-4\cos@@{z}\sin@@{z}

sin(4*z) = 8*(cos(z))^(3)* sin(z)- 4*cos(z)*sin(z)
Sin[4*z] == 8*(Cos[z])^(3)* Sin[z]- 4*Cos[z]*Sin[z]
Successful Successful - Successful [Tested: 7]
4.21.E33 cos ⁑ ( 4 ⁒ z ) = 8 ⁒ cos 4 ⁑ z - 8 ⁒ cos 2 ⁑ z + 1 4 𝑧 8 4 𝑧 8 2 𝑧 1 {\displaystyle{\displaystyle\cos\left(4z\right)=8{\cos^{4}}z-8{\cos^{2}}z+1}}
\cos@{4z} = 8\cos^{4}@@{z}-8\cos^{2}@@{z}+1

cos(4*z) = 8*(cos(z))^(4)- 8*(cos(z))^(2)+ 1
Cos[4*z] == 8*(Cos[z])^(4)- 8*(Cos[z])^(2)+ 1
Successful Successful - Successful [Tested: 7]
4.21.E34 cos ⁑ ( n ⁒ z ) + i ⁒ sin ⁑ ( n ⁒ z ) = ( cos ⁑ z + i ⁒ sin ⁑ z ) n 𝑛 𝑧 𝑖 𝑛 𝑧 superscript 𝑧 𝑖 𝑧 𝑛 {\displaystyle{\displaystyle\cos\left(nz\right)+i\sin\left(nz\right)=(\cos z+i% \sin z)^{n}}}
\cos@{nz}+i\sin@{nz} = (\cos@@{z}+i\sin@@{z})^{n}

cos(n*z)+ I*sin(n*z) = (cos(z)+ I*sin(z))^(n)
Cos[n*z]+ I*Sin[n*z] == (Cos[z]+ I*Sin[z])^(n)
Successful Failure - Successful [Tested: 21]
4.21.E35 sin ⁑ ( n ⁒ z ) = 2 n - 1 ⁒ ∏ k = 0 n - 1 sin ⁑ ( z + k ⁒ Ο€ n ) 𝑛 𝑧 superscript 2 𝑛 1 superscript subscript product π‘˜ 0 𝑛 1 𝑧 π‘˜ πœ‹ 𝑛 {\displaystyle{\displaystyle\sin\left(nz\right)=2^{n-1}\prod_{k=0}^{n-1}\sin% \left(z+\frac{k\pi}{n}\right)}}
\sin@{nz} = 2^{n-1}\prod_{k=0}^{n-1}\sin@{z+\frac{k\pi}{n}}

sin(n*z) = (2)^(n - 1)* product(sin(z +(k*Pi)/(n)), k = 0..n - 1)
Sin[n*z] == (2)^(n - 1)* Product[Sin[z +Divide[k*Pi,n]], {k, 0, n - 1}, GenerateConditions->None]
Failure Successful Successful [Tested: 21] Successful [Tested: 7]
4.21#Ex1 sin ⁑ z = 2 ⁒ t 1 + t 2 𝑧 2 𝑑 1 superscript 𝑑 2 {\displaystyle{\displaystyle\sin z=\frac{2t}{1+t^{2}}}}
\sin@@{z} = \frac{2t}{1+t^{2}}

sin(z) = (2*t)/(1 + (t)^(2))
Sin[z] == Divide[2*t,1 + (t)^(2)]
Failure Failure
Failed [42 / 42]
Result: 1.782057258+.3375964631*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}

Result: .2523455641+.8586367171*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}

Result: 1.593808282-.8586367171*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)}

Result: .640965885e-1-.3375964631*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [42 / 42]
Result: Complex[1.782057257377061, 0.33759646322287]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.25234556426971166, 0.8586367168171449]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21#Ex2 cos ⁑ z = 1 - t 2 1 + t 2 𝑧 1 superscript 𝑑 2 1 superscript 𝑑 2 {\displaystyle{\displaystyle\cos z=\frac{1-t^{2}}{1+t^{2}}}}
\cos@@{z} = \frac{1-t^{2}}{1+t^{2}}

cos(z) = (1 - (t)^(2))/(1 + (t)^(2))
Cos[z] == Divide[1 - (t)^(2),1 + (t)^(2)]
Failure Failure
Failed [42 / 42]
Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = 1/2*3^(1/2)+1/2*I}

Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = -1/2+1/2*I*3^(1/2)}

Result: 1.612380902+.4690753764*I
Test Values: {t = -1.5, z = 1/2-1/2*I*3^(1/2)}

Result: 1.115158404-.3969495503*I
Test Values: {t = -1.5, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [42 / 42]
Result: Complex[1.1151584036726099, -0.3969495502290325]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.612380901479495, 0.46907537626850365]
Test Values: {Rule[t, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.21.E37 sin ⁑ z = sin ⁑ x ⁒ cosh ⁑ y + i ⁒ cos ⁑ x ⁒ sinh ⁑ y 𝑧 π‘₯ 𝑦 imaginary-unit π‘₯ 𝑦 {\displaystyle{\displaystyle\sin z=\sin x\cosh y+\mathrm{i}\cos x\sinh y}}
\sin@@{z} = \sin@@{x}\cosh@@{y}+\iunit\cos@@{x}\sinh@@{y}

sin(x + y*I) = sin(x)*cosh(y)+ I*cos(x)*sinh(y)
Sin[x + y*I] == Sin[x]*Cosh[y]+ I*Cos[x]*Sinh[y]
Successful Successful - Successful [Tested: 18]
4.21.E38 cos ⁑ z = cos ⁑ x ⁒ cosh ⁑ y - i ⁒ sin ⁑ x ⁒ sinh ⁑ y 𝑧 π‘₯ 𝑦 imaginary-unit π‘₯ 𝑦 {\displaystyle{\displaystyle\cos z=\cos x\cosh y-\mathrm{i}\sin x\sinh y}}
\cos@@{z} = \cos@@{x}\cosh@@{y}-\iunit\sin@@{x}\sinh@@{y}

cos(x + y*I) = cos(x)*cosh(y)- I*sin(x)*sinh(y)
Cos[x + y*I] == Cos[x]*Cosh[y]- I*Sin[x]*Sinh[y]
Successful Successful - Successful [Tested: 18]
4.21.E39 tan ⁑ z = sin ⁑ ( 2 ⁒ x ) + i ⁒ sinh ⁑ ( 2 ⁒ y ) cos ⁑ ( 2 ⁒ x ) + cosh ⁑ ( 2 ⁒ y ) 𝑧 2 π‘₯ imaginary-unit 2 𝑦 2 π‘₯ 2 𝑦 {\displaystyle{\displaystyle\tan z=\frac{\sin\left(2x\right)+\mathrm{i}\sinh% \left(2y\right)}{\cos\left(2x\right)+\cosh\left(2y\right)}}}
\tan@@{z} = \frac{\sin@{2x}+\iunit\sinh@{2y}}{\cos@{2x}+\cosh@{2y}}

tan(x + y*I) = (sin(2*x)+ I*sinh(2*y))/(cos(2*x)+ cosh(2*y))
Tan[x + y*I] == Divide[Sin[2*x]+ I*Sinh[2*y],Cos[2*x]+ Cosh[2*y]]
Successful Successful - Successful [Tested: 18]
4.21.E40 cot ⁑ z = sin ⁑ ( 2 ⁒ x ) - i ⁒ sinh ⁑ ( 2 ⁒ y ) cosh ⁑ ( 2 ⁒ y ) - cos ⁑ ( 2 ⁒ x ) 𝑧 2 π‘₯ imaginary-unit 2 𝑦 2 𝑦 2 π‘₯ {\displaystyle{\displaystyle\cot z=\frac{\sin\left(2x\right)-\mathrm{i}\sinh% \left(2y\right)}{\cosh\left(2y\right)-\cos\left(2x\right)}}}
\cot@@{z} = \frac{\sin@{2x}-\iunit\sinh@{2y}}{\cosh@{2y}-\cos@{2x}}

