Results of Hypergeometric Function I

From testwiki
Revision as of 07:08, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search
DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
15.1.E1 F 1 2 ⁑ ( a , b ; c ; z ) = F ⁑ ( a , b ; c ; z ) Gauss-hypergeometric-F-as-2F1 π‘Ž 𝑏 𝑐 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle{{}_{2}F_{1}}\left(a,b;c;z\right)=F\left(a,b;c;z% \right)}}
\genhyperF{2}{1}@{a,b}{c}{z} = \hyperF@{a}{b}{c}{z}

hypergeom([a , b], [c], z) = hypergeom([a, b], [c], z)
HypergeometricPFQ[{a , b}, {c}, z] == Hypergeometric2F1[a, b, c, z]
Successful Successful -
Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.1.E1 F ⁑ ( a , b ; c ; z ) = F ⁑ ( a , b c ; z ) Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle F\left(a,b;c;z\right)=F\left({a,b\atop c};z\right% )}}
\hyperF@{a}{b}{c}{z} = \hyperF@@{a}{b}{c}{z}

hypergeom([a, b], [c], z) = hypergeom([a, b], [c], z)
Hypergeometric2F1[a, b, c, z] == Hypergeometric2F1[a, b, c, z]
Successful Successful - Successful [Tested: 300]
15.1.E2 F ⁑ ( a , b ; c ; z ) Ξ“ ⁑ ( c ) = 𝐅 ⁑ ( a , b ; c ; z ) Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Euler-Gamma 𝑐 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\frac{F\left(a,b;c;z\right)}{\Gamma\left(c\right)}% =\mathbf{F}\left(a,b;c;z\right)}}
\frac{\hyperF@{a}{b}{c}{z}}{\EulerGamma@{c}} = \hyperOlverF@{a}{b}{c}{z}
β„œ ⁑ c > 0 , | z | < 1 formulae-sequence 𝑐 0 𝑧 1 {\displaystyle{\displaystyle\Re c>0,|z|<1}}
(hypergeom([a, b], [c], z))/(GAMMA(c)) = hypergeom([a, b], [c], z)/GAMMA(c)
Divide[Hypergeometric2F1[a, b, c, z],Gamma[c]] == Hypergeometric2F1Regularized[a, b, c, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 108]
15.1.E2 𝐅 ⁑ ( a , b ; c ; z ) = 𝐅 ⁑ ( a , b c ; z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\mathbf{F}\left({a,% b\atop c};z\right)}}
\hyperOlverF@{a}{b}{c}{z} = \hyperOlverF@@{a}{b}{c}{z}
β„œ ⁑ c > 0 , | z | < 1 formulae-sequence 𝑐 0 𝑧 1 {\displaystyle{\displaystyle\Re c>0,|z|<1}}
hypergeom([a, b], [c], z)/GAMMA(c) = hypergeom([a, b], [c], z)/GAMMA(c)
Hypergeometric2F1Regularized[a, b, c, z] == Hypergeometric2F1Regularized[a, b, c, z]
Successful Successful Skip - symbolical successful subtest Successful [Tested: 108]
15.1.E2 𝐅 ⁑ ( a , b c ; z ) = 𝐅 1 2 ⁑ ( a , b ; c ; z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 hypergeometric-bold-pFq 2 1 π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};z\right)={{}_{2}{% \mathbf{F}}_{1}}\left(a,b;c;z\right)}}
\hyperOlverF@@{a}{b}{c}{z} = \genhyperOlverF{2}{1}@{a,b}{c}{z}
β„œ ⁑ c > 0 , | z | < 1 formulae-sequence 𝑐 0 𝑧 1 {\displaystyle{\displaystyle\Re c>0,|z|<1}}
hypergeom([a, b], [c], z)/GAMMA(c) = hypergeom([a , b], [c], z)
Hypergeometric2F1Regularized[a, b, c, z] == HypergeometricPFQRegularized[{a , b}, {c}, z]
Failure Successful
Failed [175 / 216]
Result: -.2039500354
Test Values: {a = -3/2, b = -3/2, c = -3/2, z = 1/2}

Result: .227101342
Test Values: {a = -3/2, b = -3/2, c = 3/2, z = 1/2}

... skip entries to safe data
Successful [Tested: 108]
15.2.E1 F ⁑ ( a , b ; c ; z ) = βˆ‘ s = 0 ∞ ( a ) s ⁒ ( b ) s ( c ) s ⁒ s ! ⁒ z s Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 superscript subscript 𝑠 0 Pochhammer π‘Ž 𝑠 Pochhammer 𝑏 𝑠 Pochhammer 𝑐 𝑠 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle F\left(a,b;c;z\right)=\sum_{s=0}^{\infty}\frac{{% \left(a\right)_{s}}{\left(b\right)_{s}}}{{\left(c\right)_{s}}s!}z^{s}}}
\hyperF@{a}{b}{c}{z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a}{s}\Pochhammersym{b}{s}}{\Pochhammersym{c}{s}s!}z^{s}

hypergeom([a, b], [c], z) = sum((pochhammer(a, s)*pochhammer(b, s))/(pochhammer(c, s)*factorial(s))*(z)^(s), s = 0..infinity)
Hypergeometric2F1[a, b, c, z] == Sum[Divide[Pochhammer[a, s]*Pochhammer[b, s],Pochhammer[c, s]*(s)!]*(z)^(s), {s, 0, Infinity}, GenerateConditions->None]
Failure Successful Skipped - Because timed out Successful [Tested: 300]
15.2.E2 𝐅 ⁑ ( a , b ; c ; z ) = βˆ‘ s = 0 ∞ ( a ) s ⁒ ( b ) s Ξ“ ⁑ ( c + s ) ⁒ s ! ⁒ z s scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript subscript 𝑠 0 Pochhammer π‘Ž 𝑠 Pochhammer 𝑏 𝑠 Euler-Gamma 𝑐 𝑠 𝑠 superscript 𝑧 𝑠 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\sum_{s=0}^{\infty}% \frac{{\left(a\right)_{s}}{\left(b\right)_{s}}}{\Gamma\left(c+s\right)s!}z^{s}}}
\hyperOlverF@{a}{b}{c}{z} = \sum_{s=0}^{\infty}\frac{\Pochhammersym{a}{s}\Pochhammersym{b}{s}}{\EulerGamma@{c+s}s!}z^{s}
| z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|z|<1,\Re(c+s)>0}}
hypergeom([a, b], [c], z)/GAMMA(c) = sum((pochhammer(a, s)*pochhammer(b, s))/(GAMMA(c + s)*factorial(s))*(z)^(s), s = 0..infinity)
Hypergeometric2F1Regularized[a, b, c, z] == Sum[Divide[Pochhammer[a, s]*Pochhammer[b, s],Gamma[c + s]*(s)!]*(z)^(s), {s, 0, Infinity}, GenerateConditions->None]
Successful Successful -
Failed [25 / 216]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, 0.5]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[c, -2], Rule[z, 0.5]}

... skip entries to safe data
15.2.E3 𝐅 ⁑ ( a , b c ; x + i ⁒ 0 ) - 𝐅 ⁑ ( a , b c ; x - i ⁒ 0 ) = 2 ⁒ Ο€ ⁒ i Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ ( x - 1 ) c - a - b ⁒ 𝐅 ⁑ ( c - a , c - b c - a - b + 1 ; 1 - x ) scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 π‘₯ imaginary-unit 0 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 π‘₯ imaginary-unit 0 2 πœ‹ imaginary-unit Euler-Gamma π‘Ž Euler-Gamma 𝑏 superscript π‘₯ 1 𝑐 π‘Ž 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 π‘Ž 𝑏 1 1 π‘₯ {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};x+\mathrm{i}0\right)-% \mathbf{F}\left({a,b\atop c};x-\mathrm{i}0\right)=\frac{2\pi\mathrm{i}}{\Gamma% \left(a\right)\Gamma\left(b\right)}(x-1)^{c-a-b}\mathbf{F}\left({c-a,c-b\atop c% -a-b+1};1-x\right)}}
\hyperOlverF@@{a}{b}{c}{x+\iunit 0}-\hyperOlverF@@{a}{b}{c}{x-\iunit 0} = \frac{2\pi\iunit}{\EulerGamma@{a}\EulerGamma@{b}}(x-1)^{c-a-b}\hyperOlverF@@{c-a}{c-b}{c-a-b+1}{1-x}
x > 1 , β„œ ⁑ a > 0 , β„œ ⁑ b > 0 , | ( x + i ⁒ 0 ) | < 1 , | ( x - i ⁒ 0 ) | < 1 , | ( 1 - x ) | < 1 , β„œ ⁑ ( c + s ) > 0 , β„œ ⁑ ( ( c - a - b + 1 ) + s ) > 0 formulae-sequence π‘₯ 1 formulae-sequence π‘Ž 0 formulae-sequence 𝑏 0 formulae-sequence π‘₯ imaginary-unit 0 1 formulae-sequence π‘₯ imaginary-unit 0 1 formulae-sequence 1 π‘₯ 1 formulae-sequence 𝑐 𝑠 0 𝑐 π‘Ž 𝑏 1 𝑠 0 {\displaystyle{\displaystyle x>1,\Re a>0,\Re b>0,|(x+\mathrm{i}0)|<1,|(x-% \mathrm{i}0)|<1,|(1-x)|<1,\Re(c+s)>0,\Re((c-a-b+1)+s)>0}}
hypergeom([a, b], [c], x + I*0)/GAMMA(c)- hypergeom([a, b], [c], x - I*0)/GAMMA(c) = (2*Pi*I)/(GAMMA(a)*GAMMA(b))*(x - 1)^(c - a - b)* hypergeom([c - a, c - b], [c - a - b + 1], 1 - x)/GAMMA(c - a - b + 1)
Hypergeometric2F1Regularized[a, b, c, x + I*0]- Hypergeometric2F1Regularized[a, b, c, x - I*0] == Divide[2*Pi*I,Gamma[a]*Gamma[b]]*(x - 1)^(c - a - b)* Hypergeometric2F1Regularized[c - a, c - b, c - a - b + 1, 1 - x]
Failure Failure Error Skip - No test values generated
15.2.E3_5 lim c β†’ - n ⁑ F ⁑ ( a , b ; c ; z ) Ξ“ ⁑ ( c ) = 𝐅 ⁑ ( a , b ; - n ; z ) subscript β†’ 𝑐 𝑛 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Euler-Gamma 𝑐 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑛 𝑧 {\displaystyle{\displaystyle\lim_{c\to-n}\frac{F\left(a,b;c;z\right)}{\Gamma% \left(c\right)}=\mathbf{F}\left(a,b;-n;z\right)}}
\lim_{c\to-n}\frac{\hyperF@{a}{b}{c}{z}}{\EulerGamma@{c}} = \hyperOlverF@{a}{b}{-n}{z}
β„œ ⁑ c > 0 , | z | < 1 , β„œ ⁑ ( ( - n ) + s ) > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑧 1 𝑛 𝑠 0 {\displaystyle{\displaystyle\Re c>0,|z|<1,\Re((-n)+s)>0}}
limit((hypergeom([a, b], [c], z))/(GAMMA(c)), c = - n) = hypergeom([a, b], [- n], z)/GAMMA(- n)
Limit[Divide[Hypergeometric2F1[a, b, c, z],Gamma[c]], c -> - n, GenerateConditions->None] == Hypergeometric2F1Regularized[a, b, - n, z]
Failure Successful Successful [Tested: 0]
Failed [25 / 36]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[n, 3], Rule[z, 0.5]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[n, 3], Rule[z, 0.5]}

... skip entries to safe data
15.2.E3_5 𝐅 ⁑ ( a , b ; - n ; z ) = ( a ) n + 1 ⁒ ( b ) n + 1 ( n + 1 ) ! ⁒ z n + 1 ⁒ F ⁑ ( a + n + 1 , b + n + 1 ; n + 2 ; z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑛 𝑧 Pochhammer π‘Ž 𝑛 1 Pochhammer 𝑏 𝑛 1 𝑛 1 superscript 𝑧 𝑛 1 Gauss-hypergeometric-F π‘Ž 𝑛 1 𝑏 𝑛 1 𝑛 2 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;-n;z\right)=\frac{{\left(a% \right)_{n+1}}{\left(b\right)_{n+1}}}{(n+1)!}z^{n+1}F\left(a+n+1,b+n+1;n+2;z% \right)}}
\hyperOlverF@{a}{b}{-n}{z} = \frac{\Pochhammersym{a}{n+1}\Pochhammersym{b}{n+1}}{(n+1)!}z^{n+1}\hyperF@{a+n+1}{b+n+1}{n+2}{z}
β„œ ⁑ c > 0 , | z | < 1 , β„œ ⁑ ( ( - n ) + s ) > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑧 1 𝑛 𝑠 0 {\displaystyle{\displaystyle\Re c>0,|z|<1,\Re((-n)+s)>0}}
hypergeom([a, b], [- n], z)/GAMMA(- n) = (pochhammer(a, n + 1)*pochhammer(b, n + 1))/(factorial(n + 1))*(z)^(n + 1)* hypergeom([a + n + 1, b + n + 1], [n + 2], z)
Hypergeometric2F1Regularized[a, b, - n, z] == Divide[Pochhammer[a, n + 1]*Pochhammer[b, n + 1],(n + 1)!]*(z)^(n + 1)* Hypergeometric2F1[a + n + 1, b + n + 1, n + 2, z]
Failure Failure
Failed [25 / 36]
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = -3/2, b = -3/2, z = 1/2, n = 3}

Result: Float(undefined)+Float(undefined)*I
Test Values: {a = -3/2, b = 3/2, z = 1/2, n = 3}

... skip entries to safe data
Successful [Tested: 180]
15.2.E4 F ⁑ ( - m , b ; c ; z ) = βˆ‘ n = 0 m ( - m ) n ⁒ ( b ) n ( c ) n ⁒ n ! ⁒ z n Gauss-hypergeometric-F π‘š 𝑏 𝑐 𝑧 superscript subscript 𝑛 0 π‘š Pochhammer π‘š 𝑛 Pochhammer 𝑏 𝑛 Pochhammer 𝑐 𝑛 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle F\left(-m,b;c;z\right)=\sum_{n=0}^{m}\frac{{\left% (-m\right)_{n}}{\left(b\right)_{n}}}{{\left(c\right)_{n}}{n!}}z^{n}}}
\hyperF@{-m}{b}{c}{z} = \sum_{n=0}^{m}\frac{\Pochhammersym{-m}{n}\Pochhammersym{b}{n}}{\Pochhammersym{c}{n}{n!}}z^{n}

hypergeom([- m, b], [c], z) = sum((pochhammer(- m, n)*pochhammer(b, n))/(pochhammer(c, n)*factorial(n))*(z)^(n), n = 0..m)
Hypergeometric2F1[- m, b, c, z] == Sum[Divide[Pochhammer[- m, n]*Pochhammer[b, n],Pochhammer[c, n]*(n)!]*(z)^(n), {n, 0, m}, GenerateConditions->None]
Successful Successful - Successful [Tested: 300]
15.2.E4 βˆ‘ n = 0 m ( - m ) n ⁒ ( b ) n ( c ) n ⁒ n ! ⁒ z n = βˆ‘ n = 0 m ( - 1 ) n ⁒ ( m n ) ⁒ ( b ) n ( c ) n ⁒ z n superscript subscript 𝑛 0 π‘š Pochhammer π‘š 𝑛 Pochhammer 𝑏 𝑛 Pochhammer 𝑐 𝑛 𝑛 superscript 𝑧 𝑛 superscript subscript 𝑛 0 π‘š superscript 1 𝑛 binomial π‘š 𝑛 Pochhammer 𝑏 𝑛 Pochhammer 𝑐 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\sum_{n=0}^{m}\frac{{\left(-m\right)_{n}}{\left(b% \right)_{n}}}{{\left(c\right)_{n}}{n!}}z^{n}=\sum_{n=0}^{m}(-1)^{n}\genfrac{(}% {)}{0.0pt}{}{m}{n}\frac{{\left(b\right)_{n}}}{{\left(c\right)_{n}}}z^{n}}}
\sum_{n=0}^{m}\frac{\Pochhammersym{-m}{n}\Pochhammersym{b}{n}}{\Pochhammersym{c}{n}{n!}}z^{n} = \sum_{n=0}^{m}(-1)^{n}\binom{m}{n}\frac{\Pochhammersym{b}{n}}{\Pochhammersym{c}{n}}z^{n}

