DLMF:15.6.E9 (Q5047)

From testwiki
Revision as of 12:59, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:15.6.E9
No description defined

    Statements

    𝐅 ( a , b ; c ; z ) = 0 1 t d - 1 ( 1 - t ) c - d - 1 ( 1 - z t ) a + b - λ 𝐅 ( λ - a , λ - b d ; z t ) 𝐅 ( a + b - λ , λ - d c - d ; ( 1 - t ) z 1 - z t ) d t , scaled-hypergeometric-bold-F 𝑎 𝑏 𝑐 𝑧 superscript subscript 0 1 superscript 𝑡 𝑑 1 superscript 1 𝑡 𝑐 𝑑 1 superscript 1 𝑧 𝑡 𝑎 𝑏 𝜆 scaled-hypergeometric-bold-F 𝜆 𝑎 𝜆 𝑏 𝑑 𝑧 𝑡 scaled-hypergeometric-bold-F 𝑎 𝑏 𝜆 𝜆 𝑑 𝑐 𝑑 1 𝑡 𝑧 1 𝑧 𝑡 𝑡 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\int_{0}^{1}\frac{t% ^{d-1}(1-t)^{c-d-1}}{(1-zt)^{a+b-\lambda}}\mathbf{F}\left({\lambda-a,\lambda-b% \atop d};zt\right)\mathbf{F}\left({a+b-\lambda,\lambda-d\atop c-d};\frac{(1-t)% z}{1-zt}\right)\mathrm{d}t,}}
    0 references
    0 references
    | ph ( 1 - z ) | < π phase 1 𝑧 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
    0 references
    λ 𝜆 {\displaystyle{\displaystyle\lambda\in\mathbb{C}}}
    0 references
    c > d > 0 𝑐 𝑑 0 {\displaystyle{\displaystyle\Re c>\Re d>0}}
    0 references
    π {\displaystyle{\displaystyle\pi}}
    C3.S12.E1.m2ahdec
    0 references
    {\displaystyle{\displaystyle\mathbb{C}}}
    introduction.Sx4.p1.t1.r1.m2adec
    0 references
    d x 𝑥 {\displaystyle{\displaystyle\mathrm{d}\NVar{x}}}
    C1.S4.SS4.m1ahdec
    0 references
    {\displaystyle{\displaystyle\in}}
    introduction.Sx4.p1.t1.r10.m2adec
    0 references