cot(x + y*I) = (sin(2*x)- I*sinh(2*y))/(cosh(2*y)- cos(2*x))
Cot[x + y*I] == Divide[Sin[2*x]- I*Sinh[2*y],Cosh[2*y]- Cos[2*x]]
Successful Successful - Successful [Tested: 18]
4.21.E41 | sin ⁑ z | = ( sin 2 ⁑ x + sinh 2 ⁑ y ) 1 / 2 𝑧 superscript 2 π‘₯ 2 𝑦 1 2 {\displaystyle{\displaystyle|\sin z|=({\sin^{2}}x+{\sinh^{2}}y)^{1/2}}}
|\sin@@{z}| = (\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2}

abs(sin(x + y*I)) = ((sin(x))^(2)+ (sinh(y))^(2))^(1/2)
Abs[Sin[x + y*I]] == ((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2)
Successful Failure - Successful [Tested: 18]
4.21.E41 ( sin 2 ⁑ x + sinh 2 ⁑ y ) 1 / 2 = ( 1 2 ⁒ ( cosh ⁑ ( 2 ⁒ y ) - cos ⁑ ( 2 ⁒ x ) ) ) 1 / 2 superscript 2 π‘₯ 2 𝑦 1 2 superscript 1 2 2 𝑦 2 π‘₯ 1 2 {\displaystyle{\displaystyle({\sin^{2}}x+{\sinh^{2}}y)^{1/2}=\left(\tfrac{1}{2% }\left(\cosh\left(2y\right)-\cos\left(2x\right)\right)\right)^{1/2}}}
(\sin^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}\left(\cosh@{2y}-\cos@{2x}\right)\right)^{1/2}

((sin(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)- cos(2*x)))^(1/2)
((Sin[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]- Cos[2*x]))^(1/2)
Successful Successful - Successful [Tested: 18]
4.21.E42 | cos ⁑ z | = ( cos 2 ⁑ x + sinh 2 ⁑ y ) 1 / 2 𝑧 superscript 2 π‘₯ 2 𝑦 1 2 {\displaystyle{\displaystyle|\cos z|=({\cos^{2}}x+{\sinh^{2}}y)^{1/2}}}
|\cos@@{z}| = (\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2}

abs(cos(x + y*I)) = ((cos(x))^(2)+ (sinh(y))^(2))^(1/2)
Abs[Cos[x + y*I]] == ((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2)
Successful Failure - Successful [Tested: 18]
4.21.E42 ( cos 2 ⁑ x + sinh 2 ⁑ y ) 1 / 2 = ( 1 2 ⁒ ( cosh ⁑ ( 2 ⁒ y ) + cos ⁑ ( 2 ⁒ x ) ) ) 1 / 2 superscript 2 π‘₯ 2 𝑦 1 2 superscript 1 2 2 𝑦 2 π‘₯ 1 2 {\displaystyle{\displaystyle({\cos^{2}}x+{\sinh^{2}}y)^{1/2}=\left(\tfrac{1}{2% }(\cosh\left(2y\right)+\cos\left(2x\right))\right)^{1/2}}}
(\cos^{2}@@{x}+\sinh^{2}@@{y})^{1/2} = \left(\tfrac{1}{2}(\cosh@{2y}+\cos@{2x})\right)^{1/2}

((cos(x))^(2)+ (sinh(y))^(2))^(1/2) = ((1)/(2)*(cosh(2*y)+ cos(2*x)))^(1/2)
((Cos[x])^(2)+ (Sinh[y])^(2))^(1/2) == (Divide[1,2]*(Cosh[2*y]+ Cos[2*x]))^(1/2)
Successful Successful - Successful [Tested: 18]
4.21.E43 | tan ⁑ z | = ( cosh ⁑ ( 2 ⁒ y ) - cos ⁑ ( 2 ⁒ x ) cosh ⁑ ( 2 ⁒ y ) + cos ⁑ ( 2 ⁒ x ) ) 1 / 2 𝑧 superscript 2 𝑦 2 π‘₯ 2 𝑦 2 π‘₯ 1 2 {\displaystyle{\displaystyle|\tan z|=\left(\frac{\cosh\left(2y\right)-\cos% \left(2x\right)}{\cosh\left(2y\right)+\cos\left(2x\right)}\right)^{1/2}}}
|\tan@@{z}| = \left(\frac{\cosh@{2y}-\cos@{2x}}{\cosh@{2y}+\cos@{2x}}\right)^{1/2}

abs(tan(x + y*I)) = ((cosh(2*y)- cos(2*x))/(cosh(2*y)+ cos(2*x)))^(1/2)
Abs[Tan[x + y*I]] == (Divide[Cosh[2*y]- Cos[2*x],Cosh[2*y]+ Cos[2*x]])^(1/2)
Successful Failure - Successful [Tested: 18]
4.22.E1 sin ⁑ z = z ⁒ ∏ n = 1 ∞ ( 1 - z 2 n 2 ⁒ Ο€ 2 ) 𝑧 𝑧 superscript subscript product 𝑛 1 1 superscript 𝑧 2 superscript 𝑛 2 superscript πœ‹ 2 {\displaystyle{\displaystyle\sin z=z\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n% ^{2}\pi^{2}}\right)}}
\sin@@{z} = z\prod_{n=1}^{\infty}\left(1-\frac{z^{2}}{n^{2}\pi^{2}}\right)

sin(z) = z*product(1 -((z)^(2))/((n)^(2)* (Pi)^(2)), n = 1..infinity)
Sin[z] == z*Product[1 -Divide[(z)^(2),(n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
4.22.E2 cos ⁑ z = ∏ n = 1 ∞ ( 1 - 4 ⁒ z 2 ( 2 ⁒ n - 1 ) 2 ⁒ Ο€ 2 ) 𝑧 superscript subscript product 𝑛 1 1 4 superscript 𝑧 2 superscript 2 𝑛 1 2 superscript πœ‹ 2 {\displaystyle{\displaystyle\cos z=\prod_{n=1}^{\infty}\left(1-\frac{4z^{2}}{(% 2n-1)^{2}\pi^{2}}\right)}}
\cos@@{z} = \prod_{n=1}^{\infty}\left(1-\frac{4z^{2}}{(2n-1)^{2}\pi^{2}}\right)

cos(z) = product(1 -(4*(z)^(2))/((2*n - 1)^(2)* (Pi)^(2)), n = 1..infinity)
Cos[z] == Product[1 -Divide[4*(z)^(2),(2*n - 1)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
4.22.E3 cot ⁑ z = 1 z + 2 ⁒ z ⁒ βˆ‘ n = 1 ∞ 1 z 2 - n 2 ⁒ Ο€ 2 𝑧 1 𝑧 2 𝑧 superscript subscript 𝑛 1 1 superscript 𝑧 2 superscript 𝑛 2 superscript πœ‹ 2 {\displaystyle{\displaystyle\cot z=\frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z% ^{2}-n^{2}\pi^{2}}}}
\cot@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{1}{z^{2}-n^{2}\pi^{2}}

cot(z) = (1)/(z)+ 2*z*sum((1)/((z)^(2)- (n)^(2)* (Pi)^(2)), n = 1..infinity)
Cot[z] == Divide[1,z]+ 2*z*Sum[Divide[1,(z)^(2)- (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.22.E4 csc 2 ⁑ z = βˆ‘ n = - ∞ ∞ 1 ( z - n ⁒ Ο€ ) 2 2 𝑧 superscript subscript 𝑛 1 superscript 𝑧 𝑛 πœ‹ 2 {\displaystyle{\displaystyle{\csc^{2}}z=\sum_{n=-\infty}^{\infty}\frac{1}{(z-n% \pi)^{2}}}}
\csc^{2}@@{z} = \sum_{n=-\infty}^{\infty}\frac{1}{(z-n\pi)^{2}}