sum((pochhammer(- m, n)*pochhammer(b, n))/(pochhammer(c, n)*factorial(n))*(z)^(n), n = 0..m) = sum((- 1)^(n)*binomial(m,n)*(pochhammer(b, n))/(pochhammer(c, n))*(z)^(n), n = 0..m)
Sum[Divide[Pochhammer[- m, n]*Pochhammer[b, n],Pochhammer[c, n]*(n)!]*(z)^(n), {n, 0, m}, GenerateConditions->None] == Sum[(- 1)^(n)*Binomial[m,n]*Divide[Pochhammer[b, n],Pochhammer[c, n]]*(z)^(n), {n, 0, m}, GenerateConditions->None]
Successful Successful - Successful [Tested: 300]
15.2.E5 F ⁑ ( - m , b - m - β„“ ; z ) = lim c β†’ - m - β„“ ⁑ ( lim a β†’ - m ⁑ F ⁑ ( a , b c ; z ) ) Gauss-hypergeometric-F π‘š 𝑏 π‘š β„“ 𝑧 subscript β†’ 𝑐 π‘š β„“ subscript β†’ π‘Ž π‘š Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle F\left({-m,b\atop-m-\ell};z\right)=\lim_{c\to-m-% \ell}\left(\lim_{a\to-m}F\left({a,b\atop c};z\right)\right)}}
\hyperF@@{-m}{b}{-m-\ell}{z} = \lim_{c\to-m-\ell}\left(\lim_{a\to-m}\hyperF@@{a}{b}{c}{z}\right)

hypergeom([- m, b], [- m - ell], z) = limit(limit(hypergeom([a, b], [c], z), a = - m), c = - m - ell)
Hypergeometric2F1[- m, b, - m - \[ScriptL], z] == Limit[Limit[Hypergeometric2F1[a, b, c, z], a -> - m, GenerateConditions->None], c -> - m - \[ScriptL], GenerateConditions->None]
Failure Successful Successful [Tested: 126] Successful [Tested: 126]
15.2.E6 F ⁑ ( - m , b - m - β„“ ; z ) = lim a β†’ - m ⁑ F ⁑ ( a , b a - β„“ ; z ) Gauss-hypergeometric-F π‘š 𝑏 π‘š β„“ 𝑧 subscript β†’ π‘Ž π‘š Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž β„“ 𝑧 {\displaystyle{\displaystyle F\left({-m,b\atop-m-\ell};z\right)=\lim_{a\to-m}F% \left({a,b\atop a-\ell};z\right)}}
\hyperF@@{-m}{b}{-m-\ell}{z} = \lim_{a\to-m}\hyperF@@{a}{b}{a-\ell}{z}

hypergeom([- m, b], [- m - ell], z) = limit(hypergeom([a, b], [a - ell], z), a = - m)
Hypergeometric2F1[- m, b, - m - \[ScriptL], z] == Limit[Hypergeometric2F1[a, b, a - \[ScriptL], z], a -> - m, GenerateConditions->None]
Failure Successful Successful [Tested: 0] Successful [Tested: 126]
15.4.E1 F ⁑ ( 1 , 1 ; 2 ; z ) = - z - 1 ⁒ ln ⁑ ( 1 - z ) Gauss-hypergeometric-F 1 1 2 𝑧 superscript 𝑧 1 1 𝑧 {\displaystyle{\displaystyle F\left(1,1;2;z\right)=-z^{-1}\ln\left(1-z\right)}}
\hyperF@{1}{1}{2}{z} = -z^{-1}\ln@{1-z}

hypergeom([1, 1], [2], z) = - (z)^(- 1)* ln(1 - z)
Hypergeometric2F1[1, 1, 2, z] == - (z)^(- 1)* Log[1 - z]
Successful Successful - Successful [Tested: 7]
15.4.E2 F ⁑ ( 1 2 , 1 ; 3 2 ; z 2 ) = 1 2 ⁒ z ⁒ ln ⁑ ( 1 + z 1 - z ) Gauss-hypergeometric-F 1 2 1 3 2 superscript 𝑧 2 1 2 𝑧 1 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},1;\tfrac{3}{2};z^{2}\right)=% \frac{1}{2z}\ln\left(\frac{1+z}{1-z}\right)}}
\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{z^{2}} = \frac{1}{2z}\ln@{\frac{1+z}{1-z}}

hypergeom([(1)/(2), 1], [(3)/(2)], (z)^(2)) = (1)/(2*z)*ln((1 + z)/(1 - z))
Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], (z)^(2)] == Divide[1,2*z]*Log[Divide[1 + z,1 - z]]
Failure Failure
Failed [2 / 7]
Result: .1e-9-2.094395103*I
Test Values: {z = 3/2}

Result: 0.-1.570796327*I
Test Values: {z = 2}

Failed [2 / 7]
Result: Complex[1.1102230246251565*^-16, -2.0943951023931953]
Test Values: {Rule[z, 1.5]}

Result: Complex[0.0, -1.5707963267948966]
Test Values: {Rule[z, 2]}

15.4.E3 F ⁑ ( 1 2 , 1 ; 3 2 ; - z 2 ) = z - 1 ⁒ arctan ⁑ z Gauss-hypergeometric-F 1 2 1 3 2 superscript 𝑧 2 superscript 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},1;\tfrac{3}{2};-z^{2}\right)=% z^{-1}\operatorname{arctan}z}}
\hyperF@{\tfrac{1}{2}}{1}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\atan@@{z}

hypergeom([(1)/(2), 1], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* arctan(z)
Hypergeometric2F1[Divide[1,2], 1, Divide[3,2], - (z)^(2)] == (z)^(- 1)* ArcTan[z]
Successful Successful - Successful [Tested: 7]
15.4.E4 F ⁑ ( 1 2 , 1 2 ; 3 2 ; z 2 ) = z - 1 ⁒ arcsin ⁑ z Gauss-hypergeometric-F 1 2 1 2 3 2 superscript 𝑧 2 superscript 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},\tfrac{1}{2};\tfrac{3}{2};z^{% 2}\right)=z^{-1}\operatorname{arcsin}z}}
\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{z^{2}} = z^{-1}\asin@@{z}

hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], (z)^(2)) = (z)^(- 1)* arcsin(z)
Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], (z)^(2)] == (z)^(- 1)* ArcSin[z]
Successful Successful - Successful [Tested: 7]
15.4.E5 F ⁑ ( 1 2 , 1 2 ; 3 2 ; - z 2 ) = z - 1 ⁒ ln ⁑ ( z + 1 + z 2 ) Gauss-hypergeometric-F 1 2 1 2 3 2 superscript 𝑧 2 superscript 𝑧 1 𝑧 1 superscript 𝑧 2 {\displaystyle{\displaystyle F\left(\tfrac{1}{2},\tfrac{1}{2};\tfrac{3}{2};-z^% {2}\right)=z^{-1}\ln\left(z+\sqrt{1+z^{2}}\right)}}
\hyperF@{\tfrac{1}{2}}{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = z^{-1}\ln@{z+\sqrt{1+z^{2}}}

hypergeom([(1)/(2), (1)/(2)], [(3)/(2)], - (z)^(2)) = (z)^(- 1)* ln(z +sqrt(1 + (z)^(2)))
Hypergeometric2F1[Divide[1,2], Divide[1,2], Divide[3,2], - (z)^(2)] == (z)^(- 1)* Log[z +Sqrt[1 + (z)^(2)]]
Failure Successful Successful [Tested: 7] Successful [Tested: 7]
15.4#Ex1 F ⁑ ( a , b ; a ; z ) = ( 1 - z ) - b Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑧 superscript 1 𝑧 𝑏 {\displaystyle{\displaystyle F\left(a,b;a;z\right)=(1-z)^{-b}}}
\hyperF@{a}{b}{a}{z} = (1-z)^{-b}

hypergeom([a, b], [a], z) = (1 - z)^(- b)
Hypergeometric2F1[a, b, a, z] == (1 - z)^(- b)
Successful Successful - Successful [Tested: 252]
15.4#Ex2 F ⁑ ( a , b ; b ; z ) = ( 1 - z ) - a Gauss-hypergeometric-F π‘Ž 𝑏 𝑏 𝑧 superscript 1 𝑧 π‘Ž {\displaystyle{\displaystyle F\left(a,b;b;z\right)=(1-z)^{-a}}}
\hyperF@{a}{b}{b}{z} = (1-z)^{-a}

hypergeom([a, b], [b], z) = (1 - z)^(- a)
Hypergeometric2F1[a, b, b, z] == (1 - z)^(- a)
Successful Successful - Successful [Tested: 252]
15.4.E7 F ⁑ ( a , 1 2 + a ; 1 2 ; z 2 ) = 1 2 ⁒ ( ( 1 + z ) - 2 ⁒ a + ( 1 - z ) - 2 ⁒ a ) Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 1 2 superscript 𝑧 2 1 2 superscript 1 𝑧 2 π‘Ž superscript 1 𝑧 2 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{1}{2};z^{2}\right)% =\tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{z^{2}} = \tfrac{1}{2}\left((1+z)^{-2a}+(1-z)^{-2a}\right)

hypergeom([a, (1)/(2)+ a], [(1)/(2)], (z)^(2)) = (1)/(2)*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], (z)^(2)] == Divide[1,2]*((1 + z)^(- 2*a)+(1 - z)^(- 2*a))
Successful Successful - Successful [Tested: 42]
15.4.E8 F ⁑ ( a , 1 2 + a ; 1 2 ; - tan 2 ⁑ z ) = ( cos ⁑ z ) 2 ⁒ a ⁒ cos ⁑ ( 2 ⁒ a ⁒ z ) Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 1 2 2 𝑧 superscript 𝑧 2 π‘Ž 2 π‘Ž 𝑧 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{1}{2};-{\tan^{2}}z% \right)=(\cos z)^{2a}\cos\left(2az\right)}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{1}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\cos@{2az}

hypergeom([a, (1)/(2)+ a], [(1)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)* cos(2*a*z)
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[1,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)* Cos[2*a*z]
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
15.4.E9 F ⁑ ( a , 1 2 + a ; 3 2 ; z 2 ) = 1 ( 2 - 4 ⁒ a ) ⁒ z ⁒ ( ( 1 + z ) 1 - 2 ⁒ a - ( 1 - z ) 1 - 2 ⁒ a ) Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 3 2 superscript 𝑧 2 1 2 4 π‘Ž 𝑧 superscript 1 𝑧 1 2 π‘Ž superscript 1 𝑧 1 2 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{3}{2};z^{2}\right)% =\frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{z^{2}} = \frac{1}{(2-4a)z}\left((1+z)^{1-2a}-(1-z)^{1-2a}\right)

hypergeom([a, (1)/(2)+ a], [(3)/(2)], (z)^(2)) = (1)/((2 - 4*a)*z)*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], (z)^(2)] == Divide[1,(2 - 4*a)*z]*((1 + z)^(1 - 2*a)-(1 - z)^(1 - 2*a))
Successful Successful -
Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.4.E10 F ⁑ ( a , 1 2 + a ; 3 2 ; - tan 2 ⁑ z ) = ( cos ⁑ z ) 2 ⁒ a ⁒ sin ⁑ ( ( 1 - 2 ⁒ a ) ⁒ z ) ( 1 - 2 ⁒ a ) ⁒ sin ⁑ z Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 3 2 2 𝑧 superscript 𝑧 2 π‘Ž 1 2 π‘Ž 𝑧 1 2 π‘Ž 𝑧 {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{3}{2};-{\tan^{2}}z% \right)=(\cos z)^{2a}\frac{\sin\left((1-2a)z\right)}{(1-2a)\sin z}}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}}{-\tan^{2}@@{z}} = (\cos@@{z})^{2a}\frac{\sin@{(1-2a)z}}{(1-2a)\sin@@{z}}

hypergeom([a, (1)/(2)+ a], [(3)/(2)], - (tan(z))^(2)) = (cos(z))^(2*a)*(sin((1 - 2*a)*z))/((1 - 2*a)*sin(z))
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2], - (Tan[z])^(2)] == (Cos[z])^(2*a)*Divide[Sin[(1 - 2*a)*z],(1 - 2*a)*Sin[z]]
Failure Failure
Failed [7 / 42]
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}

Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.4.E11 F ⁑ ( - a , a ; 1 2 ; - z 2 ) = 1 2 ⁒ ( ( 1 + z 2 + z ) 2 ⁒ a + ( 1 + z 2 - z ) 2 ⁒ a ) Gauss-hypergeometric-F π‘Ž π‘Ž 1 2 superscript 𝑧 2 1 2 superscript 1 superscript 𝑧 2 𝑧 2 π‘Ž superscript 1 superscript 𝑧 2 𝑧 2 π‘Ž {\displaystyle{\displaystyle F\left(-a,a;\tfrac{1}{2};-z^{2}\right)=\tfrac{1}{% 2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}% \right)}}
\hyperF@{-a}{a}{\tfrac{1}{2}}{-z^{2}} = \tfrac{1}{2}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a}+\left(\sqrt{1+z^{2}}-z\right)^{2a}\right)

hypergeom([- a, a], [(1)/(2)], - (z)^(2)) = (1)/(2)*((sqrt(1 + (z)^(2))+ z)^(2*a)+(sqrt(1 + (z)^(2))- z)^(2*a))
Hypergeometric2F1[- a, a, Divide[1,2], - (z)^(2)] == Divide[1,2]*((Sqrt[1 + (z)^(2)]+ z)^(2*a)+(Sqrt[1 + (z)^(2)]- z)^(2*a))
Failure Failure Successful [Tested: 42] Successful [Tested: 42]
15.4.E12 F ⁑ ( - a , a ; 1 2 ; sin 2 ⁑ z ) = cos ⁑ ( 2 ⁒ a ⁒ z ) Gauss-hypergeometric-F π‘Ž π‘Ž 1 2 2 𝑧 2 π‘Ž 𝑧 {\displaystyle{\displaystyle F\left(-a,a;\tfrac{1}{2};{\sin^{2}}z\right)=\cos% \left(2az\right)}}
\hyperF@{-a}{a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \cos@{2az}

hypergeom([- a, a], [(1)/(2)], (sin(z))^(2)) = cos(2*a*z)
Hypergeometric2F1[- a, a, Divide[1,2], (Sin[z])^(2)] == Cos[2*a*z]
Failure Failure
Failed [4 / 42]
Result: -1.920340573
Test Values: {a = -3/2, z = 2}

Result: -1.920340573
Test Values: {a = 3/2, z = 2}

... skip entries to safe data
Failed [4 / 42]
Result: -1.9203405733007322
Test Values: {Rule[a, -1.5], Rule[z, 2]}

Result: -1.9203405733007322
Test Values: {Rule[a, 1.5], Rule[z, 2]}

... skip entries to safe data
15.4.E13 F ⁑ ( a , 1 - a ; 1 2 ; - z 2 ) = 1 2 ⁒ 1 + z 2 ⁒ ( ( 1 + z 2 + z ) 2 ⁒ a - 1 + ( 1 + z 2 - z ) 2 ⁒ a - 1 ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 1 2 superscript 𝑧 2 1 2 1 superscript 𝑧 2 superscript 1 superscript 𝑧 2 𝑧 2 π‘Ž 1 superscript 1 superscript 𝑧 2 𝑧 2 π‘Ž 1 {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{1}{2};-z^{2}\right)=\frac{1}{% 2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}% }-z\right)^{2a-1}\right)}}
\hyperF@{a}{1-a}{\tfrac{1}{2}}{-z^{2}} = \frac{1}{2\sqrt{1+z^{2}}}\left(\left(\sqrt{1+z^{2}}+z\right)^{2a-1}+\left(\sqrt{1+z^{2}}-z\right)^{2a-1}\right)

hypergeom([a, 1 - a], [(1)/(2)], - (z)^(2)) = (1)/(2*sqrt(1 + (z)^(2)))*((sqrt(1 + (z)^(2))+ z)^(2*a - 1)+(sqrt(1 + (z)^(2))- z)^(2*a - 1))
Hypergeometric2F1[a, 1 - a, Divide[1,2], - (z)^(2)] == Divide[1,2*Sqrt[1 + (z)^(2)]]*((Sqrt[1 + (z)^(2)]+ z)^(2*a - 1)+(Sqrt[1 + (z)^(2)]- z)^(2*a - 1))
Successful Failure - Successful [Tested: 42]
15.4.E14 F ⁑ ( a , 1 - a ; 1 2 ; sin 2 ⁑ z ) = cos ⁑ ( ( 2 ⁒ a - 1 ) ⁒ z ) cos ⁑ z Gauss-hypergeometric-F π‘Ž 1 π‘Ž 1 2 2 𝑧 2 π‘Ž 1 𝑧 𝑧 {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{1}{2};{\sin^{2}}z\right)=% \frac{\cos\left((2a-1)z\right)}{\cos z}}}
\hyperF@{a}{1-a}{\tfrac{1}{2}}{\sin^{2}@@{z}} = \frac{\cos@{(2a-1)z}}{\cos@@{z}}

hypergeom([a, 1 - a], [(1)/(2)], (sin(z))^(2)) = (cos((2*a - 1)*z))/(cos(z))
Hypergeometric2F1[a, 1 - a, Divide[1,2], (Sin[z])^(2)] == Divide[Cos[(2*a - 1)*z],Cos[z]]
Failure Failure
Failed [4 / 42]
Result: -.6992725697
Test Values: {a = -3/2, z = 2}