(csc(z))^(2) = sum((1)/((z - n*Pi)^(2)), n = - infinity..infinity)
(Csc[z])^(2) == Sum[Divide[1,(z - n*Pi)^(2)], {n, - Infinity, Infinity}, GenerateConditions->None]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.22.E5 csc ⁑ z = 1 z + 2 ⁒ z ⁒ βˆ‘ n = 1 ∞ ( - 1 ) n z 2 - n 2 ⁒ Ο€ 2 𝑧 1 𝑧 2 𝑧 superscript subscript 𝑛 1 superscript 1 𝑛 superscript 𝑧 2 superscript 𝑛 2 superscript πœ‹ 2 {\displaystyle{\displaystyle\csc z=\frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)% ^{n}}{z^{2}-n^{2}\pi^{2}}}}
\csc@@{z} = \frac{1}{z}+2z\sum_{n=1}^{\infty}\frac{(-1)^{n}}{z^{2}-n^{2}\pi^{2}}

csc(z) = (1)/(z)+ 2*z*sum(((- 1)^(n))/((z)^(2)- (n)^(2)* (Pi)^(2)), n = 1..infinity)
Csc[z] == Divide[1,z]+ 2*z*Sum[Divide[(- 1)^(n),(z)^(2)- (n)^(2)* (Pi)^(2)], {n, 1, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
4.23.E1 Arcsin ⁑ z = ∫ 0 z d t ( 1 - t 2 ) 1 / 2 multivalued-inverse-sine 𝑧 superscript subscript 0 𝑧 𝑑 superscript 1 superscript 𝑑 2 1 2 {\displaystyle{\displaystyle\operatorname{Arcsin}z=\int_{0}^{z}\frac{\mathrm{d% }t}{(1-t^{2})^{1/2}}}}
\Asin@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1-t^{2})^{1/2}}

Error
ArcSin[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, 0, z}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 7]
4.23.E2 Arccos ⁑ z = ∫ z 1 d t ( 1 - t 2 ) 1 / 2 multivalued-inverse-cosine 𝑧 superscript subscript 𝑧 1 𝑑 superscript 1 superscript 𝑑 2 1 2 {\displaystyle{\displaystyle\operatorname{Arccos}z=\int_{z}^{1}\frac{\mathrm{d% }t}{(1-t^{2})^{1/2}}}}
\Acos@@{z} = \int_{z}^{1}\frac{\diff{t}}{(1-t^{2})^{1/2}}

Error
ArcCos[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, z, 1}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 7]
4.23.E3 Arctan ⁑ z = ∫ 0 z d t 1 + t 2 multivalued-inverse-tangent 𝑧 superscript subscript 0 𝑧 𝑑 1 superscript 𝑑 2 {\displaystyle{\displaystyle\operatorname{Arctan}z=\int_{0}^{z}\frac{\mathrm{d% }t}{1+t^{2}}}}
\Atan@@{z} = \int_{0}^{z}\frac{\diff{t}}{1+t^{2}}

Error
ArcTan[z] == Integrate[Divide[1,1 + (t)^(2)], {t, 0, z}, GenerateConditions->None]
Missing Macro Error Successful - Successful [Tested: 1]
4.23.E4 Arccsc ⁑ z = Arcsin ⁑ ( 1 / z ) multivalued-inverse-cosecant 𝑧 multivalued-inverse-sine 1 𝑧 {\displaystyle{\displaystyle\operatorname{Arccsc}z=\operatorname{Arcsin}\left(% 1/z\right)}}
\Acsc@@{z} = \Asin@{1/z}

Error
ArcCsc[z] == ArcSin[1/z]
Missing Macro Error Successful - Successful [Tested: 7]
4.23.E5 Arcsec ⁑ z = Arccos ⁑ ( 1 / z ) multivalued-inverse-secant 𝑧 multivalued-inverse-cosine 1 𝑧 {\displaystyle{\displaystyle\operatorname{Arcsec}z=\operatorname{Arccos}\left(% 1/z\right)}}
\Asec@@{z} = \Acos@{1/z}

Error
ArcSec[z] == ArcCos[1/z]
Missing Macro Error Successful - Successful [Tested: 7]
4.23.E6 Arccot ⁑ z = Arctan ⁑ ( 1 / z ) multivalued-inverse-cotangent 𝑧 multivalued-inverse-tangent 1 𝑧 {\displaystyle{\displaystyle\operatorname{Arccot}z=\operatorname{Arctan}\left(% 1/z\right)}}
\Acot@@{z} = \Atan@{1/z}

Error
ArcCot[z] == ArcTan[1/z]
Missing Macro Error Successful - Successful [Tested: 7]
4.23.E7 arccsc ⁑ z = arcsin ⁑ ( 1 / z ) 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{arccsc}z=\operatorname{arcsin}\left(% 1/z\right)}}
\acsc@@{z} = \asin@{1/z}

arccsc(z) = arcsin(1/z)
ArcCsc[z] == ArcSin[1/z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E8 arcsec ⁑ z = arccos ⁑ ( 1 / z ) 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{arcsec}z=\operatorname{arccos}\left(% 1/z\right)}}
\asec@@{z} = \acos@{1/z}

arcsec(z) = arccos(1/z)
ArcSec[z] == ArcCos[1/z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E9 arccot ⁑ z = arctan ⁑ ( 1 / z ) 𝑧 1 𝑧 {\displaystyle{\displaystyle\operatorname{arccot}z=\operatorname{arctan}\left(% 1/z\right)}}
\acot@@{z} = \atan@{1/z}

arccot(z) = arctan(1/z)
ArcCot[z] == ArcTan[1/z]
Failure Successful
Failed [2 / 7]
Result: 3.141592654+0.*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}

Result: 3.141592654+0.*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}

Successful [Tested: 1]
4.23.E10 arcsin ⁑ ( - z ) = - arcsin ⁑ z 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{arcsin}\left(-z\right)=-% \operatorname{arcsin}z}}
\asin@{-z} = -\asin@@{z}

arcsin(- z) = - arcsin(z)
ArcSin[- z] == - ArcSin[z]
Successful Successful - Successful [Tested: 7]
4.23.E11 arccos ⁑ ( - z ) = Ο€ - arccos ⁑ z 𝑧 πœ‹ 𝑧 {\displaystyle{\displaystyle\operatorname{arccos}\left(-z\right)=\pi-% \operatorname{arccos}z}}
\acos@{-z} = \pi-\acos@@{z}

arccos(- z) = Pi - arccos(z)
ArcCos[- z] == Pi - ArcCos[z]
Successful Successful - Successful [Tested: 7]
4.23.E12 arctan ⁑ ( - z ) = - arctan ⁑ z 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{arctan}\left(-z\right)=-% \operatorname{arctan}z}}
\atan@{-z} = -\atan@@{z}

arctan(- z) = - arctan(z)
ArcTan[- z] == - ArcTan[z]
Successful Successful - Successful [Tested: 1]
4.23.E13 arccsc ⁑ ( - z ) = - arccsc ⁑ z 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{arccsc}\left(-z\right)=-% \operatorname{arccsc}z}}
\acsc@{-z} = -\acsc@@{z}

arccsc(- z) = - arccsc(z)
ArcCsc[- z] == - ArcCsc[z]
Successful Successful - Successful [Tested: 7]
4.23.E14 arcsec ⁑ ( - z ) = Ο€ - arcsec ⁑ z 𝑧 πœ‹ 𝑧 {\displaystyle{\displaystyle\operatorname{arcsec}\left(-z\right)=\pi-% \operatorname{arcsec}z}}
\asec@{-z} = \pi-\asec@@{z}

arcsec(- z) = Pi - arcsec(z)
ArcSec[- z] == Pi - ArcSec[z]
Successful Successful - Successful [Tested: 7]
4.23.E15 arccot ⁑ ( - z ) = - arccot ⁑ z 𝑧 𝑧 {\displaystyle{\displaystyle\operatorname{arccot}\left(-z\right)=-% \operatorname{arccot}z}}
\acot@{-z} = -\acot@@{z}

arccot(- z) = - arccot(z)
ArcCot[- z] == - ArcCot[z]
Failure Successful Skip - No test values generated Successful [Tested: 1]
4.23.E16 arccos ⁑ z = 1 2 ⁒ Ο€ - arcsin ⁑ z 𝑧 1 2 πœ‹ 𝑧 {\displaystyle{\displaystyle\operatorname{arccos}z=\tfrac{1}{2}\pi-% \operatorname{arcsin}z}}
\acos@@{z} = \tfrac{1}{2}\pi-\asin@@{z}

arccos(z) = (1)/(2)*Pi - arcsin(z)
ArcCos[z] == Divide[1,2]*Pi - ArcSin[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E17 arcsec ⁑ z = 1 2 ⁒ Ο€ - arccsc ⁑ z 𝑧 1 2 πœ‹ 𝑧 {\displaystyle{\displaystyle\operatorname{arcsec}z=\tfrac{1}{2}\pi-% \operatorname{arccsc}z}}
\asec@@{z} = \tfrac{1}{2}\pi-\acsc@@{z}

arcsec(z) = (1)/(2)*Pi - arccsc(z)
ArcSec[z] == Divide[1,2]*Pi - ArcCsc[z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E18 arccot ⁑ z = + 1 2 ⁒ Ο€ - arctan ⁑ z 𝑧 1 2 πœ‹ 𝑧 {\displaystyle{\displaystyle\operatorname{arccot}z=+\tfrac{1}{2}\pi-% \operatorname{arctan}z}}
\acot@@{z} = +\tfrac{1}{2}\pi-\atan@@{z}

arccot(z) = +(1)/(2)*Pi - arctan(z)
ArcCot[z] == +Divide[1,2]*Pi - ArcTan[z]
Successful Failure Skip - symbolical successful subtest Successful [Tested: 1]
4.23.E18 arccot ⁑ z = - 1 2 ⁒ Ο€ - arctan ⁑ z 𝑧 1 2 πœ‹ 𝑧 {\displaystyle{\displaystyle\operatorname{arccot}z=-\tfrac{1}{2}\pi-% \operatorname{arctan}z}}
\acot@@{z} = -\tfrac{1}{2}\pi-\atan@@{z}

arccot(z) = -(1)/(2)*Pi - arctan(z)
ArcCot[z] == -Divide[1,2]*Pi - ArcTan[z]
Failure Failure
Failed [7 / 7]
Result: 3.141592654+0.*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}

Result: 3.141592654+0.*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}

Result: 3.141592654+0.*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}

Result: 3.141592654+0.*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}

... skip entries to safe data
Failed [1 / 1]
Result: 3.141592653589793
Test Values: {Rule[z, Rational[1, 2]]}

4.23.E19 arcsin ⁑ z = - i ⁒ ln ⁑ ( ( 1 - z 2 ) 1 / 2 + i ⁒ z ) 𝑧 𝑖 superscript 1 superscript 𝑧 2 1 2 𝑖 𝑧 {\displaystyle{\displaystyle\operatorname{arcsin}z=-i\ln\left((1-z^{2})^{1/2}+% iz\right)}}
\asin@@{z} = -i\ln@{(1-z^{2})^{1/2}+iz}

arcsin(z) = - I*ln((1 - (z)^(2))^(1/2)+ I*z)
ArcSin[z] == - I*Log[(1 - (z)^(2))^(1/2)+ I*z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E20 arcsin ⁑ x = 1 2 ⁒ Ο€ + i ⁒ ln ⁑ ( ( x 2 - 1 ) 1 / 2 + x ) π‘₯ 1 2 πœ‹ 𝑖 superscript superscript π‘₯ 2 1 1 2 π‘₯ {\displaystyle{\displaystyle\operatorname{arcsin}x=\tfrac{1}{2}\pi+i\ln\left((% x^{2}-1)^{1/2}+x\right)}}
\asin@@{x} = \tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}+x}

arcsin(x) = (1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)+ x)
ArcSin[x] == Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)+ x]
Failure Failure
Failed [2 / 3]
Result: 0.-1.924847300*I
Test Values: {x = 1.5, x = 3/2}

Result: 0.-2.633915794*I
Test Values: {x = 2, x = 3/2}

Failed [1 / 1]
Result: Complex[0.0, -1.9248473002384139]
Test Values: {Rule[x, Rational[3, 2]]}

4.23.E20 arcsin ⁑ x = 1 2 ⁒ Ο€ - i ⁒ ln ⁑ ( ( x 2 - 1 ) 1 / 2 + x ) π‘₯ 1 2 πœ‹ 𝑖 superscript superscript π‘₯ 2 1 1 2 π‘₯ {\displaystyle{\displaystyle\operatorname{arcsin}x=\tfrac{1}{2}\pi-i\ln\left((% x^{2}-1)^{1/2}+x\right)}}
\asin@@{x} = \tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}+x}

arcsin(x) = (1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)+ x)
ArcSin[x] == Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)+ x]
Failure Failure
Failed [1 / 3]
Result: -2.094395102+.1347500000e-10*I
Test Values: {x = .5, x = 3/2}

Successful [Tested: 1]
4.23.E21 arcsin ⁑ x = - 1 2 ⁒ Ο€ + i ⁒ ln ⁑ ( ( x 2 - 1 ) 1 / 2 - x ) π‘₯ 1 2 πœ‹ 𝑖 superscript superscript π‘₯ 2 1 1 2 π‘₯ {\displaystyle{\displaystyle\operatorname{arcsin}x=-\tfrac{1}{2}\pi+i\ln\left(% (x^{2}-1)^{1/2}-x\right)}}
\asin@@{x} = -\tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}-x}

arcsin(x) = -(1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)- x)
ArcSin[x] == -Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)- x]
Failure Failure
Failed [3 / 3]
Result: 6.283185308+.7e-9*I
Test Values: {x = 1.5, x = -2}

Result: 4.188790205-.1347500000e-10*I
Test Values: {x = .5, x = -2}

Result: 6.283185308+.2e-8*I
Test Values: {x = 2, x = -2}

Successful [Tested: 1]
4.23.E21 arcsin ⁑ x = - 1 2 ⁒ Ο€ - i ⁒ ln ⁑ ( ( x 2 - 1 ) 1 / 2 - x ) π‘₯ 1 2 πœ‹ 𝑖 superscript superscript π‘₯ 2 1 1 2 π‘₯ {\displaystyle{\displaystyle\operatorname{arcsin}x=-\tfrac{1}{2}\pi-i\ln\left(% (x^{2}-1)^{1/2}-x\right)}}
\asin@@{x} = -\tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}-x}

arcsin(x) = -(1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)- x)
ArcSin[x] == -Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)- x]
Failure Failure
Failed [2 / 3]
Result: 0.-1.924847301*I
Test Values: {x = 1.5, x = -2}

Result: 0.-2.633915796*I
Test Values: {x = 2, x = -2}

Failed [1 / 1]
Result: Complex[0.0, 2.633915793849633]
Test Values: {Rule[x, -2]}