Result: -3.141408577
Test Values: {a = 3/2, z = 2}

... skip entries to safe data
Failed [4 / 42]
Result: -0.6992725693452728
Test Values: {Rule[a, -1.5], Rule[z, 2]}

Result: -3.1414085772561924
Test Values: {Rule[a, 1.5], Rule[z, 2]}

... skip entries to safe data
15.4.E15 F ⁑ ( a , 1 - a ; 3 2 ; - z 2 ) = 1 ( 2 - 4 ⁒ a ) ⁒ z ⁒ ( ( 1 + z 2 + z ) 1 - 2 ⁒ a - ( 1 + z 2 - z ) 1 - 2 ⁒ a ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 3 2 superscript 𝑧 2 1 2 4 π‘Ž 𝑧 superscript 1 superscript 𝑧 2 𝑧 1 2 π‘Ž superscript 1 superscript 𝑧 2 𝑧 1 2 π‘Ž {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{3}{2};-z^{2}\right)=\frac{1}{% (2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z% \right)^{1-2a}\right)}}
\hyperF@{a}{1-a}{\tfrac{3}{2}}{-z^{2}} = \frac{1}{(2-4a)z}\left(\left(\sqrt{1+z^{2}}+z\right)^{1-2a}-\left(\sqrt{1+z^{2}}-z\right)^{1-2a}\right)

hypergeom([a, 1 - a], [(3)/(2)], - (z)^(2)) = (1)/((2 - 4*a)*z)*((sqrt(1 + (z)^(2))+ z)^(1 - 2*a)-(sqrt(1 + (z)^(2))- z)^(1 - 2*a))
Hypergeometric2F1[a, 1 - a, Divide[3,2], - (z)^(2)] == Divide[1,(2 - 4*a)*z]*((Sqrt[1 + (z)^(2)]+ z)^(1 - 2*a)-(Sqrt[1 + (z)^(2)]- z)^(1 - 2*a))
Failure Failure
Failed [7 / 42]
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = 1/2*3^(1/2)+1/2*I}

Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [7 / 42]
Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.4.E16 F ⁑ ( a , 1 - a ; 3 2 ; sin 2 ⁑ z ) = sin ⁑ ( ( 2 ⁒ a - 1 ) ⁒ z ) ( 2 ⁒ a - 1 ) ⁒ sin ⁑ z Gauss-hypergeometric-F π‘Ž 1 π‘Ž 3 2 2 𝑧 2 π‘Ž 1 𝑧 2 π‘Ž 1 𝑧 {\displaystyle{\displaystyle F\left(a,1-a;\tfrac{3}{2};{\sin^{2}}z\right)=% \frac{\sin\left((2a-1)z\right)}{(2a-1)\sin z}}}
\hyperF@{a}{1-a}{\tfrac{3}{2}}{\sin^{2}@@{z}} = \frac{\sin@{(2a-1)z}}{(2a-1)\sin@@{z}}

hypergeom([a, 1 - a], [(3)/(2)], (sin(z))^(2)) = (sin((2*a - 1)*z))/((2*a - 1)*sin(z))
Hypergeometric2F1[a, 1 - a, Divide[3,2], (Sin[z])^(2)] == Divide[Sin[(2*a - 1)*z],(2*a - 1)*Sin[z]]
Successful Failure -
Failed [10 / 42]
Result: -0.5440234501032235
Test Values: {Rule[a, -1.5], Rule[z, 2]}

Result: 0.8322936730942848
Test Values: {Rule[a, 1.5], Rule[z, 2]}

... skip entries to safe data
15.4.E17 F ⁑ ( a , 1 2 + a ; 1 + 2 ⁒ a ; z ) = ( 1 2 + 1 2 ⁒ 1 - z ) - 2 ⁒ a Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 1 2 π‘Ž 𝑧 superscript 1 2 1 2 1 𝑧 2 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;1+2a;z\right)=\left(% \tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}}}
\hyperF@{a}{\tfrac{1}{2}+a}{1+2a}{z} = \left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{-2a}

hypergeom([a, (1)/(2)+ a], [1 + 2*a], z) = ((1)/(2)+(1)/(2)*sqrt(1 - z))^(- 2*a)
Hypergeometric2F1[a, Divide[1,2]+ a, 1 + 2*a, z] == (Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(- 2*a)
Successful Successful -
Failed [20 / 42]
Result: Complex[-0.02099232729741518, 0.019754284780044207]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.009306933376070914, 0.00445671804147707]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.4.E18 F ⁑ ( a , 1 2 + a ; 2 ⁒ a ; z ) = 1 1 - z ⁒ ( 1 2 + 1 2 ⁒ 1 - z ) 1 - 2 ⁒ a Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 2 π‘Ž 𝑧 1 1 𝑧 superscript 1 2 1 2 1 𝑧 1 2 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;2a;z\right)=\frac{1}{% \sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}}}
\hyperF@{a}{\tfrac{1}{2}+a}{2a}{z} = \frac{1}{\sqrt{1-z}}\left(\tfrac{1}{2}+\tfrac{1}{2}\sqrt{1-z}\right)^{1-2a}

hypergeom([a, (1)/(2)+ a], [2*a], z) = (1)/(sqrt(1 - z))*((1)/(2)+(1)/(2)*sqrt(1 - z))^(1 - 2*a)
Hypergeometric2F1[a, Divide[1,2]+ a, 2*a, z] == Divide[1,Sqrt[1 - z]]*(Divide[1,2]+Divide[1,2]*Sqrt[1 - z])^(1 - 2*a)
Successful Successful -
Failed [17 / 42]
Result: Complex[0.009435141098616318, 0.007866769593881467]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0016763074528445276, -3.2228425612285116*^-4]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.4.E19 F ⁑ ( a + 1 , b ; a ; z ) = ( 1 - ( 1 - ( b / a ) ) ⁒ z ) ⁒ ( 1 - z ) - 1 - b Gauss-hypergeometric-F π‘Ž 1 𝑏 π‘Ž 𝑧 1 1 𝑏 π‘Ž 𝑧 superscript 1 𝑧 1 𝑏 {\displaystyle{\displaystyle F\left(a+1,b;a;z\right)=\left(1-(1-(\ifrac{b}{a})% )z\right)(1-z)^{-1-b}}}
\hyperF@{a+1}{b}{a}{z} = \left(1-(1-(\ifrac{b}{a}))z\right)(1-z)^{-1-b}

hypergeom([a + 1, b], [a], z) = (1 -(1 -((b)/(a)))*z)*(1 - z)^(- 1 - b)
Hypergeometric2F1[a + 1, b, a, z] == (1 -(1 -(Divide[b,a]))*z)*(1 - z)^(- 1 - b)
Successful Successful -
Failed [34 / 252]
Result: Complex[-0.041984654594830306, 0.03950856956008836]
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.018613866752141828, 0.008913436082954251]
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.4.E20 F ⁑ ( a , b ; c ; 1 ) = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( c - a - b ) Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 Euler-Gamma 𝑐 Euler-Gamma 𝑐 π‘Ž 𝑏 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 {\displaystyle{\displaystyle F\left(a,b;c;1\right)=\frac{\Gamma\left(c\right)% \Gamma\left(c-a-b\right)}{\Gamma\left(c-a\right)\Gamma\left(c-b\right)}}}
\hyperF@{a}{b}{c}{1} = \frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}
β„œ ⁑ c > 0 , β„œ ⁑ ( c - a - b ) > 0 , β„œ ⁑ ( c - a ) > 0 , β„œ ⁑ ( c - b ) > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑐 π‘Ž 𝑏 0 formulae-sequence 𝑐 π‘Ž 0 𝑐 𝑏 0 {\displaystyle{\displaystyle\Re c>0,\Re(c-a-b)>0,\Re(c-a)>0,\Re(c-b)>0}}
hypergeom([a, b], [c], 1) = (GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))
Hypergeometric2F1[a, b, c, 1] == Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]
Failure Failure Successful [Tested: 47] Successful [Tested: 47]
15.4.E21 lim z β†’ 1 - ⁑ F ⁑ ( a , b ; a + b ; z ) - ln ⁑ ( 1 - z ) = Ξ“ ⁑ ( a + b ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) subscript β†’ 𝑧 limit-from 1 Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 𝑧 1 𝑧 Euler-Gamma π‘Ž 𝑏 Euler-Gamma π‘Ž Euler-Gamma 𝑏 {\displaystyle{\displaystyle\lim_{z\to 1-}\frac{F\left(a,b;a+b;z\right)}{-\ln% \left(1-z\right)}=\frac{\Gamma\left(a+b\right)}{\Gamma\left(a\right)\Gamma% \left(b\right)}}}
\lim_{z\to 1-}\frac{\hyperF@{a}{b}{a+b}{z}}{-\ln@{1-z}} = \frac{\EulerGamma@{a+b}}{\EulerGamma@{a}\EulerGamma@{b}}
β„œ ⁑ ( a + b ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ b > 0 formulae-sequence π‘Ž 𝑏 0 formulae-sequence π‘Ž 0 𝑏 0 {\displaystyle{\displaystyle\Re(a+b)>0,\Re a>0,\Re b>0}}
limit((hypergeom([a, b], [a + b], z))/(- ln(1 - z)), z = 1, left) = (GAMMA(a + b))/(GAMMA(a)*GAMMA(b))
Limit[Divide[Hypergeometric2F1[a, b, a + b, z],- Log[1 - z]], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[a + b],Gamma[a]*Gamma[b]]
Successful Successful - Successful [Tested: 9]
15.4.E22 lim z β†’ 1 - ⁑ ( 1 - z ) a + b - c ⁒ ( F ⁑ ( a , b ; c ; z ) - Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( c - a - b ) Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) ) = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( a + b - c ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) subscript β†’ 𝑧 limit-from 1 superscript 1 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Euler-Gamma 𝑐 Euler-Gamma 𝑐 π‘Ž 𝑏 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 Euler-Gamma 𝑐 Euler-Gamma π‘Ž 𝑏 𝑐 Euler-Gamma π‘Ž Euler-Gamma 𝑏 {\displaystyle{\displaystyle\lim_{z\to 1-}(1-z)^{a+b-c}\left(F\left(a,b;c;z% \right)-\frac{\Gamma\left(c\right)\Gamma\left(c-a-b\right)}{\Gamma\left(c-a% \right)\Gamma\left(c-b\right)}\right)=\frac{\Gamma\left(c\right)\Gamma\left(a+% b-c\right)}{\Gamma\left(a\right)\Gamma\left(b\right)}}}
\lim_{z\to 1-}(1-z)^{a+b-c}\left(\hyperF@{a}{b}{c}{z}-\frac{\EulerGamma@{c}\EulerGamma@{c-a-b}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\right) = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}
β„œ ⁑ c > 0 , β„œ ⁑ ( c - a - b ) > 0 , β„œ ⁑ ( c - a ) > 0 , β„œ ⁑ ( c - b ) > 0 , β„œ ⁑ ( a + b - c ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ b > 0 formulae-sequence 𝑐 0 formulae-sequence 𝑐 π‘Ž 𝑏 0 formulae-sequence 𝑐 π‘Ž 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence π‘Ž 𝑏 𝑐 0 formulae-sequence π‘Ž 0 𝑏 0 {\displaystyle{\displaystyle\Re c>0,\Re(c-a-b)>0,\Re(c-a)>0,\Re(c-b)>0,\Re(a+b% -c)>0,\Re a>0,\Re b>0}}
limit((1 - z)^(a + b - c)*(hypergeom([a, b], [c], z)-(GAMMA(c)*GAMMA(c - a - b))/(GAMMA(c - a)*GAMMA(c - b))), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))
Limit[(1 - z)^(a + b - c)*(Hypergeometric2F1[a, b, c, z]-Divide[Gamma[c]*Gamma[c - a - b],Gamma[c - a]*Gamma[c - b]]), z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]
Failure Aborted Error Skipped - Because timed out
15.4.E23 lim z β†’ 1 - ⁑ F ⁑ ( a , b ; c ; z ) ( 1 - z ) c - a - b = Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( a + b - c ) Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) subscript β†’ 𝑧 limit-from 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Euler-Gamma 𝑐 Euler-Gamma π‘Ž 𝑏 𝑐 Euler-Gamma π‘Ž Euler-Gamma 𝑏 {\displaystyle{\displaystyle\lim_{z\to 1-}\frac{F\left(a,b;c;z\right)}{(1-z)^{% c-a-b}}=\frac{\Gamma\left(c\right)\Gamma\left(a+b-c\right)}{\Gamma\left(a% \right)\Gamma\left(b\right)}}}
\lim_{z\to 1-}\frac{\hyperF@{a}{b}{c}{z}}{(1-z)^{c-a-b}} = \frac{\EulerGamma@{c}\EulerGamma@{a+b-c}}{\EulerGamma@{a}\EulerGamma@{b}}
β„œ ⁑ c > 0 , β„œ ⁑ ( a + b - c ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ b > 0 formulae-sequence 𝑐 0 formulae-sequence π‘Ž 𝑏 𝑐 0 formulae-sequence π‘Ž 0 𝑏 0 {\displaystyle{\displaystyle\Re c>0,\Re(a+b-c)>0,\Re a>0,\Re b>0}}
limit((hypergeom([a, b], [c], z))/((1 - z)^(c - a - b)), z = 1, left) = (GAMMA(c)*GAMMA(a + b - c))/(GAMMA(a)*GAMMA(b))
Limit[Divide[Hypergeometric2F1[a, b, c, z],(1 - z)^(c - a - b)], z -> 1, Direction -> "FromBelow", GenerateConditions->None] == Divide[Gamma[c]*Gamma[a + b - c],Gamma[a]*Gamma[b]]
Failure Failure Manual Skip! Successful [Tested: 23]
15.4.E24 F ⁑ ( - n , b ; c ; 1 ) = ( c - b ) n ( c ) n Gauss-hypergeometric-F 𝑛 𝑏 𝑐 1 Pochhammer 𝑐 𝑏 𝑛 Pochhammer 𝑐 𝑛 {\displaystyle{\displaystyle F\left(-n,b;c;1\right)=\frac{{\left(c-b\right)_{n% }}}{{\left(c\right)_{n}}}}}
\hyperF@{-n}{b}{c}{1} = \frac{\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}

hypergeom([- n, b], [c], 1) = (pochhammer(c - b, n))/(pochhammer(c, n))
Hypergeometric2F1[- n, b, c, 1] == Divide[Pochhammer[c - b, n],Pochhammer[c, n]]
Failure Failure Error
Failed [6 / 36]
Result: Indeterminate
Test Values: {Rule[b, -1.5], Rule[c, -2], Rule[n, 3]}

Result: Indeterminate
Test Values: {Rule[b, 1.5], Rule[c, -2], Rule[n, 3]}

... skip entries to safe data
15.4.E25 βˆ‘ n = - ∞ ∞ Ξ“ ⁑ ( a + n ) ⁒ Ξ“ ⁑ ( b + n ) Ξ“ ⁑ ( c + n ) ⁒ Ξ“ ⁑ ( d + n ) = Ο€ 2 sin ⁑ ( Ο€ ⁒ a ) ⁒ sin ⁑ ( Ο€ ⁒ b ) ⁒ Ξ“ ⁑ ( c + d - a - b - 1 ) Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( d - a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ Ξ“ ⁑ ( d - b ) superscript subscript 𝑛 Euler-Gamma π‘Ž 𝑛 Euler-Gamma 𝑏 𝑛 Euler-Gamma 𝑐 𝑛 Euler-Gamma 𝑑 𝑛 superscript πœ‹ 2 πœ‹ π‘Ž πœ‹ 𝑏 Euler-Gamma 𝑐 𝑑 π‘Ž 𝑏 1 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑑 π‘Ž Euler-Gamma 𝑐 𝑏 Euler-Gamma 𝑑 𝑏 {\displaystyle{\displaystyle\sum_{n=-\infty}^{\infty}\frac{\Gamma\left(a+n% \right)\Gamma\left(b+n\right)}{\Gamma\left(c+n\right)\Gamma\left(d+n\right)}=% \frac{\pi^{2}}{\sin\left(\pi a\right)\sin\left(\pi b\right)}\*\frac{\Gamma% \left(c+d-a-b-1\right)}{\Gamma\left(c-a\right)\Gamma\left(d-a\right)\Gamma% \left(c-b\right)\Gamma\left(d-b\right)}}}
\sum_{n=-\infty}^{\infty}\frac{\EulerGamma@{a+n}\EulerGamma@{b+n}}{\EulerGamma@{c+n}\EulerGamma@{d+n}} = \frac{\pi^{2}}{\sin@{\pi a}\sin@{\pi b}}\*\frac{\EulerGamma@{c+d-a-b-1}}{\EulerGamma@{c-a}\EulerGamma@{d-a}\EulerGamma@{c-b}\EulerGamma@{d-b}}
β„œ ⁑ ( a + n ) > 0 , β„œ ⁑ ( b + n ) > 0 , β„œ ⁑ ( c + n ) > 0 , β„œ ⁑ ( d + n ) > 0 , β„œ ⁑ ( c + d - a - b - 1 ) > 0 , β„œ ⁑ ( c - a ) > 0 , β„œ ⁑ ( d - a ) > 0 , β„œ ⁑ ( c - b ) > 0 , β„œ ⁑ ( d - b ) > 0 formulae-sequence π‘Ž 𝑛 0 formulae-sequence 𝑏 𝑛 0 formulae-sequence 𝑐 𝑛 0 formulae-sequence 𝑑 𝑛 0 formulae-sequence 𝑐 𝑑 π‘Ž 𝑏 1 0 formulae-sequence 𝑐 π‘Ž 0 formulae-sequence 𝑑 π‘Ž 0 formulae-sequence 𝑐 𝑏 0 𝑑 𝑏 0 {\displaystyle{\displaystyle\Re(a+n)>0,\Re(b+n)>0,\Re(c+n)>0,\Re(d+n)>0,\Re(c+% d-a-b-1)>0,\Re(c-a)>0,\Re(d-a)>0,\Re(c-b)>0,\Re(d-b)>0}}
sum((GAMMA(a + n)*GAMMA(b + n))/(GAMMA(c + n)*GAMMA(d + n)), n = - infinity..infinity) = ((Pi)^(2))/(sin(Pi*a)*sin(Pi*b))*(GAMMA(c + d - a - b - 1))/(GAMMA(c - a)*GAMMA(d - a)*GAMMA(c - b)*GAMMA(d - b))
Sum[Divide[Gamma[a + n]*Gamma[b + n],Gamma[c + n]*Gamma[d + n]], {n, - Infinity, Infinity}, GenerateConditions->None] == Divide[(Pi)^(2),Sin[Pi*a]*Sin[Pi*b]]*Divide[Gamma[c + d - a - b - 1],Gamma[c - a]*Gamma[d - a]*Gamma[c - b]*Gamma[d - b]]
Failure Aborted Manual Skip!
Failed [160 / 281]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[d, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.4.E26 F ⁑ ( a , b ; a - b + 1 ; - 1 ) = Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ a + 1 ) Ξ“ ⁑ ( a + 1 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ a - b + 1 ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 1 Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma 1 2 π‘Ž 1 Euler-Gamma π‘Ž 1 Euler-Gamma 1 2 π‘Ž 𝑏 1 {\displaystyle{\displaystyle F\left(a,b;a-b+1;-1\right)=\frac{\Gamma\left(a-b+% 1\right)\Gamma\left(\tfrac{1}{2}a+1\right)}{\Gamma\left(a+1\right)\Gamma\left(% \tfrac{1}{2}a-b+1\right)}}}
\hyperF@{a}{b}{a-b+1}{-1} = \frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}a+1}}{\EulerGamma@{a+1}\EulerGamma@{\tfrac{1}{2}a-b+1}}
β„œ ⁑ ( a - b + 1 ) > 0 , β„œ ⁑ ( 1 2 ⁒ a + 1 ) > 0 , β„œ ⁑ ( a + 1 ) > 0 , β„œ ⁑ ( 1 2 ⁒ a - b + 1 ) > 0 formulae-sequence π‘Ž 𝑏 1 0 formulae-sequence 1 2 π‘Ž 1 0 formulae-sequence π‘Ž 1 0 1 2 π‘Ž 𝑏 1 0 {\displaystyle{\displaystyle\Re(a-b+1)>0,\Re(\tfrac{1}{2}a+1)>0,\Re(a+1)>0,\Re% (\tfrac{1}{2}a-b+1)>0}}
hypergeom([a, b], [a - b + 1], - 1) = (GAMMA(a - b + 1)*GAMMA((1)/(2)*a + 1))/(GAMMA(a + 1)*GAMMA((1)/(2)*a - b + 1))
Hypergeometric2F1[a, b, a - b + 1, - 1] == Divide[Gamma[a - b + 1]*Gamma[Divide[1,2]*a + 1],Gamma[a + 1]*Gamma[Divide[1,2]*a - b + 1]]
Successful Successful - Successful [Tested: 17]
15.4.E27 F ⁑ ( 1 , a ; a + 1 ; - 1 ) = 1 2 ⁒ a ⁒ ( ψ ⁑ ( 1 2 ⁒ a + 1 2 ) - ψ ⁑ ( 1 2 ⁒ a ) ) Gauss-hypergeometric-F 1 π‘Ž π‘Ž 1 1 1 2 π‘Ž digamma 1 2 π‘Ž 1 2 digamma 1 2 π‘Ž {\displaystyle{\displaystyle F\left(1,a;a+1;-1\right)=\tfrac{1}{2}a\left(\psi% \left(\tfrac{1}{2}a+\tfrac{1}{2}\right)-\psi\left(\tfrac{1}{2}a\right)\right)}}
\hyperF@{1}{a}{a+1}{-1} = \tfrac{1}{2}a\left(\digamma@{\tfrac{1}{2}a+\tfrac{1}{2}}-\digamma@{\tfrac{1}{2}a}\right)

hypergeom([1, a], [a + 1], - 1) = (1)/(2)*a*(Psi((1)/(2)*a +(1)/(2))- Psi((1)/(2)*a))
Hypergeometric2F1[1, a, a + 1, - 1] == Divide[1,2]*a*(PolyGamma[Divide[1,2]*a +Divide[1,2]]- PolyGamma[Divide[1,2]*a])
Successful Successful - Successful [Tested: 6]
15.4.E28 F ⁑ ( a , b ; 1 2 ⁒ a + 1 2 ⁒ b + 1 2 ; 1 2 ) = Ο€ ⁒ Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ⁒ b + 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b + 1 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 1 2 𝑏 1 2 1 2 πœ‹ Euler-Gamma 1 2 π‘Ž 1 2 𝑏 1 2 Euler-Gamma 1 2 π‘Ž 1 2 Euler-Gamma 1 2 𝑏 1 2 {\displaystyle{\displaystyle F\left(a,b;\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{% 2};\tfrac{1}{2}\right)=\sqrt{\pi}\frac{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}b% +\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}\right)\Gamma\left% (\tfrac{1}{2}b+\tfrac{1}{2}\right)}}}
\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{1}{2}} = \sqrt{\pi}\frac{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}
β„œ ⁑ ( 1 2 ⁒ a + 1 2 ⁒ b + 1 2 ) > 0 , β„œ ⁑ ( 1 2 ⁒ a + 1 2 ) > 0 , β„œ ⁑ ( 1 2 ⁒ b + 1 2 ) > 0 formulae-sequence 1 2 π‘Ž 1 2 𝑏 1 2 0 formulae-sequence 1 2 π‘Ž 1 2 0 1 2 𝑏 1 2 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}a+\tfrac{1}{2}b+\tfrac{1}{2})>0,% \Re(\tfrac{1}{2}a+\tfrac{1}{2})>0,\Re(\tfrac{1}{2}b+\tfrac{1}{2})>0}}
hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b +(1)/(2)], (1)/(2)) = sqrt(Pi)*(GAMMA((1)/(2)*a +(1)/(2)*b +(1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b +(1)/(2)))
Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b +Divide[1,2], Divide[1,2]] == Sqrt[Pi]*Divide[Gamma[Divide[1,2]*a +Divide[1,2]*b +Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b +Divide[1,2]]]
Successful Successful - Successful [Tested: 15]
15.4.E29 F ⁑ ( a , b ; 1 2 ⁒ a + 1 2 ⁒ b + 1 ; 1 2 ) = 2 ⁒ Ο€ a - b ⁒ Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ⁒ b + 1 ) ⁒ ( 1 Ξ“ ⁑ ( 1 2 ⁒ a ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b + 1 2 ) - 1 Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b ) ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 1 2 𝑏 1 1 2 2 πœ‹ π‘Ž 𝑏 Euler-Gamma 1 2 π‘Ž 1 2 𝑏 1 1 Euler-Gamma 1 2 π‘Ž Euler-Gamma 1 2 𝑏 1 2 1 Euler-Gamma 1 2 π‘Ž 1 2 Euler-Gamma 1 2 𝑏 {\displaystyle{\displaystyle F\left(a,b;\tfrac{1}{2}a+\tfrac{1}{2}b+1;\tfrac{1% }{2}\right)=\frac{2\sqrt{\pi}}{a-b}\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}b+1% \right)\*\left(\frac{1}{\Gamma\left(\tfrac{1}{2}a\right)\Gamma\left(\tfrac{1}{% 2}b+\tfrac{1}{2}\right)}-\frac{1}{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}\right% )\Gamma\left(\tfrac{1}{2}b\right)}\right)}}
\hyperF@{a}{b}{\tfrac{1}{2}a+\tfrac{1}{2}b+1}{\tfrac{1}{2}} = \frac{2\sqrt{\pi}}{a-b}\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b+1}\*\left(\frac{1}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}-\frac{1}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b}}\right)
β„œ ⁑ ( 1 2 ⁒ a + 1 2 ⁒ b + 1 ) > 0 , β„œ ⁑ ( 1 2 ⁒ a ) > 0 , β„œ ⁑ ( 1 2 ⁒ b + 1 2 ) > 0 , β„œ ⁑ ( 1 2 ⁒ a + 1 2 ) > 0 , β„œ ⁑ ( 1 2 ⁒ b ) > 0 formulae-sequence 1 2 π‘Ž 1 2 𝑏 1 0 formulae-sequence 1 2 π‘Ž 0 formulae-sequence 1 2 𝑏 1 2 0 formulae-sequence 1 2 π‘Ž 1 2 0 1 2 𝑏 0 {\displaystyle{\displaystyle\Re(\tfrac{1}{2}a+\tfrac{1}{2}b+1)>0,\Re(\tfrac{1}% {2}a)>0,\Re(\tfrac{1}{2}b+\tfrac{1}{2})>0,\Re(\tfrac{1}{2}a+\tfrac{1}{2})>0,% \Re(\tfrac{1}{2}b)>0}}
hypergeom([a, b], [(1)/(2)*a +(1)/(2)*b + 1], (1)/(2)) = (2*sqrt(Pi))/(a - b)*GAMMA((1)/(2)*a +(1)/(2)*b + 1)*((1)/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*b +(1)/(2)))-(1)/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b)))
Hypergeometric2F1[a, b, Divide[1,2]*a +Divide[1,2]*b + 1, Divide[1,2]] == Divide[2*Sqrt[Pi],a - b]*Gamma[Divide[1,2]*a +Divide[1,2]*b + 1]*(Divide[1,Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*b +Divide[1,2]]]-Divide[1,Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b]])
Failure Failure
Failed [3 / 9]
Result: Float(-infinity)
Test Values: {a = 3/2, b = 3/2}

Result: Float(undefined)
Test Values: {a = 1/2, b = 1/2}

... skip entries to safe data
Failed [3 / 9]
Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[b, 1.5]}

Result: Indeterminate
Test Values: {Rule[a, 0.5], Rule[b, 0.5]}

... skip entries to safe data
15.4.E30 F ⁑ ( a , 1 - a ; b ; 1 2 ) = 2 1 - b ⁒ Ο€ ⁒ Ξ“ ⁑ ( b ) Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ⁒ b ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b - 1 2 ⁒ a + 1 2 ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 𝑏 1 2 superscript 2 1 𝑏 πœ‹ Euler-Gamma 𝑏 Euler-Gamma 1 2 π‘Ž 1 2 𝑏 Euler-Gamma 1 2 𝑏 1 2 π‘Ž 1 2 {\displaystyle{\displaystyle F\left(a,1-a;b;\tfrac{1}{2}\right)=\frac{2^{1-b}% \sqrt{\pi}\Gamma\left(b\right)}{\Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}b\right)% \Gamma\left(\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}\right)}}}
\hyperF@{a}{1-a}{b}{\tfrac{1}{2}} = \frac{2^{1-b}\sqrt{\pi}\EulerGamma@{b}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}b}\EulerGamma@{\tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2}}}
β„œ ⁑ b > 0 , β„œ ⁑ ( 1 2 ⁒ a + 1 2 ⁒ b ) > 0 , β„œ ⁑ ( 1 2 ⁒ b - 1 2 ⁒ a + 1 2 ) > 0 formulae-sequence 𝑏 0 formulae-sequence 1 2 π‘Ž 1 2 𝑏 0 1 2 𝑏 1 2 π‘Ž 1 2 0 {\displaystyle{\displaystyle\Re b>0,\Re(\tfrac{1}{2}a+\tfrac{1}{2}b)>0,\Re(% \tfrac{1}{2}b-\tfrac{1}{2}a+\tfrac{1}{2})>0}}
hypergeom([a, 1 - a], [b], (1)/(2)) = ((2)^(1 - b)*sqrt(Pi)*GAMMA(b))/(GAMMA((1)/(2)*a +(1)/(2)*b)*GAMMA((1)/(2)*b -(1)/(2)*a +(1)/(2)))
Hypergeometric2F1[a, 1 - a, b, Divide[1,2]] == Divide[(2)^(1 - b)*Sqrt[Pi]*Gamma[b],Gamma[Divide[1,2]*a +Divide[1,2]*b]*Gamma[Divide[1,2]*b -Divide[1,2]*a +Divide[1,2]]]
Successful Failure - Successful [Tested: 10]
15.4.E31 F ⁑ ( a , 1 2 + a ; 3 2 - 2 ⁒ a ; - 1 3 ) = ( 8 9 ) - 2 ⁒ a ⁒ Ξ“ ⁑ ( 4 3 ) ⁒ Ξ“ ⁑ ( 3 2 - 2 ⁒ a ) Ξ“ ⁑ ( 3 2 ) ⁒ Ξ“ ⁑ ( 4 3 - 2 ⁒ a ) Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 3 2 2 π‘Ž 1 3 superscript 8 9 2 π‘Ž Euler-Gamma 4 3 Euler-Gamma 3 2 2 π‘Ž Euler-Gamma 3 2 Euler-Gamma 4 3 2 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{3}{2}-2a;-\tfrac{1% }{3}\right)=\left(\frac{8}{9}\right)^{-2a}\frac{\Gamma\left(\tfrac{4}{3}\right% )\Gamma\left(\tfrac{3}{2}-2a\right)}{\Gamma\left(\tfrac{3}{2}\right)\Gamma% \left(\tfrac{4}{3}-2a\right)}}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{3}{2}-2a}{-\tfrac{1}{3}} = \left(\frac{8}{9}\right)^{-2a}\frac{\EulerGamma@{\tfrac{4}{3}}\EulerGamma@{\tfrac{3}{2}-2a}}{\EulerGamma@{\tfrac{3}{2}}\EulerGamma@{\tfrac{4}{3}-2a}}
β„œ ⁑ ( 3 2 - 2 ⁒ a ) > 0 , β„œ ⁑ ( 4 3 - 2 ⁒ a ) > 0 formulae-sequence 3 2 2 π‘Ž 0 4 3 2 π‘Ž 0 {\displaystyle{\displaystyle\Re(\tfrac{3}{2}-2a)>0,\Re(\tfrac{4}{3}-2a)>0}}
hypergeom([a, (1)/(2)+ a], [(3)/(2)- 2*a], -(1)/(3)) = ((8)/(9))^(- 2*a)*(GAMMA((4)/(3))*GAMMA((3)/(2)- 2*a))/(GAMMA((3)/(2))*GAMMA((4)/(3)- 2*a))
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[3,2]- 2*a, -Divide[1,3]] == (Divide[8,9])^(- 2*a)*Divide[Gamma[Divide[4,3]]*Gamma[Divide[3,2]- 2*a],Gamma[Divide[3,2]]*Gamma[Divide[4,3]- 2*a]]
Failure Failure Successful [Tested: 4] Successful [Tested: 4]
15.4.E32 F ⁑ ( a , 1 2 + a ; 5 6 + 2 3 ⁒ a ; 1 9 ) = Ο€ ⁒ ( 3 4 ) a ⁒ Ξ“ ⁑ ( 5 6 + 2 3 ⁒ a ) Ξ“ ⁑ ( 1 2 + 1 3 ⁒ a ) ⁒ Ξ“ ⁑ ( 5 6 + 1 3 ⁒ a ) Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 5 6 2 3 π‘Ž 1 9 πœ‹ superscript 3 4 π‘Ž Euler-Gamma 5 6 2 3 π‘Ž Euler-Gamma 1 2 1 3 π‘Ž Euler-Gamma 5 6 1 3 π‘Ž {\displaystyle{\displaystyle F\left(a,\tfrac{1}{2}+a;\tfrac{5}{6}+\tfrac{2}{3}% a;\tfrac{1}{9}\right)=\sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\Gamma\left(% \tfrac{5}{6}+\tfrac{2}{3}a\right)}{\Gamma\left(\tfrac{1}{2}+\tfrac{1}{3}a% \right)\Gamma\left(\tfrac{5}{6}+\tfrac{1}{3}a\right)}}}
\hyperF@{a}{\tfrac{1}{2}+a}{\tfrac{5}{6}+\tfrac{2}{3}a}{\tfrac{1}{9}} = \sqrt{\pi}\left(\frac{3}{4}\right)^{a}\frac{\EulerGamma@{\tfrac{5}{6}+\tfrac{2}{3}a}}{\EulerGamma@{\tfrac{1}{2}+\tfrac{1}{3}a}\EulerGamma@{\tfrac{5}{6}+\tfrac{1}{3}a}}
β„œ ⁑ ( 5 6 + 2 3 ⁒ a ) > 0 , β„œ ⁑ ( 1 2 + 1 3 ⁒ a ) > 0 , β„œ ⁑ ( 5 6 + 1 3 ⁒ a ) > 0 formulae-sequence 5 6 2 3 π‘Ž 0 formulae-sequence 1 2 1 3 π‘Ž 0 5 6 1 3 π‘Ž 0 {\displaystyle{\displaystyle\Re(\tfrac{5}{6}+\tfrac{2}{3}a)>0,\Re(\tfrac{1}{2}% +\tfrac{1}{3}a)>0,\Re(\tfrac{5}{6}+\tfrac{1}{3}a)>0}}
hypergeom([a, (1)/(2)+ a], [(5)/(6)+(2)/(3)*a], (1)/(9)) = sqrt(Pi)*((3)/(4))^(a)*(GAMMA((5)/(6)+(2)/(3)*a))/(GAMMA((1)/(2)+(1)/(3)*a)*GAMMA((5)/(6)+(1)/(3)*a))
Hypergeometric2F1[a, Divide[1,2]+ a, Divide[5,6]+Divide[2,3]*a, Divide[1,9]] == Sqrt[Pi]*(Divide[3,4])^(a)*Divide[Gamma[Divide[5,6]+Divide[2,3]*a],Gamma[Divide[1,2]+Divide[1,3]*a]*Gamma[Divide[5,6]+Divide[1,3]*a]]
Failure Failure Successful [Tested: 4] Successful [Tested: 4]
15.4.E33 F ⁑ ( 3 ⁒ a , 1 3 + a ; 2 3 + 2 ⁒ a ; e i ⁒ Ο€ / 3 ) = Ο€ ⁒ e i ⁒ Ο€ ⁒ a / 2 ⁒ ( 16 27 ) ( 3 ⁒ a + 1 ) / 6 ⁒ Ξ“ ⁑ ( 5 6 + a ) Ξ“ ⁑ ( 2 3 + a ) ⁒ Ξ“ ⁑ ( 2 3 ) Gauss-hypergeometric-F 3 π‘Ž 1 3 π‘Ž 2 3 2 π‘Ž superscript 𝑒 imaginary-unit πœ‹ 3 πœ‹ superscript 𝑒 imaginary-unit πœ‹ π‘Ž 2 superscript 16 27 3 π‘Ž 1 6 Euler-Gamma 5 6 π‘Ž Euler-Gamma 2 3 π‘Ž Euler-Gamma 2 3 {\displaystyle{\displaystyle F\left(3a,\tfrac{1}{3}+a;\tfrac{2}{3}+2a;e^{% \ifrac{\mathrm{i}\pi}{3}}\right)=\sqrt{\pi}e^{\ifrac{\mathrm{i}\pi a}{2}}\left% (\frac{16}{27}\right)^{(3a+1)/6}\frac{\Gamma\left(\frac{5}{6}+a\right)}{\Gamma% \left(\frac{2}{3}+a\right)\Gamma\left(\frac{2}{3}\right)}}}
\hyperF@{3a}{\tfrac{1}{3}+a}{\tfrac{2}{3}+2a}{e^{\ifrac{\iunit\pi}{3}}} = \sqrt{\pi}e^{\ifrac{\iunit\pi a}{2}}\left(\frac{16}{27}\right)^{(3a+1)/6}\frac{\EulerGamma@{\frac{5}{6}+a}}{\EulerGamma@{\frac{2}{3}+a}\EulerGamma@{\frac{2}{3}}}
β„œ ⁑ ( 5 6 + a ) > 0 , β„œ ⁑ ( 2 3 + a ) > 0 formulae-sequence 5 6 π‘Ž 0 2 3 π‘Ž 0 {\displaystyle{\displaystyle\Re(\frac{5}{6}+a)>0,\Re(\frac{2}{3}+a)>0}}
hypergeom([3*a, (1)/(3)+ a], [(2)/(3)+ 2*a], exp((I*Pi)/(3))) = sqrt(Pi)*exp((I*Pi*a)/(2))*((16)/(27))^((3*a + 1)/6)*(GAMMA((5)/(6)+ a))/(GAMMA((2)/(3)+ a)*GAMMA((2)/(3)))
Hypergeometric2F1[3*a, Divide[1,3]+ a, Divide[2,3]+ 2*a, Exp[Divide[I*Pi,3]]] == Sqrt[Pi]*Exp[Divide[I*Pi*a,2]]*(Divide[16,27])^((3*a + 1)/6)*Divide[Gamma[Divide[5,6]+ a],Gamma[Divide[2,3]+ a]*Gamma[Divide[2,3]]]
Failure Failure Successful [Tested: 4] Successful [Tested: 4]
15.5.E1 d d z ⁑ F ⁑ ( a , b ; c ; z ) = a ⁒ b c ⁒ F ⁑ ( a + 1 , b + 1 ; c + 1 ; z ) derivative 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 1 𝑏 1 𝑐 1 𝑧 {\displaystyle{\displaystyle\frac{\mathrm{d}}{\mathrm{d}z}F\left(a,b;c;z\right% )=\frac{ab}{c}F\left(a+1,b+1;c+1;z\right)}}
\deriv{}{z}\hyperF@{a}{b}{c}{z} = \frac{ab}{c}\hyperF@{a+1}{b+1}{c+1}{z}