4.23.E22 arccos ⁑ z = 1 2 ⁒ Ο€ + i ⁒ ln ⁑ ( ( 1 - z 2 ) 1 / 2 + i ⁒ z ) 𝑧 1 2 πœ‹ 𝑖 superscript 1 superscript 𝑧 2 1 2 𝑖 𝑧 {\displaystyle{\displaystyle\operatorname{arccos}z=\tfrac{1}{2}\pi+i\ln\left((% 1-z^{2})^{1/2}+iz\right)}}
\acos@@{z} = \tfrac{1}{2}\pi+i\ln@{(1-z^{2})^{1/2}+iz}

arccos(z) = (1)/(2)*Pi + I*ln((1 - (z)^(2))^(1/2)+ I*z)
ArcCos[z] == Divide[1,2]*Pi + I*Log[(1 - (z)^(2))^(1/2)+ I*z]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
4.23.E23 arccos ⁑ z = - 2 ⁒ i ⁒ ln ⁑ ( ( 1 + z 2 ) 1 / 2 + i ⁒ ( 1 - z 2 ) 1 / 2 ) 𝑧 2 𝑖 superscript 1 𝑧 2 1 2 𝑖 superscript 1 𝑧 2 1 2 {\displaystyle{\displaystyle\operatorname{arccos}z=-2i\ln\left(\left(\frac{1+z% }{2}\right)^{1/2}+i\left(\frac{1-z}{2}\right)^{1/2}\right)}}
\acos@@{z} = -2i\ln@{\left(\frac{1+z}{2}\right)^{1/2}+i\left(\frac{1-z}{2}\right)^{1/2}}

arccos(z) = - 2*I*ln(((1 + z)/(2))^(1/2)+ I*((1 - z)/(2))^(1/2))
ArcCos[z] == - 2*I*Log[(Divide[1 + z,2])^(1/2)+ I*(Divide[1 - z,2])^(1/2)]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.23.E24 arccos ⁑ x = - i ⁒ ln ⁑ ( ( x 2 - 1 ) 1 / 2 + x ) π‘₯ 𝑖 superscript superscript π‘₯ 2 1 1 2 π‘₯ {\displaystyle{\displaystyle\operatorname{arccos}x=-i\ln\left((x^{2}-1)^{1/2}+% x\right)}}
\acos@@{x} = - i\ln@{(x^{2}-1)^{1/2}+x}

arccos(x) = - I*ln(((x)^(2)- 1)^(1/2)+ x)
ArcCos[x] == - I*Log[((x)^(2)- 1)^(1/2)+ x]
Failure Failure
Failed [2 / 3]
Result: 1.924847300*I
Test Values: {x = 1.5, x = 3/2}

Result: 2.633915794*I
Test Values: {x = 2, x = 3/2}

Failed [1 / 1]
Result: Complex[0.0, 1.9248473002384139]
Test Values: {Rule[x, Rational[3, 2]]}

4.23.E24 arccos ⁑ x = + i ⁒ ln ⁑ ( ( x 2 - 1 ) 1 / 2 + x ) π‘₯ 𝑖 superscript superscript π‘₯ 2 1 1 2 π‘₯ {\displaystyle{\displaystyle\operatorname{arccos}x=+i\ln\left((x^{2}-1)^{1/2}+% x\right)}}
\acos@@{x} = + i\ln@{(x^{2}-1)^{1/2}+x}

arccos(x) = + I*ln(((x)^(2)- 1)^(1/2)+ x)
ArcCos[x] == + I*Log[((x)^(2)- 1)^(1/2)+ x]
Failure Failure
Failed [1 / 3]
Result: 2.094395102-.1347500000e-10*I
Test Values: {x = .5, x = 3/2}

Successful [Tested: 1]
4.23.E25 arccos ⁑ x = Ο€ - i ⁒ ln ⁑ ( ( x 2 - 1 ) 1 / 2 - x ) π‘₯ πœ‹ 𝑖 superscript superscript π‘₯ 2 1 1 2 π‘₯ {\displaystyle{\displaystyle\operatorname{arccos}x=\pi-i\ln\left((x^{2}-1)^{1/% 2}-x\right)}}
\acos@@{x} = \pi- i\ln@{(x^{2}-1)^{1/2}-x}

arccos(x) = Pi - I*ln(((x)^(2)- 1)^(1/2)- x)
ArcCos[x] == Pi - I*Log[((x)^(2)- 1)^(1/2)- x]
Failure Failure
Failed [3 / 3]
Result: -6.283185308-.7e-9*I
Test Values: {x = 1.5, x = -2}

Result: -4.188790205+.1347500000e-10*I
Test Values: {x = .5, x = -2}

Result: -6.283185308-.2e-8*I
Test Values: {x = 2, x = -2}

Successful [Tested: 1]
4.23.E25 arccos ⁑ x = Ο€ + i ⁒ ln ⁑ ( ( x 2 - 1 ) 1 / 2 - x ) π‘₯ πœ‹ 𝑖 superscript superscript π‘₯ 2 1 1 2 π‘₯ {\displaystyle{\displaystyle\operatorname{arccos}x=\pi+i\ln\left((x^{2}-1)^{1/% 2}-x\right)}}
\acos@@{x} = \pi+ i\ln@{(x^{2}-1)^{1/2}-x}

arccos(x) = Pi + I*ln(((x)^(2)- 1)^(1/2)- x)
ArcCos[x] == Pi + I*Log[((x)^(2)- 1)^(1/2)- x]
Failure Failure
Failed [2 / 3]
Result: 0.+1.924847301*I
Test Values: {x = 1.5, x = -2}

Result: 0.+2.633915796*I
Test Values: {x = 2, x = -2}

Failed [1 / 1]
Result: Complex[0.0, -2.633915793849633]
Test Values: {Rule[x, -2]}

4.23.E26 arctan ⁑ z = i 2 ⁒ ln ⁑ ( i + z i - z ) 𝑧 𝑖 2 𝑖 𝑧 𝑖 𝑧 {\displaystyle{\displaystyle\operatorname{arctan}z=\frac{i}{2}\ln\left(\frac{i% +z}{i-z}\right)}}
\atan@@{z} = \frac{i}{2}\ln@{\frac{i+z}{i-z}}

arctan(z) = (I)/(2)*ln((I + z)/(I - z))
ArcTan[z] == Divide[I,2]*Log[Divide[I + z,I - z]]
Failure Failure Successful [Tested: 7] Successful [Tested: 7]
4.23.E27 arctan ⁑ ( i ⁒ y ) = + 1 2 ⁒ Ο€ + i 2 ⁒ ln ⁑ ( y + 1 y - 1 ) 𝑖 𝑦 1 2 πœ‹ 𝑖 2 𝑦 1 𝑦 1 {\displaystyle{\displaystyle\operatorname{arctan}\left(iy\right)=+\frac{1}{2}% \pi+\frac{i}{2}\ln\left(\frac{y+1}{y-1}\right)}}
\atan@{iy} = +\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}

arctan(I*y) = +(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1))
ArcTan[I*y] == +Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]]
Failure Failure
Failed [2 / 6]
Result: -3.141592654-.2e-9*I
Test Values: {y = -1.5, y = -3/2}

Result: -3.141592654+.2e-9*I
Test Values: {y = -2, y = -3/2}

Failed [1 / 1]
Result: Complex[-3.141592653589793, -1.1102230246251565*^-16]
Test Values: {Rule[y, Rational[-3, 2]]}

4.23.E27 arctan ⁑ ( i ⁒ y ) = - 1 2 ⁒ Ο€ + i 2 ⁒ ln ⁑ ( y + 1 y - 1 ) 𝑖 𝑦 1 2 πœ‹ 𝑖 2 𝑦 1 𝑦 1 {\displaystyle{\displaystyle\operatorname{arctan}\left(iy\right)=-\frac{1}{2}% \pi+\frac{i}{2}\ln\left(\frac{y+1}{y-1}\right)}}
\atan@{iy} = -\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}}

arctan(I*y) = -(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1))
ArcTan[I*y] == -Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]]
Failure Failure
Failed [4 / 6]
Result: 3.141592654+.2e-9*I
Test Values: {y = 1.5, y = -3/2}