diff(hypergeom([a, b], [c], z), z) = (a*b)/(c)*hypergeom([a + 1, b + 1], [c + 1], z)
D[Hypergeometric2F1[a, b, c, z], z] == Divide[a*b,c]*Hypergeometric2F1[a + 1, b + 1, c + 1, z]
Successful Successful - Successful [Tested: 300]
15.5.E2 d n d z n ⁑ F ⁑ ( a , b ; c ; z ) = ( a ) n ⁒ ( b ) n ( c ) n ⁒ F ⁑ ( a + n , b + n ; c + n ; z ) derivative 𝑧 𝑛 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer π‘Ž 𝑛 Pochhammer 𝑏 𝑛 Pochhammer 𝑐 𝑛 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑛 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}F\left(a% ,b;c;z\right)=\frac{{\left(a\right)_{n}}{\left(b\right)_{n}}}{{\left(c\right)_% {n}}}\*F\left(a+n,b+n;c+n;z\right)}}
\deriv[n]{}{z}\hyperF@{a}{b}{c}{z} = \frac{\Pochhammersym{a}{n}\Pochhammersym{b}{n}}{\Pochhammersym{c}{n}}\*\hyperF@{a+n}{b+n}{c+n}{z}

diff(hypergeom([a, b], [c], z), [z$(n)]) = (pochhammer(a, n)*pochhammer(b, n))/(pochhammer(c, n))* hypergeom([a + n, b + n], [c + n], z)
D[Hypergeometric2F1[a, b, c, z], {z, n}] == Divide[Pochhammer[a, n]*Pochhammer[b, n],Pochhammer[c, n]]* Hypergeometric2F1[a + n, b + n, c + n, z]
Successful Successful - Successful [Tested: 300]
15.5.E3 ( z ⁒ d d z ⁑ z ) n ⁒ ( z a - 1 ⁒ F ⁑ ( a , b ; c ; z ) ) = ( a ) n ⁒ z a + n - 1 ⁒ F ⁑ ( a + n , b ; c ; z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 π‘Ž 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer π‘Ž 𝑛 superscript 𝑧 π‘Ž 𝑛 1 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(z^{a-1}F\left(a,b;c;z\right)\right)={\left(a\right)_{n}}z^{a+n-1}F\left(% a+n,b;c;z\right)}}
\left(z\deriv{}{z}z\right)^{n}\left(z^{a-1}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{a}{n}z^{a+n-1}\hyperF@{a+n}{b}{c}{z}

(z*diff(z, z))^(n)*((z)^(a - 1)* hypergeom([a, b], [c], z)) = pochhammer(a, n)*(z)^(a + n - 1)* hypergeom([a + n, b], [c], z)
(z*D[z, z])^(n)*((z)^(a - 1)* Hypergeometric2F1[a, b, c, z]) == Pochhammer[a, n]*(z)^(a + n - 1)* Hypergeometric2F1[a + n, b, c, z]
Failure Failure Manual Skip!
Failed [298 / 300]
Result: Complex[2.047155237894918, -4.15915132240068]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.9084280791008837, -0.4608118321937779]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.5.E4 d n d z n ⁑ ( z c - 1 ⁒ F ⁑ ( a , b ; c ; z ) ) = ( c - n ) n ⁒ z c - n - 1 ⁒ F ⁑ ( a , b ; c - n ; z ) derivative 𝑧 𝑛 superscript 𝑧 𝑐 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer 𝑐 𝑛 𝑛 superscript 𝑧 𝑐 𝑛 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(z^% {c-1}F\left(a,b;c;z\right)\right)={\left(c-n\right)_{n}}z^{c-n-1}F\left(a,b;c-% n;z\right)}}
\deriv[n]{}{z}\left(z^{c-1}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}\hyperF@{a}{b}{c-n}{z}

diff((z)^(c - 1)* hypergeom([a, b], [c], z), [z$(n)]) = pochhammer(c - n, n)*(z)^(c - n - 1)* hypergeom([a, b], [c - n], z)
D[(z)^(c - 1)* Hypergeometric2F1[a, b, c, z], {z, n}] == Pochhammer[c - n, n]*(z)^(c - n - 1)* Hypergeometric2F1[a, b, c - n, z]
Failure Aborted Skipped - Because timed out
Failed [300 / 300]
Result: Plus[Complex[-10.313412337740687, -15.40985641083086], Times[Complex[-2.9282032302755074, -10.928203230275509], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[Plus[-1, Times[-1, ], 1], Plus[Power[, 2], Power[, 3], Times[2, , -1.5], Times[2, Power[, 2], -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[-1, , 1], Times[-1, Power[, 2], 1], Times[-1, -1.5, 1], Times[-1, , -1.5, 1], Times[-1, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, <syntaxhighlight lang=mathematica>Result: Plus[Complex[123.08315470740952, 79.99762770469566], Times[Complex[-31.999999999999993, -32.0], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], []], Times[Plus[-1, Times[-1, ], 2], Plus[Power[, 2], Power[, 3], Times[2, , -1.5], Times[2, Power[, 2], -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[-1, , 2], Times[-1, Power[, 2], 2], Times[-1, -1.5, 2], Times[-1, , -1.5, 2], Times[-1, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[-1, Plus[1, ], Plus[, -1.5, Times[-1, 2]], Plus[-2, Times[-4, ], Times[-2, Power[, 2]], Times[-3, -1.5], Times[-2, , -1.5], Times[2, 2], Times[2, , 2], Times[-1.5, 2], Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[6, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[2, ]]], Times[Plus[1, ], Plus[2, ], Plus[, -1.5, Times[-1, 2]], Plus[1, , -1.5, Times[-1, 2]], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Binomial[Plus[-1, -1.5], 2], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[2], Times[Binomial[Plus[-1, -1.5], 2], Plus[Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, 2, Power[Plus[Power[-1.5, 2], Times[-1, -1.5, 2]], -1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][3.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.5.E5 ( z ⁒ d d z ⁑ z ) n ⁒ ( z c - a - 1 ⁒ ( 1 - z ) a + b - c ⁒ F ⁑ ( a , b ; c ; z ) ) = ( c - a ) n ⁒ z c - a + n - 1 ⁒ ( 1 - z ) a - n + b - c ⁒ F ⁑ ( a - n , b ; c ; z ) superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 𝑐 π‘Ž 1 superscript 1 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer 𝑐 π‘Ž 𝑛 superscript 𝑧 𝑐 π‘Ž 𝑛 1 superscript 1 𝑧 π‘Ž 𝑛 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}% \left(z^{c-a-1}(1-z)^{a+b-c}F\left(a,b;c;z\right)\right)={\left(c-a\right)_{n}% }z^{c-a+n-1}(1-z)^{a-n+b-c}\*F\left(a-n,b;c;z\right)}}
\left(z\deriv{}{z}z\right)^{n}\left(z^{c-a-1}(1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-a}{n}z^{c-a+n-1}(1-z)^{a-n+b-c}\*\hyperF@{a-n}{b}{c}{z}

(z*diff(z, z))^(n)*((z)^(c - a - 1)*(1 - z)^(a + b - c)* hypergeom([a, b], [c], z)) = pochhammer(c - a, n)*(z)^(c - a + n - 1)*(1 - z)^(a - n + b - c)* hypergeom([a - n, b], [c], z)
(z*D[z, z])^(n)*((z)^(c - a - 1)*(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z]) == Pochhammer[c - a, n]*(z)^(c - a + n - 1)*(1 - z)^(a - n + b - c)* Hypergeometric2F1[a - n, b, c, z]
Failure Failure Skipped - Because timed out
Failed [298 / 300]
Result: Complex[0.9999999999999999, -5.551115123125783*^-17]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.4330127018922193, 0.24999999999999992]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.5.E6 d n d z n ⁑ ( ( 1 - z ) a + b - c ⁒ F ⁑ ( a , b ; c ; z ) ) = ( c - a ) n ⁒ ( c - b ) n ( c ) n ⁒ ( 1 - z ) a + b - c - n ⁒ F ⁑ ( a , b ; c + n ; z ) derivative 𝑧 𝑛 superscript 1 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer 𝑐 π‘Ž 𝑛 Pochhammer 𝑐 𝑏 𝑛 Pochhammer 𝑐 𝑛 superscript 1 𝑧 π‘Ž 𝑏 𝑐 𝑛 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left((1% -z)^{a+b-c}F\left(a,b;c;z\right)\right)=\frac{{\left(c-a\right)_{n}}{\left(c-b% \right)_{n}}}{{\left(c\right)_{n}}}(1-z)^{a+b-c-n}\*F\left(a,b;c+n;z\right)}}
\deriv[n]{}{z}\left((1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \frac{\Pochhammersym{c-a}{n}\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}(1-z)^{a+b-c-n}\*\hyperF@{a}{b}{c+n}{z}

diff((1 - z)^(a + b - c)* hypergeom([a, b], [c], z), [z$(n)]) = (pochhammer(c - a, n)*pochhammer(c - b, n))/(pochhammer(c, n))*(1 - z)^(a + b - c - n)* hypergeom([a, b], [c + n], z)
D[(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z], {z, n}] == Divide[Pochhammer[c - a, n]*Pochhammer[c - b, n],Pochhammer[c, n]]*(1 - z)^(a + b - c - n)* Hypergeometric2F1[a, b, c + n, z]
Failure Aborted Skipped - Because timed out
Failed [300 / 300]
Result: Plus[Complex[0.0, 0.0], Times[Complex[-1.6799040046341822, -2.8501979384465357], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], 1], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], []], Times[-1, Plus[-1, Times[-1, ], 1], Plus[Times[-1, ], Times[-2, Power[, 2]], Times[-2, Power[, 3]], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5], Times[-1, , -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[, 1], Times[2, Power[, 2], 1], Times[, -1.5, 1], Times[, -1.5, 1], Times[-1.5, -1.5, 1], Times[-1.5, 1], Times[, -1.5, 1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[4, , Times[Rational[1,<syntaxhighlight lang=mathematica>Result: Plus[Complex[0.0, 0.0], Times[Complex[1.2497428237239117, 10.604878809262228], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[-1, Plus[, -1.5], Plus[, -1.5], Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], 2], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], []], Times[-1, Plus[-1, Times[-1, ], 2], Plus[Times[-1, ], Times[-2, Power[, 2]], Times[-2, Power[, 3]], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5], Times[-2, Power[, 2], -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5], Times[-1, , -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Times[-1, -1.5, -1.5], Times[-1, , -1.5, -1.5], Power[-1.5, 2], Times[, Power[-1.5, 2]], Times[, 2], Times[2, Power[, 2], 2], Times[, -1.5, 2], Times[, -1.5, 2], Times[-1.5, -1.5, 2], Times[-1.5, 2], Times[, -1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[4, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 3], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[4, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[5, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[4, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[, Power[-1.5, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, Power[, 2], -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, Power[, 2], 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, , -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[-1, Times[-1, ], Times[-1, -1.5], Times[-1, -1.5], -1.5, 2], Plus[Times[-1, ], Times[-1, Power[, 2]], Times[-1, -1.5], Times[-1, , -1.5], Times[, 2], Times[-1.5, 2], Times[5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[7, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, Power[, 2], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[3, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-2, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, , -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-3, , 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, 2, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[2, ]]], Times[Plus[1, ], Plus[2, ], Plus[1, , -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], Plus[2, , -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[3, ]]]], 0], Equal[[0], 0], Equal[[1], Times[Binomial[Plus[-1.5, -1.5, Times[-1, -1.5]], 2], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[2], Times[Binomial[Plus[-1.5, -1.5, Times[-1, -1.5]], 2], Plus[Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, -1.5, Power[-1.5, -1], Power[Plus[1, -1.5, -1.5, Times[-1, -1.5], Times[-1, 2]], -1], 2, Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][3.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.5.E7 ( ( 1 - z ) ⁒ d d z ⁑ ( 1 - z ) ) n ⁒ ( ( 1 - z ) a - 1 ⁒ F ⁑ ( a , b ; c ; z ) ) = ( - 1 ) n ⁒ ( a ) n ⁒ ( c - b ) n ( c ) n ⁒ ( 1 - z ) a + n - 1 ⁒ F ⁑ ( a + n , b ; c + n ; z ) superscript 1 𝑧 derivative 𝑧 1 𝑧 𝑛 superscript 1 𝑧 π‘Ž 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 superscript 1 𝑛 Pochhammer π‘Ž 𝑛 Pochhammer 𝑐 𝑏 𝑛 Pochhammer 𝑐 𝑛 superscript 1 𝑧 π‘Ž 𝑛 1 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\left((1-z)\frac{\mathrm{d}}{\mathrm{d}z}(1-z)% \right)^{n}\left((1-z)^{a-1}F\left(a,b;c;z\right)\right)=(-1)^{n}\frac{{\left(% a\right)_{n}}{\left(c-b\right)_{n}}}{{\left(c\right)_{n}}}(1-z)^{a+n-1}\*F% \left(a+n,b;c+n;z\right)}}
\left((1-z)\deriv{}{z}(1-z)\right)^{n}\left((1-z)^{a-1}\hyperF@{a}{b}{c}{z}\right) = (-1)^{n}\frac{\Pochhammersym{a}{n}\Pochhammersym{c-b}{n}}{\Pochhammersym{c}{n}}(1-z)^{a+n-1}\*\hyperF@{a+n}{b}{c+n}{z}

((1 - z)*diff(1 - z, z))^(n)*((1 - z)^(a - 1)* hypergeom([a, b], [c], z)) = (- 1)^(n)*(pochhammer(a, n)*pochhammer(c - b, n))/(pochhammer(c, n))*(1 - z)^(a + n - 1)* hypergeom([a + n, b], [c + n], z)
((1 - z)*D[1 - z, z])^(n)*((1 - z)^(a - 1)* Hypergeometric2F1[a, b, c, z]) == (- 1)^(n)*Divide[Pochhammer[a, n]*Pochhammer[c - b, n],Pochhammer[c, n]]*(1 - z)^(a + n - 1)* Hypergeometric2F1[a + n, b, c + n, z]
Failure Failure Skipped - Because timed out
Failed [300 / 300]
Result: Complex[-0.9999999999999999, 5.551115123125783*^-17]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[0.5669872981077805, -0.24999999999999994]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.5.E8 ( ( 1 - z ) ⁒ d d z ⁑ ( 1 - z ) ) n ⁒ ( z c - 1 ⁒ ( 1 - z ) b - c ⁒ F ⁑ ( a , b ; c ; z ) ) = ( c - n ) n ⁒ z c - n - 1 ⁒ ( 1 - z ) b - c + n ⁒ F ⁑ ( a - n , b ; c - n ; z ) superscript 1 𝑧 derivative 𝑧 1 𝑧 𝑛 superscript 𝑧 𝑐 1 superscript 1 𝑧 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer 𝑐 𝑛 𝑛 superscript 𝑧 𝑐 𝑛 1 superscript 1 𝑧 𝑏 𝑐 𝑛 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\left((1-z)\frac{\mathrm{d}}{\mathrm{d}z}(1-z)% \right)^{n}\left(z^{c-1}(1-z)^{b-c}F\left(a,b;c;z\right)\right)={\left(c-n% \right)_{n}}z^{c-n-1}(1-z)^{b-c+n}\*F\left(a-n,b;c-n;z\right)}}
\left((1-z)\deriv{}{z}(1-z)\right)^{n}\left(z^{c-1}(1-z)^{b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}(1-z)^{b-c+n}\*\hyperF@{a-n}{b}{c-n}{z}

((1 - z)*diff(1 - z, z))^(n)*((z)^(c - 1)*(1 - z)^(b - c)* hypergeom([a, b], [c], z)) = pochhammer(c - n, n)*(z)^(c - n - 1)*(1 - z)^(b - c + n)* hypergeom([a - n, b], [c - n], z)
((1 - z)*D[1 - z, z])^(n)*((z)^(c - 1)*(1 - z)^(b - c)* Hypergeometric2F1[a, b, c, z]) == Pochhammer[c - n, n]*(z)^(c - n - 1)*(1 - z)^(b - c + n)* Hypergeometric2F1[a - n, b, c - n, z]
Failure Failure Skipped - Because timed out
Failed [299 / 300]
Result: Complex[-7.039508221073909, -1.0669744439111815]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[28.125871703124346, -23.36453828137185]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.5.E9 d n d z n ⁑ ( z c - 1 ⁒ ( 1 - z ) a + b - c ⁒ F ⁑ ( a , b ; c ; z ) ) = ( c - n ) n ⁒ z c - n - 1 ⁒ ( 1 - z ) a + b - c - n ⁒ F ⁑ ( a - n , b - n ; c - n ; z ) derivative 𝑧 𝑛 superscript 𝑧 𝑐 1 superscript 1 𝑧 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 Pochhammer 𝑐 𝑛 𝑛 superscript 𝑧 𝑐 𝑛 1 superscript 1 𝑧 π‘Ž 𝑏 𝑐 𝑛 Gauss-hypergeometric-F π‘Ž 𝑛 𝑏 𝑛 𝑐 𝑛 𝑧 {\displaystyle{\displaystyle\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}\left(z^% {c-1}(1-z)^{a+b-c}F\left(a,b;c;z\right)\right)={\left(c-n\right)_{n}}z^{c-n-1}% (1-z)^{a+b-c-n}\*F\left(a-n,b-n;c-n;z\right)}}
\deriv[n]{}{z}\left(z^{c-1}(1-z)^{a+b-c}\hyperF@{a}{b}{c}{z}\right) = \Pochhammersym{c-n}{n}z^{c-n-1}(1-z)^{a+b-c-n}\*\hyperF@{a-n}{b-n}{c-n}{z}

diff((z)^(c - 1)*(1 - z)^(a + b - c)* hypergeom([a, b], [c], z), [z$(n)]) = pochhammer(c - n, n)*(z)^(c - n - 1)*(1 - z)^(a + b - c - n)* hypergeom([a - n, b - n], [c - n], z)
D[(z)^(c - 1)*(1 - z)^(a + b - c)* Hypergeometric2F1[a, b, c, z], {z, n}] == Pochhammer[c - n, n]*(z)^(c - n - 1)*(1 - z)^(a + b - c - n)* Hypergeometric2F1[a - n, b - n, c - n, z]
Failure Aborted Skipped - Because timed out
Failed [300 / 300]
Result: Plus[Complex[-7.320508075688771, -27.32050807568877], DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-1, Times[-1, ], -1.5], Plus[-1, Times[-1, ], -1.5], []], Times[Plus[1, ], Plus[-2, Times[-1, ], -1.5, Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Tim<syntaxhighlight lang=mathematica>Result: Plus[Complex[139.99999999999997, 139.99999999999997], Times[2.0, DifferenceRoot[Function[{, }
Test Values: {Equal[Plus[Times[Plus[-1, Times[-1, ], -1.5], Plus[-1, Times[-1, ], -1.5], []], Times[Plus[1, ], Plus[-2, Times[-1, ], -1.5, Times[3, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[2, , Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], [Plus[1, ]]], Times[Plus[1, ], Plus[2, ], Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], [Plus[2, ]]]], 0], Equal[[0], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[-1, -1.5]], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[1], Times[Power[Plus[1, Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Plus[-1.5, -1.5, Times[-1, -1.5]]], Power[Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Plus[-2, -1.5]], Plus[Times[Power[Plus[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], -1], Plus[1, Times[-1, -1.5], Times[-1, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Hypergeometric2F1[-1.5, -1.5, -1.5, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Times[-1.5, -1.5, Power[-1.5, -1], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Hypergeometric2F1[Plus[1, -1.5], Plus[1, -1.5], Plus[1, -1.5], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]]}]][2.0]]], {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[n, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.5.E10 ( z ⁒ d d z ⁑ z ) n = z n ⁒ d n d z n ⁑ z n superscript 𝑧 derivative 𝑧 𝑧 𝑛 superscript 𝑧 𝑛 derivative 𝑧 𝑛 superscript 𝑧 𝑛 {\displaystyle{\displaystyle\left(z\frac{\mathrm{d}}{\mathrm{d}z}z\right)^{n}=% z^{n}\frac{{\mathrm{d}}^{n}}{{\mathrm{d}z}^{n}}z^{n}}}
\left(z\deriv{}{z}z\right)^{n} = z^{n}\deriv[n]{}{z}z^{n}

(z*diff(z, z))^(n) = (z)^(n)* diff((z)^(n), [z$(n)])
(z*D[z, z])^(n) == (z)^(n)* D[(z)^(n), {z, n}]
Failure Failure
Failed [7 / 7]
Result: -.1616869430e-8-5.000000005*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 3}

Result: -5.000000005+.1616869430e-8*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.0, -0.625]
Test Values: {Rule[n, 3], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: -0.625
Test Values: {Rule[n, 3], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.5.E11 ( c - a ) ⁒ F ⁑ ( a - 1 , b ; c ; z ) + ( 2 ⁒ a - c + ( b - a ) ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) + a ⁒ ( z - 1 ) ⁒ F ⁑ ( a + 1 , b ; c ; z ) = 0 𝑐 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 2 π‘Ž 𝑐 𝑏 π‘Ž 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž 𝑧 1 Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 0 {\displaystyle{\displaystyle(c-a)F\left(a-1,b;c;z\right)+\left(2a-c+(b-a)z% \right)F\left(a,b;c;z\right)+a(z-1)F\left(a+1,b;c;z\right)=0}}
(c-a)\hyperF@{a-1}{b}{c}{z}+\left(2a-c+(b-a)z\right)\hyperF@{a}{b}{c}{z}+a(z-1)\hyperF@{a+1}{b}{c}{z} = 0

(c - a)*hypergeom([a - 1, b], [c], z)+(2*a - c +(b - a)*z)*hypergeom([a, b], [c], z)+ a*(z - 1)*hypergeom([a + 1, b], [c], z) = 0
(c - a)*Hypergeometric2F1[a - 1, b, c, z]+(2*a - c +(b - a)*z)*Hypergeometric2F1[a, b, c, z]+ a*(z - 1)*Hypergeometric2F1[a + 1, b, c, z] == 0
Successful Successful -
Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E12 ( b - a ) ⁒ F ⁑ ( a , b ; c ; z ) + a ⁒ F ⁑ ( a + 1 , b ; c ; z ) - b ⁒ F ⁑ ( a , b + 1 ; c ; z ) = 0 𝑏 π‘Ž Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑏 Gauss-hypergeometric-F π‘Ž 𝑏 1 𝑐 𝑧 0 {\displaystyle{\displaystyle(b-a)F\left(a,b;c;z\right)+aF\left(a+1,b;c;z\right% )-bF\left(a,b+1;c;z\right)=0}}
(b-a)\hyperF@{a}{b}{c}{z}+a\hyperF@{a+1}{b}{c}{z}-b\hyperF@{a}{b+1}{c}{z} = 0

(b - a)*hypergeom([a, b], [c], z)+ a*hypergeom([a + 1, b], [c], z)- b*hypergeom([a, b + 1], [c], z) = 0
(b - a)*Hypergeometric2F1[a, b, c, z]+ a*Hypergeometric2F1[a + 1, b, c, z]- b*Hypergeometric2F1[a, b + 1, c, z] == 0
Successful Successful -
Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E13 ( c - a - b ) ⁒ F ⁑ ( a , b ; c ; z ) + a ⁒ ( 1 - z ) ⁒ F ⁑ ( a + 1 , b ; c ; z ) - ( c - b ) ⁒ F ⁑ ( a , b - 1 ; c ; z ) = 0 𝑐 π‘Ž 𝑏 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž 1 𝑧 Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑐 𝑏 Gauss-hypergeometric-F π‘Ž 𝑏 1 𝑐 𝑧 0 {\displaystyle{\displaystyle(c-a-b)F\left(a,b;c;z\right)+a(1-z)F\left(a+1,b;c;% z\right)-(c-b)F\left(a,b-1;c;z\right)=0}}
(c-a-b)\hyperF@{a}{b}{c}{z}+a(1-z)\hyperF@{a+1}{b}{c}{z}-(c-b)\hyperF@{a}{b-1}{c}{z} = 0

(c - a - b)*hypergeom([a, b], [c], z)+ a*(1 - z)*hypergeom([a + 1, b], [c], z)-(c - b)*hypergeom([a, b - 1], [c], z) = 0
(c - a - b)*Hypergeometric2F1[a, b, c, z]+ a*(1 - z)*Hypergeometric2F1[a + 1, b, c, z]-(c - b)*Hypergeometric2F1[a, b - 1, c, z] == 0
Successful Successful -
Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E14 c ⁒ ( a + ( b - c ) ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) - a ⁒ c ⁒ ( 1 - z ) ⁒ F ⁑ ( a + 1 , b ; c ; z ) + ( c - a ) ⁒ ( c - b ) ⁒ z ⁒ F ⁑ ( a , b ; c + 1 ; z ) = 0 𝑐 π‘Ž 𝑏 𝑐 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž 𝑐 1 𝑧 Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑐 π‘Ž 𝑐 𝑏 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 0 {\displaystyle{\displaystyle c\left(a+(b-c)z\right)F\left(a,b;c;z\right)-ac(1-% z)F\left(a+1,b;c;z\right)+(c-a)(c-b)zF\left(a,b;c+1;z\right)=0}}
c\left(a+(b-c)z\right)\hyperF@{a}{b}{c}{z}-ac(1-z)\hyperF@{a+1}{b}{c}{z}+(c-a)(c-b)z\hyperF@{a}{b}{c+1}{z} = 0

c*(a +(b - c)*z)*hypergeom([a, b], [c], z)- a*c*(1 - z)*hypergeom([a + 1, b], [c], z)+(c - a)*(c - b)*z*hypergeom([a, b], [c + 1], z) = 0
c*(a +(b - c)*z)*Hypergeometric2F1[a, b, c, z]- a*c*(1 - z)*Hypergeometric2F1[a + 1, b, c, z]+(c - a)*(c - b)*z*Hypergeometric2F1[a, b, c + 1, z] == 0
Successful Successful -
Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E15 ( c - a - 1 ) ⁒ F ⁑ ( a , b ; c ; z ) + a ⁒ F ⁑ ( a + 1 , b ; c ; z ) - ( c - 1 ) ⁒ F ⁑ ( a , b ; c - 1 ; z ) = 0 𝑐 π‘Ž 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑐 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 0 {\displaystyle{\displaystyle(c-a-1)F\left(a,b;c;z\right)+aF\left(a+1,b;c;z% \right)-(c-1)F\left(a,b;c-1;z\right)=0}}
(c-a-1)\hyperF@{a}{b}{c}{z}+a\hyperF@{a+1}{b}{c}{z}-(c-1)\hyperF@{a}{b}{c-1}{z} = 0