Result: 3.141592654+.2e-9*I
Test Values: {y = -.5, y = -3/2}

Result: 3.141592654-.2e-9*I
Test Values: {y = .5, y = -3/2}

Result: 3.141592654-.2e-9*I
Test Values: {y = 2, y = -3/2}

Successful [Tested: 1]
4.23.E28 z = sin ⁑ w 𝑧 𝑀 {\displaystyle{\displaystyle z=\sin w}}
z = \sin@@{w}

z = sin(w)
z == Sin[w]
Failure Failure
Failed [70 / 70]
Result: .70450695e-2+.1624035369*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.358980334+.5284289409*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.3589803345-1.203621867*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -1.725005738-.8375964631*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.007045069484300837, 0.16240353677712993]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.3589803343001376, 0.5284289405615687]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.23.E29 z = cos ⁑ w 𝑧 𝑀 {\displaystyle{\displaystyle z=\cos w}}
z = \cos@@{w}

z = cos(w)
z == Cos[w]
Failure Failure
Failed [70 / 70]
Result: .1354823851+.8969495503*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.230543019+1.262974954*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.2305430189-.4690758537*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -1.596568423-.1030504497*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.13548238472721352, 0.8969495502290324]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.230543019057225, 1.2629749540134712]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.23.E30 z = tan ⁑ w 𝑧 𝑀 {\displaystyle{\displaystyle z=\tan w}}
z = \tan@@{w}

z = tan(w)
z == Tan[w]
Failure Failure
Failed [70 / 70]
Result: .1520945236-.3500402975*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}

Result: -1.213930880+.159851065e-1*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}

Result: -.2139308804-1.716065702*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)}

Result: -1.579956284-1.350040298*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [70 / 70]
Result: Complex[0.1520945235384168, -0.3500402971922752]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.2139308802460218, 0.015985106592163567]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.23.E31 w = Arcsin ⁑ z 𝑀 multivalued-inverse-sine 𝑧 {\displaystyle{\displaystyle w=\operatorname{Arcsin}z}}
w = \Asin@@{z}

Error
w == ArcSin[z]
Missing Macro Error Failure -
Failed [70 / 70]
Result: Complex[0.0806272403869902, -0.15847894846240845]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[1.2407598364931787, -0.3314429455293106]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.23.E31 Arcsin ⁑ z = ( - 1 ) k ⁒ arcsin ⁑ z + k ⁒ Ο€ multivalued-inverse-sine 𝑧 superscript 1 π‘˜ 𝑧 π‘˜ πœ‹ {\displaystyle{\displaystyle\operatorname{Arcsin}z=(-1)^{k}\operatorname{% arcsin}z+k\pi}}
\Asin@@{z} = (-1)^{k}\asin@@{z}+k\pi

Error
ArcSin[z] == (- 1)^(k)* ArcSin[z]+ k*Pi
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[-1.5707963267948961, 1.3169578969248168]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: -6.283185307179586
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.23.E32 w = Arccos ⁑ z 𝑀 multivalued-inverse-cosine 𝑧 {\displaystyle{\displaystyle w=\operatorname{Arccos}z}}
w = \Acos@@{z}

Error
w == ArcCos[z]
Missing Macro Error Failure -
Failed [70 / 70]
Result: Complex[0.08062724038699065, 1.1584789484624083]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-1.0795053557191978, 1.3314429455293104]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
4.23.E32 Arccos ⁑ z = + arccos ⁑ z + 2 ⁒ k ⁒ Ο€ multivalued-inverse-cosine 𝑧 𝑧 2 π‘˜ πœ‹ {\displaystyle{\displaystyle\operatorname{Arccos}z=+\operatorname{arccos}z+2k% \pi}}
\Acos@@{z} = +\acos@@{z}+2k\pi

Error
ArcCos[z] == + ArcCos[z]+ 2*k*Pi
Missing Macro Error Failure -
Failed [21 / 21]
Result: -6.283185307179586
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: -12.566370614359172
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.23.E32 Arccos ⁑ z = - arccos ⁑ z + 2 ⁒ k ⁒ Ο€ multivalued-inverse-cosine 𝑧 𝑧 2 π‘˜ πœ‹ {\displaystyle{\displaystyle\operatorname{Arccos}z=-\operatorname{arccos}z+2k% \pi}}
\Acos@@{z} = -\acos@@{z}+2k\pi

Error
ArcCos[z] == - ArcCos[z]+ 2*k*Pi
Missing Macro Error Failure -
Failed [21 / 21]
Result: Complex[-4.71238898038469, -1.3169578969248168]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[-10.995574287564276, -1.3169578969248168]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

... skip entries to safe data
4.23.E33 w = Arctan ⁑ z 𝑀 multivalued-inverse-tangent 𝑧 {\displaystyle{\displaystyle w=\operatorname{Arctan}z}}
w = \Atan@@{z}

Error
w == ArcTan[z]
Missing Macro Error Failure -
Failed [10 / 10]
Result: Complex[0.4023777947836326, 0.49999999999999994]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Rational[1, 2]]}

Result: Complex[-0.9636476090008059, 0.8660254037844387]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Rational[1, 2]]}

... skip entries to safe data
4.23.E33 Arctan ⁑ z = arctan ⁑ z + k ⁒ Ο€ multivalued-inverse-tangent 𝑧 𝑧 π‘˜ πœ‹ {\displaystyle{\displaystyle\operatorname{Arctan}z=\operatorname{arctan}z+k\pi}}
\Atan@@{z} = \atan@@{z}+k\pi

Error
ArcTan[z] == ArcTan[z]+ k*Pi
Missing Macro Error Failure -
Failed [3 / 3]
Result: -3.141592653589793
Test Values: {Rule[k, 1], Rule[z, Rational[1, 2]]}

Result: -6.283185307179586
Test Values: {Rule[k, 2], Rule[z, Rational[1, 2]]}

... skip entries to safe data
4.23.E34 arcsin ⁑ z = arcsin ⁑ Ξ² + i ⁒ sign ⁑ ( y ) ⁒ ln ⁑ ( Ξ± + ( Ξ± 2 - 1 ) 1 / 2 ) 𝑧 𝛽 imaginary-unit sign 𝑦 𝛼 superscript superscript 𝛼 2 1 1 2 {\displaystyle{\displaystyle\operatorname{arcsin}z=\operatorname{arcsin}\beta+% \mathrm{i}\operatorname{sign}\left(y\right)\ln\left(\alpha+(\alpha^{2}-1)^{1/2% }\right)}}
\asin@@{z} = \asin@@{\beta}+\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}

arcsin(x + y*I) = arcsin((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+ I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2))
ArcSin[x + y*I] == ArcSin[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]+ I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
4.23.E35 arccos ⁑ z = arccos ⁑ Ξ² - i ⁒ sign ⁑ ( y ) ⁒ ln ⁑ ( Ξ± + ( Ξ± 2 - 1 ) 1 / 2 ) 𝑧 𝛽 imaginary-unit sign 𝑦 𝛼 superscript superscript 𝛼 2 1 1 2 {\displaystyle{\displaystyle\operatorname{arccos}z=\operatorname{arccos}\beta-% \mathrm{i}\operatorname{sign}\left(y\right)\ln\left(\alpha+(\alpha^{2}-1)^{1/2% }\right)}}
\acos@@{z} = \acos@@{\beta}-\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}}