(c - a - 1)*hypergeom([a, b], [c], z)+ a*hypergeom([a + 1, b], [c], z)-(c - 1)*hypergeom([a, b], [c - 1], z) = 0
(c - a - 1)*Hypergeometric2F1[a, b, c, z]+ a*Hypergeometric2F1[a + 1, b, c, z]-(c - 1)*Hypergeometric2F1[a, b, c - 1, z] == 0
Successful Successful -
Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E16 c ⁒ ( 1 - z ) ⁒ F ⁑ ( a , b ; c ; z ) - c ⁒ F ⁑ ( a - 1 , b ; c ; z ) + ( c - b ) ⁒ z ⁒ F ⁑ ( a , b ; c + 1 ; z ) = 0 𝑐 1 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑐 Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑐 𝑏 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 0 {\displaystyle{\displaystyle c(1-z)F\left(a,b;c;z\right)-cF\left(a-1,b;c;z% \right)+(c-b)zF\left(a,b;c+1;z\right)=0}}
c(1-z)\hyperF@{a}{b}{c}{z}-c\hyperF@{a-1}{b}{c}{z}+(c-b)z\hyperF@{a}{b}{c+1}{z} = 0

c*(1 - z)*hypergeom([a, b], [c], z)- c*hypergeom([a - 1, b], [c], z)+(c - b)*z*hypergeom([a, b], [c + 1], z) = 0
c*(1 - z)*Hypergeometric2F1[a, b, c, z]- c*Hypergeometric2F1[a - 1, b, c, z]+(c - b)*z*Hypergeometric2F1[a, b, c + 1, z] == 0
Successful Successful -
Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E17 ( a - 1 + ( b + 1 - c ) ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) + ( c - a ) ⁒ F ⁑ ( a - 1 , b ; c ; z ) - ( c - 1 ) ⁒ ( 1 - z ) ⁒ F ⁑ ( a , b ; c - 1 ; z ) = 0 π‘Ž 1 𝑏 1 𝑐 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑐 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 𝑐 1 1 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 0 {\displaystyle{\displaystyle\left(a-1+(b+1-c)z\right)F\left(a,b;c;z\right)+(c-% a)F\left(a-1,b;c;z\right)-(c-1)(1-z)F\left(a,b;c-1;z\right)=0}}
\left(a-1+(b+1-c)z\right)\hyperF@{a}{b}{c}{z}+(c-a)\hyperF@{a-1}{b}{c}{z}-(c-1)(1-z)\hyperF@{a}{b}{c-1}{z} = 0

(a - 1 +(b + 1 - c)*z)*hypergeom([a, b], [c], z)+(c - a)*hypergeom([a - 1, b], [c], z)-(c - 1)*(1 - z)*hypergeom([a, b], [c - 1], z) = 0
(a - 1 +(b + 1 - c)*z)*Hypergeometric2F1[a, b, c, z]+(c - a)*Hypergeometric2F1[a - 1, b, c, z]-(c - 1)*(1 - z)*Hypergeometric2F1[a, b, c - 1, z] == 0
Successful Successful -
Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E18 c ⁒ ( c - 1 ) ⁒ ( z - 1 ) ⁒ F ⁑ ( a , b ; c - 1 ; z ) + c ⁒ ( c - 1 - ( 2 ⁒ c - a - b - 1 ) ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) + ( c - a ) ⁒ ( c - b ) ⁒ z ⁒ F ⁑ ( a , b ; c + 1 ; z ) = 0 𝑐 𝑐 1 𝑧 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 𝑐 𝑐 1 2 𝑐 π‘Ž 𝑏 1 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑐 π‘Ž 𝑐 𝑏 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 0 {\displaystyle{\displaystyle c(c-1)(z-1)F\left(a,b;c-1;z\right)+{c\left(c-1-(2% c-a-b-1)z\right)}F\left(a,b;c;z\right)+(c-a)(c-b)zF\left(a,b;c+1;z\right)=0}}
c(c-1)(z-1)\hyperF@{a}{b}{c-1}{z}+{c\left(c-1-(2c-a-b-1)z\right)}\hyperF@{a}{b}{c}{z}+(c-a)(c-b)z\hyperF@{a}{b}{c+1}{z} = 0

c*(c - 1)*(z - 1)*hypergeom([a, b], [c - 1], z)+c*(c - 1 -(2*c - a - b - 1)*z)*hypergeom([a, b], [c], z)+(c - a)*(c - b)*z*hypergeom([a, b], [c + 1], z) = 0
c*(c - 1)*(z - 1)*Hypergeometric2F1[a, b, c - 1, z]+c*(c - 1 -(2*c - a - b - 1)*z)*Hypergeometric2F1[a, b, c, z]+(c - a)*(c - b)*z*Hypergeometric2F1[a, b, c + 1, z] == 0
Successful Successful -
Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E19 z ⁒ ( 1 - z ) ⁒ ( a + 1 ) ⁒ ( b + 1 ) ⁒ F ⁑ ( a + 2 , b + 2 ; c + 2 ; z ) + ( c - ( a + b + 1 ) ⁒ z ) ⁒ ( c + 1 ) ⁒ F ⁑ ( a + 1 , b + 1 ; c + 1 ; z ) - c ⁒ ( c + 1 ) ⁒ F ⁑ ( a , b ; c ; z ) = 0 𝑧 1 𝑧 π‘Ž 1 𝑏 1 Gauss-hypergeometric-F π‘Ž 2 𝑏 2 𝑐 2 𝑧 𝑐 π‘Ž 𝑏 1 𝑧 𝑐 1 Gauss-hypergeometric-F π‘Ž 1 𝑏 1 𝑐 1 𝑧 𝑐 𝑐 1 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 0 {\displaystyle{\displaystyle{z(1-z)(a+1)(b+1)}F\left(a+2,b+2;c+2;z\right)+{(c-% (a+b+1)z)(c+1)}F\left(a+1,b+1;c+1;z\right)-{c(c+1)}F\left(a,b;c;z\right)=0}}
{z(1-z)(a+1)(b+1)}\hyperF@{a+2}{b+2}{c+2}{z}+{(c-(a+b+1)z)(c+1)}\hyperF@{a+1}{b+1}{c+1}{z}-{c(c+1)}\hyperF@{a}{b}{c}{z} = 0

z*(1 - z)*(a + 1)*(b + 1)*hypergeom([a + 2, b + 2], [c + 2], z)+(c -(a + b + 1)*z)*(c + 1)*hypergeom([a + 1, b + 1], [c + 1], z)-c*(c + 1)*hypergeom([a, b], [c], z) = 0
z*(1 - z)*(a + 1)*(b + 1)*Hypergeometric2F1[a + 2, b + 2, c + 2, z]+(c -(a + b + 1)*z)*(c + 1)*Hypergeometric2F1[a + 1, b + 1, c + 1, z]-c*(c + 1)*Hypergeometric2F1[a, b, c, z] == 0
Successful Successful -
Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E20 z ⁒ ( 1 - z ) ⁒ ( d F ⁑ ( a , b ; c ; z ) / d z ) = ( c - a ) ⁒ F ⁑ ( a - 1 , b ; c ; z ) + ( a - c + b ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) 𝑧 1 𝑧 derivative Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑧 𝑐 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 π‘Ž 𝑐 𝑏 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle z(1-z)\left(\ifrac{\mathrm{d}F\left(a,b;c;z\right% )}{\mathrm{d}z}\right)=(c-a)F\left(a-1,b;c;z\right)+(a-c+bz)F\left(a,b;c;z% \right)}}
z(1-z)\left(\ideriv{\hyperF@{a}{b}{c}{z}}{z}\right) = (c-a)\hyperF@{a-1}{b}{c}{z}+(a-c+bz)\hyperF@{a}{b}{c}{z}

z*(1 - z)*(diff(hypergeom([a, b], [c], z), z)) = (c - a)*hypergeom([a - 1, b], [c], z)+(a - c + b*z)*hypergeom([a, b], [c], z)
z*(1 - z)*(D[Hypergeometric2F1[a, b, c, z], z]) == (c - a)*Hypergeometric2F1[a - 1, b, c, z]+(a - c + b*z)*Hypergeometric2F1[a, b, c, z]
Successful Successful -
Failed [42 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E20 ( c - a ) ⁒ F ⁑ ( a - 1 , b ; c ; z ) + ( a - c + b ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) = ( c - b ) ⁒ F ⁑ ( a , b - 1 ; c ; z ) + ( b - c + a ⁒ z ) ⁒ F ⁑ ( a , b ; c ; z ) 𝑐 π‘Ž Gauss-hypergeometric-F π‘Ž 1 𝑏 𝑐 𝑧 π‘Ž 𝑐 𝑏 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑐 𝑏 Gauss-hypergeometric-F π‘Ž 𝑏 1 𝑐 𝑧 𝑏 𝑐 π‘Ž 𝑧 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle(c-a)F\left(a-1,b;c;z\right)+(a-c+bz)F\left(a,b;c;% z\right)=(c-b)F\left(a,b-1;c;z\right)+(b-c+az)F\left(a,b;c;z\right)}}
(c-a)\hyperF@{a-1}{b}{c}{z}+(a-c+bz)\hyperF@{a}{b}{c}{z} = (c-b)\hyperF@{a}{b-1}{c}{z}+(b-c+az)\hyperF@{a}{b}{c}{z}

(c - a)*hypergeom([a - 1, b], [c], z)+(a - c + b*z)*hypergeom([a, b], [c], z) = (c - b)*hypergeom([a, b - 1], [c], z)+(b - c + a*z)*hypergeom([a, b], [c], z)
(c - a)*Hypergeometric2F1[a - 1, b, c, z]+(a - c + b*z)*Hypergeometric2F1[a, b, c, z] == (c - b)*Hypergeometric2F1[a, b - 1, c, z]+(b - c + a*z)*Hypergeometric2F1[a, b, c, z]
Successful Successful -
Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.5.E21 c ⁒ ( 1 - z ) ⁒ ( d F ⁑ ( a , b ; c ; z ) / d z ) = ( c - a ) ⁒ ( c - b ) ⁒ F ⁑ ( a , b ; c + 1 ; z ) + c ⁒ ( a + b - c ) ⁒ F ⁑ ( a , b ; c ; z ) 𝑐 1 𝑧 derivative Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 𝑧 𝑐 π‘Ž 𝑐 𝑏 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 1 𝑧 𝑐 π‘Ž 𝑏 𝑐 Gauss-hypergeometric-F π‘Ž 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle c(1-z)\left(\ifrac{\mathrm{d}F\left(a,b;c;z\right% )}{\mathrm{d}z}\right)=(c-a)(c-b)F\left(a,b;c+1;z\right)+c(a+b-c)F\left(a,b;c;% z\right)}}
c(1-z)\left(\ideriv{\hyperF@{a}{b}{c}{z}}{z}\right) = (c-a)(c-b)\hyperF@{a}{b}{c+1}{z}+c(a+b-c)\hyperF@{a}{b}{c}{z}

c*(1 - z)*(diff(hypergeom([a, b], [c], z), z)) = (c - a)*(c - b)*hypergeom([a, b], [c + 1], z)+ c*(a + b - c)*hypergeom([a, b], [c], z)
c*(1 - z)*(D[Hypergeometric2F1[a, b, c, z], z]) == (c - a)*(c - b)*Hypergeometric2F1[a, b, c + 1, z]+ c*(a + b - c)*Hypergeometric2F1[a, b, c, z]
Successful Successful -
Failed [49 / 300]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
15.6.E1 𝐅 ⁑ ( a , b ; c ; z ) = 1 Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ ∫ 0 1 t b - 1 ⁒ ( 1 - t ) c - b - 1 ( 1 - z ⁒ t ) a ⁒ d t scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 1 Euler-Gamma 𝑏 Euler-Gamma 𝑐 𝑏 superscript subscript 0 1 superscript 𝑑 𝑏 1 superscript 1 𝑑 𝑐 𝑏 1 superscript 1 𝑧 𝑑 π‘Ž 𝑑 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\frac{1}{\Gamma% \left(b\right)\Gamma\left(c-b\right)}\int_{0}^{1}\frac{t^{b-1}(1-t)^{c-b-1}}{(% 1-zt)^{a}}\mathrm{d}t}}
\hyperOlverF@{a}{b}{c}{z} = \frac{1}{\EulerGamma@{b}\EulerGamma@{c-b}}\int_{0}^{1}\frac{t^{b-1}(1-t)^{c-b-1}}{(1-zt)^{a}}\diff{t}
| ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ c > β„œ ⁑ b , β„œ ⁑ b > 0 , β„œ ⁑ ( c - b ) > 0 , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence phase 1 𝑧 formulae-sequence 𝑐 𝑏 formulae-sequence 𝑏 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi,\Re c>\Re b% ,\Re b>0,\Re(c-b)>0,|z|<1,\Re(c+s)>0}}
hypergeom([a, b], [c], z)/GAMMA(c) = (1)/(GAMMA(b)*GAMMA(c - b))*int(((t)^(b - 1)*(1 - t)^(c - b - 1))/((1 - z*t)^(a)), t = 0..1)
Hypergeometric2F1Regularized[a, b, c, z] == Divide[1,Gamma[b]*Gamma[c - b]]*Integrate[Divide[(t)^(b - 1)*(1 - t)^(c - b - 1),(1 - z*t)^(a)], {t, 0, 1}, GenerateConditions->None]
Failure Successful
Failed [18 / 18]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = 3/2, c = 2, z = 1/2}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = 1/2, c = 3/2, z = 1/2}