arccos(x + y*I) = arccos((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))- I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2))
ArcCos[x + y*I] == ArcCos[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]- I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)]
Failure Failure Successful [Tested: 18] Successful [Tested: 18]
4.23.E36 arctan ⁑ z = 1 2 ⁒ arctan ⁑ ( 2 ⁒ x 1 - x 2 - y 2 ) + 1 4 ⁒ i ⁒ ln ⁑ ( x 2 + ( y + 1 ) 2 x 2 + ( y - 1 ) 2 ) 𝑧 1 2 2 π‘₯ 1 superscript π‘₯ 2 superscript 𝑦 2 1 4 𝑖 superscript π‘₯ 2 superscript 𝑦 1 2 superscript π‘₯ 2 superscript 𝑦 1 2 {\displaystyle{\displaystyle\operatorname{arctan}z=\tfrac{1}{2}\operatorname{% arctan}\left(\frac{2x}{1-x^{2}-y^{2}}\right)+\tfrac{1}{4}i\ln\left(\frac{x^{2}% +(y+1)^{2}}{x^{2}+(y-1)^{2}}\right)}}
\atan@@{z} = \tfrac{1}{2}\atan@{\frac{2x}{1-x^{2}-y^{2}}}+\tfrac{1}{4}i\ln@{\frac{x^{2}+(y+1)^{2}}{x^{2}+(y-1)^{2}}}

arctan(x + y*I) = (1)/(2)*arctan((2*x)/(1 - (x)^(2)- (y)^(2)))+(1)/(4)*I*ln(((x)^(2)+(y + 1)^(2))/((x)^(2)+(y - 1)^(2)))
ArcTan[x + y*I] == Divide[1,2]*ArcTan[Divide[2*x,1 - (x)^(2)- (y)^(2)]]+Divide[1,4]*I*Log[Divide[(x)^(2)+(y + 1)^(2),(x)^(2)+(y - 1)^(2)]]
Failure Failure
Failed [16 / 18]
Result: 1.570796327-.1e-9*I
Test Values: {x = 1.5, y = -1.5}

Result: 1.570796327-.1e-9*I
Test Values: {x = 1.5, y = 1.5}

Result: 1.570796327+0.*I
Test Values: {x = 1.5, y = -.5}

Result: 1.570796327+0.*I
Test Values: {x = 1.5, y = .5}

... skip entries to safe data
Failed [16 / 18]
Result: Complex[1.5707963267948968, 1.1102230246251565*^-16]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]}

Result: Complex[1.5707963267948968, -1.6653345369377348*^-16]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]}

... skip entries to safe data
4.23.E39 gd ⁑ ( x ) = ∫ 0 x sech ⁑ t ⁒ d t Gudermannian π‘₯ superscript subscript 0 π‘₯ 𝑑 𝑑 {\displaystyle{\displaystyle\operatorname{gd}\left(x\right)=\int_{0}^{x}% \operatorname{sech}t\mathrm{d}t}}
\Gudermannian@{x} = \int_{0}^{x}\sech@@{t}\diff{t}
- ∞ < x , x < ∞ formulae-sequence π‘₯ π‘₯ {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arctan(sinh(x)) = int(sech(t), t = 0..x)
Gudermannian[x] == Integrate[Sech[t], {t, 0, x}, GenerateConditions->None]
Successful Aborted - Successful [Tested: 3]
4.23.E40 gd ⁑ ( x ) = 2 ⁒ arctan ⁑ ( e x ) - 1 2 ⁒ Ο€ Gudermannian π‘₯ 2 superscript 𝑒 π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle\operatorname{gd}\left(x\right)=2\operatorname{% arctan}\left(e^{x}\right)-\tfrac{1}{2}\pi\\ }}
\Gudermannian@{x} = 2\atan@{e^{x}}-\tfrac{1}{2}\pi\\
- ∞ < x , x < ∞ formulae-sequence π‘₯ π‘₯ {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arctan(sinh(x)) = 2*arctan(exp(x))-(1)/(2)*Pi
Gudermannian[x] == 2*ArcTan[Exp[x]]-Divide[1,2]*Pi
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 2 ⁒ arctan ⁑ ( e x ) - 1 2 ⁒ Ο€ = arcsin ⁑ ( tanh ⁑ x ) 2 superscript 𝑒 π‘₯ 1 2 πœ‹ π‘₯ {\displaystyle{\displaystyle 2\operatorname{arctan}\left(e^{x}\right)-\tfrac{1% }{2}\pi\\ =\operatorname{arcsin}\left(\tanh x\right)}}
2\atan@{e^{x}}-\tfrac{1}{2}\pi\\ = \asin@{\tanh@@{x}}
- ∞ < x , x < ∞ formulae-sequence π‘₯ π‘₯ {\displaystyle{\displaystyle-\infty<x,x<\infty}}
2*arctan(exp(x))-(1)/(2)*Pi = arcsin(tanh(x))
2*ArcTan[Exp[x]]-Divide[1,2]*Pi == ArcSin[Tanh[x]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 arcsin ⁑ ( tanh ⁑ x ) = arccsc ⁑ ( coth ⁑ x ) π‘₯ hyperbolic-cotangent π‘₯ {\displaystyle{\displaystyle\operatorname{arcsin}\left(\tanh x\right)=% \operatorname{arccsc}\left(\coth x\right)\\ }}
\asin@{\tanh@@{x}} = \acsc@{\coth@@{x}}\\
- ∞ < x , x < ∞ formulae-sequence π‘₯ π‘₯ {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arcsin(tanh(x)) = arccsc(coth(x))
ArcSin[Tanh[x]] == ArcCsc[Coth[x]]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 arccsc ⁑ ( coth ⁑ x ) = arccos ⁑ ( sech ⁑ x ) hyperbolic-cotangent π‘₯ π‘₯ {\displaystyle{\displaystyle\operatorname{arccsc}\left(\coth x\right)\\ =\operatorname{arccos}\left(\operatorname{sech}x\right)}}
\acsc@{\coth@@{x}}\\ = \acos@{\sech@@{x}}
- ∞ < x , x < ∞ formulae-sequence π‘₯ π‘₯ {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arccsc(coth(x)) = arccos(sech(x))
ArcCsc[Coth[x]] == ArcCos[Sech[x]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 arccos ⁑ ( sech ⁑ x ) = arcsec ⁑ ( cosh ⁑ x ) π‘₯ π‘₯ {\displaystyle{\displaystyle\operatorname{arccos}\left(\operatorname{sech}x% \right)=\operatorname{arcsec}\left(\cosh x\right)\\ }}
\acos@{\sech@@{x}} = \asec@{\cosh@@{x}}\\
- ∞ < x , x < ∞ formulae-sequence π‘₯ π‘₯ {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arccos(sech(x)) = arcsec(cosh(x))
ArcCos[Sech[x]] == ArcSec[Cosh[x]]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 arcsec ⁑ ( cosh ⁑ x ) = arctan ⁑ ( sinh ⁑ x ) π‘₯ π‘₯ {\displaystyle{\displaystyle\operatorname{arcsec}\left(\cosh x\right)\\ =\operatorname{arctan}\left(\sinh x\right)}}
\asec@{\cosh@@{x}}\\ = \atan@{\sinh@@{x}}
- ∞ < x , x < ∞ formulae-sequence π‘₯ π‘₯ {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arcsec(cosh(x)) = arctan(sinh(x))
ArcSec[Cosh[x]] == ArcTan[Sinh[x]]
Failure Failure Successful [Tested: 3] Successful [Tested: 3]
4.23.E40 arctan ⁑ ( sinh ⁑ x ) = arccot ⁑ ( csch ⁑ x ) π‘₯ π‘₯ {\displaystyle{\displaystyle\operatorname{arctan}\left(\sinh x\right)=% \operatorname{arccot}\left(\operatorname{csch}x\right)}}
\atan@{\sinh@@{x}} = \acot@{\csch@@{x}}
- ∞ < x , x < ∞ formulae-sequence π‘₯ π‘₯ {\displaystyle{\displaystyle-\infty<x,x<\infty}}
arctan(sinh(x)) = arccot(csch(x))
ArcTan[Sinh[x]] == ArcCot[Csch[x]]
Failure Successful Successful [Tested: 3] Successful [Tested: 3]
4.23.E41 gd - 1 ⁑ ( x ) = ∫ 0 x sec ⁑ t ⁒ d t inverse-Gudermannian π‘₯ superscript subscript 0 π‘₯ 𝑑 𝑑 {\displaystyle{\displaystyle{\operatorname{gd}^{-1}}\left(x\right)=\int_{0}^{x% }\sec t\mathrm{d}t}}
\aGudermannian@{x} = \int_{0}^{x}\sec@@{t}\diff{t}
- 1 2 ⁒ Ο€ < x , x < 1 2 ⁒ Ο€ formulae-sequence 1 2 πœ‹ π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arctanh(sin(x)) = int(sec(t), t = 0..x)
InverseGudermannian[x] == Integrate[Sec[t], {t, 0, x}, GenerateConditions->None]
Failure Aborted Successful [Tested: 2] Successful [Tested: 2]
4.23.E42 gd - 1 ⁑ ( x ) = ln ⁑ tan ⁑ ( 1 2 ⁒ x + 1 4 ⁒ Ο€ ) inverse-Gudermannian π‘₯ 1 2 π‘₯ 1 4 πœ‹ {\displaystyle{\displaystyle{\operatorname{gd}^{-1}}\left(x\right)=\ln\tan% \left(\tfrac{1}{2}x+\tfrac{1}{4}\pi\right)}}
\aGudermannian@{x} = \ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}}
- 1 2 ⁒ Ο€ < x , x < 1 2 ⁒ Ο€ formulae-sequence 1 2 πœ‹ π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arctanh(sin(x)) = ln(tan((1)/(2)*x +(1)/(4)*Pi))
InverseGudermannian[x] == Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]]
Failure Successful Successful [Tested: 2] Successful [Tested: 2]
4.23.E42 ln ⁑ tan ⁑ ( 1 2 ⁒ x + 1 4 ⁒ Ο€ ) = ln ⁑ ( sec ⁑ x + tan ⁑ x ) 1 2 π‘₯ 1 4 πœ‹ π‘₯ π‘₯ {\displaystyle{\displaystyle\ln\tan\left(\tfrac{1}{2}x+\tfrac{1}{4}\pi\right)=% \ln\left(\sec x+\tan x\right)}}
\ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}} = \ln@{\sec@@{x}+\tan@@{x}}
- 1 2 ⁒ Ο€ < x , x < 1 2 ⁒ Ο€ formulae-sequence 1 2 πœ‹ π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
ln(tan((1)/(2)*x +(1)/(4)*Pi)) = ln(sec(x)+ tan(x))
Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]] == Log[Sec[x]+ Tan[x]]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 2]
4.23.E42 ln ⁑ ( sec ⁑ x + tan ⁑ x ) = arcsinh ⁑ ( tan ⁑ x ) π‘₯ π‘₯ hyperbolic-inverse-sine π‘₯ {\displaystyle{\displaystyle\ln\left(\sec x+\tan x\right)=\operatorname{% arcsinh}\left(\tan x\right)}}
\ln@{\sec@@{x}+\tan@@{x}} = \asinh@{\tan@@{x}}
- 1 2 ⁒ Ο€ < x , x < 1 2 ⁒ Ο€ formulae-sequence 1 2 πœ‹ π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
ln(sec(x)+ tan(x)) = arcsinh(tan(x))
Log[Sec[x]+ Tan[x]] == ArcSinh[Tan[x]]
Failure Failure Successful [Tested: 2]
Failed [1 / 3]
Result: Complex[3.046904887125347, 3.141592653589793]
Test Values: {Rule[x, 2]}

4.23.E42 arcsinh ⁑ ( tan ⁑ x ) = arccsch ⁑ ( cot ⁑ x ) hyperbolic-inverse-sine π‘₯ hyperbolic-inverse-cosecant π‘₯ {\displaystyle{\displaystyle\operatorname{arcsinh}\left(\tan x\right)=% \operatorname{arccsch}\left(\cot x\right)}}
\asinh@{\tan@@{x}} = \acsch@{\cot@@{x}}
- 1 2 ⁒ Ο€ < x , x < 1 2 ⁒ Ο€ formulae-sequence 1 2 πœ‹ π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arcsinh(tan(x)) = arccsch(cot(x))
ArcSinh[Tan[x]] == ArcCsch[Cot[x]]
Failure Successful Successful [Tested: 2] Successful [Tested: 2]
4.23.E42 arccsch ⁑ ( cot ⁑ x ) = arccosh ⁑ ( sec ⁑ x ) hyperbolic-inverse-cosecant π‘₯ hyperbolic-inverse-cosine π‘₯ {\displaystyle{\displaystyle\operatorname{arccsch}\left(\cot x\right)=% \operatorname{arccosh}\left(\sec x\right)}}
\acsch@{\cot@@{x}} = \acosh@{\sec@@{x}}
- 1 2 ⁒ Ο€ < x , x < 1 2 ⁒ Ο€ formulae-sequence 1 2 πœ‹ π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arccsch(cot(x)) = arccosh(sec(x))
ArcCsch[Cot[x]] == ArcCosh[Sec[x]]
Failure Failure Successful [Tested: 2]
Failed [1 / 3]
Result: Complex[-3.046904887125347, -3.141592653589793]
Test Values: {Rule[x, 2]}

4.23.E42 arccosh ⁑ ( sec ⁑ x ) = arcsech ⁑ ( cos ⁑ x ) hyperbolic-inverse-cosine π‘₯ hyperbolic-inverse-secant π‘₯ {\displaystyle{\displaystyle\operatorname{arccosh}\left(\sec x\right)=% \operatorname{arcsech}\left(\cos x\right)}}
\acosh@{\sec@@{x}} = \asech@{\cos@@{x}}
- 1 2 ⁒ Ο€ < x , x < 1 2 ⁒ Ο€ formulae-sequence 1 2 πœ‹ π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arccosh(sec(x)) = arcsech(cos(x))
ArcCosh[Sec[x]] == ArcSech[Cos[x]]
Failure Successful Successful [Tested: 2] Successful [Tested: 2]
4.23.E42 arcsech ⁑ ( cos ⁑ x ) = arctanh ⁑ ( sin ⁑ x ) hyperbolic-inverse-secant π‘₯ hyperbolic-inverse-tangent π‘₯ {\displaystyle{\displaystyle\operatorname{arcsech}\left(\cos x\right)=% \operatorname{arctanh}\left(\sin x\right)}}
\asech@{\cos@@{x}} = \atanh@{\sin@@{x}}
- 1 2 ⁒ Ο€ < x , x < 1 2 ⁒ Ο€ formulae-sequence 1 2 πœ‹ π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arcsech(cos(x)) = arctanh(sin(x))
ArcSech[Cos[x]] == ArcTanh[Sin[x]]
Failure Failure Successful [Tested: 2]
Failed [1 / 3]
Result: Complex[0.0, 3.141592653589793]
Test Values: {Rule[x, 2]}

4.23.E42 arctanh ⁑ ( sin ⁑ x ) = arccoth ⁑ ( csc ⁑ x ) hyperbolic-inverse-tangent π‘₯ hyperbolic-inverse-cotangent π‘₯ {\displaystyle{\displaystyle\operatorname{arctanh}\left(\sin x\right)=% \operatorname{arccoth}\left(\csc x\right)}}
\atanh@{\sin@@{x}} = \acoth@{\csc@@{x}}
- 1 2 ⁒ Ο€ < x , x < 1 2 ⁒ Ο€ formulae-sequence 1 2 πœ‹ π‘₯ π‘₯ 1 2 πœ‹ {\displaystyle{\displaystyle-\frac{1}{2}\pi<x,x<\frac{1}{2}\pi}}
arctanh(sin(x)) = arccoth(csc(x))
ArcTanh[Sin[x]] == ArcCoth[Csc[x]]
Failure Successful Successful [Tested: 2] Successful [Tested: 2]