... skip entries to safe data
Successful [Tested: 18]
15.6.E2 𝐅 ⁑ ( a , b ; c ; z ) = Ξ“ ⁑ ( 1 + b - c ) 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( b ) ⁒ ∫ 0 ( 1 + ) t b - 1 ⁒ ( t - 1 ) c - b - 1 ( 1 - z ⁒ t ) a ⁒ d t scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 Euler-Gamma 1 𝑏 𝑐 2 πœ‹ imaginary-unit Euler-Gamma 𝑏 superscript subscript 0 limit-from 1 superscript 𝑑 𝑏 1 superscript 𝑑 1 𝑐 𝑏 1 superscript 1 𝑧 𝑑 π‘Ž 𝑑 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\frac{\Gamma\left(1% +b-c\right)}{2\pi\mathrm{i}\Gamma\left(b\right)}\int_{0}^{(1+)}\frac{t^{b-1}(t% -1)^{c-b-1}}{(1-zt)^{a}}\mathrm{d}t}}
\hyperOlverF@{a}{b}{c}{z} = \frac{\EulerGamma@{1+b-c}}{2\pi\iunit\EulerGamma@{b}}\int_{0}^{(1+)}\frac{t^{b-1}(t-1)^{c-b-1}}{(1-zt)^{a}}\diff{t}
| ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ b > 0 , β„œ ⁑ ( 1 + b - c ) > 0 , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence phase 1 𝑧 formulae-sequence 𝑏 0 formulae-sequence 1 𝑏 𝑐 0 formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi,\Re b>0,% \Re(1+b-c)>0,|z|<1,\Re(c+s)>0}}
hypergeom([a, b], [c], z)/GAMMA(c) = (GAMMA(1 + b - c))/(2*Pi*I*GAMMA(b))*int(((t)^(b - 1)*(t - 1)^(c - b - 1))/((1 - z*t)^(a)), t = 0..(1 +))
Hypergeometric2F1Regularized[a, b, c, z] == Divide[Gamma[1 + b - c],2*Pi*I*Gamma[b]]*Integrate[Divide[(t)^(b - 1)*(t - 1)^(c - b - 1),(1 - z*t)^(a)], {t, 0, (1 +)}, GenerateConditions->None]
Error Failure - Error
15.6.E3 𝐅 ⁑ ( a , b ; c ; z ) = e - b ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 1 - b ) 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c - b ) ⁒ ∫ ∞ ( 0 + ) t b - 1 ⁒ ( t + 1 ) a - c ( t - z ⁒ t + 1 ) a ⁒ d t scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit Euler-Gamma 1 𝑏 2 πœ‹ imaginary-unit Euler-Gamma 𝑐 𝑏 superscript subscript limit-from 0 superscript 𝑑 𝑏 1 superscript 𝑑 1 π‘Ž 𝑐 superscript 𝑑 𝑧 𝑑 1 π‘Ž 𝑑 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=e^{-b\pi\mathrm{i}}% \frac{\Gamma\left(1-b\right)}{2\pi\mathrm{i}\Gamma\left(c-b\right)}\int_{% \infty}^{(0+)}\frac{t^{b-1}(t+1)^{a-c}}{(t-zt+1)^{a}}\mathrm{d}t}}
\hyperOlverF@{a}{b}{c}{z} = e^{-b\pi\iunit}\frac{\EulerGamma@{1-b}}{2\pi\iunit\EulerGamma@{c-b}}\int_{\infty}^{(0+)}\frac{t^{b-1}(t+1)^{a-c}}{(t-zt+1)^{a}}\diff{t}
| ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( c - b ) > 0 , β„œ ⁑ ( 1 - b ) > 0 , β„œ ⁑ ( c - b ) > 0 , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence phase 1 𝑧 formulae-sequence 𝑐 𝑏 0 formulae-sequence 1 𝑏 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi,\Re\left(c% -b\right)>0,\Re(1-b)>0,\Re(c-b)>0,|z|<1,\Re(c+s)>0}}
hypergeom([a, b], [c], z)/GAMMA(c) = exp(- b*Pi*I)*(GAMMA(1 - b))/(2*Pi*I*GAMMA(c - b))*int(((t)^(b - 1)*(t + 1)^(a - c))/((t - z*t + 1)^(a)), t = infinity..(0 +))
Hypergeometric2F1Regularized[a, b, c, z] == Exp[- b*Pi*I]*Divide[Gamma[1 - b],2*Pi*I*Gamma[c - b]]*Integrate[Divide[(t)^(b - 1)*(t + 1)^(a - c),(t - z*t + 1)^(a)], {t, Infinity, (0 +)}, GenerateConditions->None]
Error Failure - Error
15.6.E4 𝐅 ⁑ ( a , b ; c ; z ) = e - b ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 1 - b ) 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( c - b ) ⁒ ∫ 1 ( 0 + ) t b - 1 ⁒ ( 1 - t ) c - b - 1 ( 1 - z ⁒ t ) a ⁒ d t scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 𝑒 𝑏 πœ‹ imaginary-unit Euler-Gamma 1 𝑏 2 πœ‹ imaginary-unit Euler-Gamma 𝑐 𝑏 superscript subscript 1 limit-from 0 superscript 𝑑 𝑏 1 superscript 1 𝑑 𝑐 𝑏 1 superscript 1 𝑧 𝑑 π‘Ž 𝑑 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=e^{-b\pi\mathrm{i}}% \frac{\Gamma\left(1-b\right)}{2\pi\mathrm{i}\Gamma\left(c-b\right)}\int_{1}^{(% 0+)}\frac{t^{b-1}(1-t)^{c-b-1}}{(1-zt)^{a}}\mathrm{d}t}}
\hyperOlverF@{a}{b}{c}{z} = e^{-b\pi\iunit}\frac{\EulerGamma@{1-b}}{2\pi\iunit\EulerGamma@{c-b}}\int_{1}^{(0+)}\frac{t^{b-1}(1-t)^{c-b-1}}{(1-zt)^{a}}\diff{t}
| ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( c - b ) > 0 , β„œ ⁑ ( 1 - b ) > 0 , β„œ ⁑ ( c - b ) > 0 , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence phase 1 𝑧 formulae-sequence 𝑐 𝑏 0 formulae-sequence 1 𝑏 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi,\Re\left(c% -b\right)>0,\Re(1-b)>0,\Re(c-b)>0,|z|<1,\Re(c+s)>0}}
hypergeom([a, b], [c], z)/GAMMA(c) = exp(- b*Pi*I)*(GAMMA(1 - b))/(2*Pi*I*GAMMA(c - b))*int(((t)^(b - 1)*(1 - t)^(c - b - 1))/((1 - z*t)^(a)), t = 1..(0 +))
Hypergeometric2F1Regularized[a, b, c, z] == Exp[- b*Pi*I]*Divide[Gamma[1 - b],2*Pi*I*Gamma[c - b]]*Integrate[Divide[(t)^(b - 1)*(1 - t)^(c - b - 1),(1 - z*t)^(a)], {t, 1, (0 +)}, GenerateConditions->None]
Error Failure - Error
15.6.E5 𝐅 ⁑ ( a , b ; c ; z ) = e - c ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( 1 - b ) ⁒ Ξ“ ⁑ ( 1 + b - c ) ⁒ 1 4 ⁒ Ο€ 2 ⁒ ∫ A ( 0 + , 1 + , 0 - , 1 - ) t b - 1 ⁒ ( 1 - t ) c - b - 1 ( 1 - z ⁒ t ) a ⁒ d t scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 𝑒 𝑐 πœ‹ imaginary-unit Euler-Gamma 1 𝑏 Euler-Gamma 1 𝑏 𝑐 1 4 superscript πœ‹ 2 superscript subscript 𝐴 limit-from 0 limit-from 1 limit-from 0 limit-from 1 superscript 𝑑 𝑏 1 superscript 1 𝑑 𝑐 𝑏 1 superscript 1 𝑧 𝑑 π‘Ž 𝑑 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=e^{-c\pi\mathrm{i}}% \Gamma\left(1-b\right)\Gamma\left(1+b-c\right)\*\frac{1}{4\pi^{2}}\int_{A}^{(0% +,1+,0-,1-)}\frac{t^{b-1}(1-t)^{c-b-1}}{(1-zt)^{a}}\mathrm{d}t}}
\hyperOlverF@{a}{b}{c}{z} = e^{-c\pi\iunit}\EulerGamma@{1-b}\EulerGamma@{1+b-c}\*\frac{1}{4\pi^{2}}\int_{A}^{(0+,1+,0-,1-)}\frac{t^{b-1}(1-t)^{c-b-1}}{(1-zt)^{a}}\diff{t}
| ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( 1 - b ) > 0 , β„œ ⁑ ( 1 + b - c ) > 0 , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence phase 1 𝑧 formulae-sequence 1 𝑏 0 formulae-sequence 1 𝑏 𝑐 0 formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi,\Re(1-b)>0% ,\Re(1+b-c)>0,|z|<1,\Re(c+s)>0}}
hypergeom([a, b], [c], z)/GAMMA(c) = exp(- c*Pi*I)*GAMMA(1 - b)*GAMMA(1 + b - c)*(1)/(4*(Pi)^(2))*int(((t)^(b - 1)*(1 - t)^(c - b - 1))/((1 - z*t)^(a)), t = A..(0 + , 1 + , 0 - , 1 -))
Hypergeometric2F1Regularized[a, b, c, z] == Exp[- c*Pi*I]*Gamma[1 - b]*Gamma[1 + b - c]*Divide[1,4*(Pi)^(2)]*Integrate[Divide[(t)^(b - 1)*(1 - t)^(c - b - 1),(1 - z*t)^(a)], {t, A, (0 + , 1 + , 0 - , 1 -)}, GenerateConditions->None]
Error Failure - Error
15.6.E6 𝐅 ⁑ ( a , b ; c ; z ) = 1 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ ∫ - i ⁒ ∞ i ⁒ ∞ Ξ“ ⁑ ( a + t ) ⁒ Ξ“ ⁑ ( b + t ) ⁒ Ξ“ ⁑ ( - t ) Ξ“ ⁑ ( c + t ) ⁒ ( - z ) t ⁒ d t scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 1 2 πœ‹ imaginary-unit Euler-Gamma π‘Ž Euler-Gamma 𝑏 superscript subscript imaginary-unit imaginary-unit Euler-Gamma π‘Ž 𝑑 Euler-Gamma 𝑏 𝑑 Euler-Gamma 𝑑 Euler-Gamma 𝑐 𝑑 superscript 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\frac{1}{2\pi% \mathrm{i}\Gamma\left(a\right)\Gamma\left(b\right)}\int_{-\mathrm{i}\infty}^{% \mathrm{i}\infty}\frac{\Gamma\left(a+t\right)\Gamma\left(b+t\right)\Gamma\left% (-t\right)}{\Gamma\left(c+t\right)}(-z)^{t}\mathrm{d}t}}
\hyperOlverF@{a}{b}{c}{z} = \frac{1}{2\pi\iunit\EulerGamma@{a}\EulerGamma@{b}}\int_{-\iunit\infty}^{\iunit\infty}\frac{\EulerGamma@{a+t}\EulerGamma@{b+t}\EulerGamma@{-t}}{\EulerGamma@{c+t}}(-z)^{t}\diff{t}
| ph ⁑ ( - z ) | < Ο€ , β„œ ⁑ a > 0 , β„œ ⁑ b > 0 , β„œ ⁑ ( a + t ) > 0 , β„œ ⁑ ( b + t ) > 0 , β„œ ⁑ ( - t ) > 0 , β„œ ⁑ ( c + t ) > 0 , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence phase 𝑧 formulae-sequence π‘Ž 0 formulae-sequence 𝑏 0 formulae-sequence π‘Ž 𝑑 0 formulae-sequence 𝑏 𝑑 0 formulae-sequence 𝑑 0 formulae-sequence 𝑐 𝑑 0 formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(-z\right)|<\pi,\Re a>0,\Re b% >0,\Re(a+t)>0,\Re(b+t)>0,\Re(-t)>0,\Re(c+t)>0,|z|<1,\Re(c+s)>0}}
hypergeom([a, b], [c], z)/GAMMA(c) = (1)/(2*Pi*I*GAMMA(a)*GAMMA(b))*int((GAMMA(a + t)*GAMMA(b + t)*GAMMA(- t))/(GAMMA(c + t))*(- z)^(t), t = - I*infinity..I*infinity)
Hypergeometric2F1Regularized[a, b, c, z] == Divide[1,2*Pi*I*Gamma[a]*Gamma[b]]*Integrate[Divide[Gamma[a + t]*Gamma[b + t]*Gamma[- t],Gamma[c + t]]*(- z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
Failure Aborted Manual Skip! Skipped - Because timed out
15.6.E7 𝐅 ⁑ ( a , b ; c ; z ) = 1 2 ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ ∫ - i ⁒ ∞ i ⁒ ∞ Ξ“ ⁑ ( a + t ) ⁒ Ξ“ ⁑ ( b + t ) ⁒ Ξ“ ⁑ ( c - a - b - t ) ⁒ Ξ“ ⁑ ( - t ) ⁒ ( 1 - z ) t ⁒ d t scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 1 2 πœ‹ imaginary-unit Euler-Gamma π‘Ž Euler-Gamma 𝑏 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 superscript subscript imaginary-unit imaginary-unit Euler-Gamma π‘Ž 𝑑 Euler-Gamma 𝑏 𝑑 Euler-Gamma 𝑐 π‘Ž 𝑏 𝑑 Euler-Gamma 𝑑 superscript 1 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\frac{1}{2\pi% \mathrm{i}\Gamma\left(a\right)\Gamma\left(b\right)\Gamma\left(c-a\right)\Gamma% \left(c-b\right)}\int_{-\mathrm{i}\infty}^{\mathrm{i}\infty}\Gamma\left(a+t% \right)\Gamma\left(b+t\right)\Gamma\left(c-a-b-t\right)\Gamma\left(-t\right)(1% -z)^{t}\mathrm{d}t}}
\hyperOlverF@{a}{b}{c}{z} = \frac{1}{2\pi\iunit\EulerGamma@{a}\EulerGamma@{b}\EulerGamma@{c-a}\EulerGamma@{c-b}}\int_{-\iunit\infty}^{\iunit\infty}\EulerGamma@{a+t}\EulerGamma@{b+t}\EulerGamma@{c-a-b-t}\EulerGamma@{-t}(1-z)^{t}\diff{t}
| ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( a + t ) > 0 , β„œ ⁑ ( b + t ) > 0 , β„œ ⁑ ( c - a - b - t ) > 0 , β„œ ⁑ ( - t ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ b > 0 , β„œ ⁑ ( c - a ) > 0 , β„œ ⁑ ( c - b ) > 0 , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence phase 1 𝑧 formulae-sequence π‘Ž 𝑑 0 formulae-sequence 𝑏 𝑑 0 formulae-sequence 𝑐 π‘Ž 𝑏 𝑑 0 formulae-sequence 𝑑 0 formulae-sequence π‘Ž 0 formulae-sequence 𝑏 0 formulae-sequence 𝑐 π‘Ž 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi,\Re(a+t)>0% ,\Re(b+t)>0,\Re(c-a-b-t)>0,\Re(-t)>0,\Re a>0,\Re b>0,\Re(c-a)>0,\Re(c-b)>0,|z|% <1,\Re(c+s)>0}}
hypergeom([a, b], [c], z)/GAMMA(c) = (1)/(2*Pi*I*GAMMA(a)*GAMMA(b)*GAMMA(c - a)*GAMMA(c - b))*int(GAMMA(a + t)*GAMMA(b + t)*GAMMA(c - a - b - t)*GAMMA(- t)*(1 - z)^(t), t = - I*infinity..I*infinity)
Hypergeometric2F1Regularized[a, b, c, z] == Divide[1,2*Pi*I*Gamma[a]*Gamma[b]*Gamma[c - a]*Gamma[c - b]]*Integrate[Gamma[a + t]*Gamma[b + t]*Gamma[c - a - b - t]*Gamma[- t]*(1 - z)^(t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
15.6.E8 𝐅 ⁑ ( a , b ; c ; z ) = 1 Ξ“ ⁑ ( c - d ) ⁒ ∫ 0 1 𝐅 ⁑ ( a , b ; d ; z ⁒ t ) ⁒ t d - 1 ⁒ ( 1 - t ) c - d - 1 ⁒ d t scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 1 Euler-Gamma 𝑐 𝑑 superscript subscript 0 1 scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑑 𝑧 𝑑 superscript 𝑑 𝑑 1 superscript 1 𝑑 𝑐 𝑑 1 𝑑 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\frac{1}{\Gamma% \left(c-d\right)}\int_{0}^{1}\mathbf{F}\left(a,b;d;zt\right)t^{d-1}(1-t)^{c-d-% 1}\mathrm{d}t}}
\hyperOlverF@{a}{b}{c}{z} = \frac{1}{\EulerGamma@{c-d}}\int_{0}^{1}\hyperOlverF@{a}{b}{d}{zt}t^{d-1}(1-t)^{c-d-1}\diff{t}
| ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ c > β„œ ⁑ d , β„œ ⁑ d > 0 , β„œ ⁑ ( c - d ) > 0 , | z | < 1 , | ( z ⁒ t ) | < 1 , β„œ ⁑ ( c + s ) > 0 , β„œ ⁑ ( d + s ) > 0 formulae-sequence phase 1 𝑧 formulae-sequence 𝑐 𝑑 formulae-sequence 𝑑 0 formulae-sequence 𝑐 𝑑 0 formulae-sequence 𝑧 1 formulae-sequence 𝑧 𝑑 1 formulae-sequence 𝑐 𝑠 0 𝑑 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi,\Re c>\Re d% ,\Re d>0,\Re(c-d)>0,|z|<1,|(zt)|<1,\Re(c+s)>0,\Re(d+s)>0}}
hypergeom([a, b], [c], z)/GAMMA(c) = (1)/(GAMMA(c - d))*int(hypergeom([a, b], [d], z*t)/GAMMA(d)*(t)^(d - 1)*(1 - t)^(c - d - 1), t = 0..1)
Hypergeometric2F1Regularized[a, b, c, z] == Divide[1,Gamma[c - d]]*Integrate[Hypergeometric2F1Regularized[a, b, d, z*t]*(t)^(d - 1)*(1 - t)^(c - d - 1), {t, 0, 1}, GenerateConditions->None]
Failure Successful
Failed [252 / 252]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = 3/2, d = 1/2*3^(1/2)+1/2*I, z = 1/2}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, c = 3/2, d = 1/2-1/2*I*3^(1/2), z = 1/2}

... skip entries to safe data
Successful [Tested: 252]
15.6.E9 𝐅 ⁑ ( a , b ; c ; z ) = ∫ 0 1 t d - 1 ⁒ ( 1 - t ) c - d - 1 ( 1 - z ⁒ t ) a + b - Ξ» ⁒ 𝐅 ⁑ ( Ξ» - a , Ξ» - b d ; z ⁒ t ) ⁒ 𝐅 ⁑ ( a + b - Ξ» , Ξ» - d c - d ; ( 1 - t ) ⁒ z 1 - z ⁒ t ) ⁒ d t scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript subscript 0 1 superscript 𝑑 𝑑 1 superscript 1 𝑑 𝑐 𝑑 1 superscript 1 𝑧 𝑑 π‘Ž 𝑏 πœ† scaled-hypergeometric-bold-F πœ† π‘Ž πœ† 𝑏 𝑑 𝑧 𝑑 scaled-hypergeometric-bold-F π‘Ž 𝑏 πœ† πœ† 𝑑 𝑐 𝑑 1 𝑑 𝑧 1 𝑧 𝑑 𝑑 {\displaystyle{\displaystyle\mathbf{F}\left(a,b;c;z\right)=\int_{0}^{1}\frac{t% ^{d-1}(1-t)^{c-d-1}}{(1-zt)^{a+b-\lambda}}\mathbf{F}\left({\lambda-a,\lambda-b% \atop d};zt\right)\mathbf{F}\left({a+b-\lambda,\lambda-d\atop c-d};\frac{(1-t)% z}{1-zt}\right)\mathrm{d}t}}
\hyperOlverF@{a}{b}{c}{z} = \int_{0}^{1}\frac{t^{d-1}(1-t)^{c-d-1}}{(1-zt)^{a+b-\lambda}}\hyperOlverF@@{\lambda-a}{\lambda-b}{d}{zt}\hyperOlverF@@{a+b-\lambda}{\lambda-d}{c-d}{\frac{(1-t)z}{1-zt}}\diff{t}
| ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ c > β„œ ⁑ d , β„œ ⁑ d > 0 formulae-sequence phase 1 𝑧 formulae-sequence 𝑐 𝑑 𝑑 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi,\Re c>\Re d% ,\Re d>0}}
hypergeom([a, b], [c], z)/GAMMA(c) = int(((t)^(d - 1)*(1 - t)^(c - d - 1))/((1 - z*t)^(a + b - lambda))*hypergeom([lambda - a, lambda - b], [d], z*t)/GAMMA(d)*hypergeom([a + b - lambda, lambda - d], [c - d], ((1 - t)*z)/(1 - z*t))/GAMMA(c - d), t = 0..1)
Hypergeometric2F1Regularized[a, b, c, z] == Integrate[Divide[(t)^(d - 1)*(1 - t)^(c - d - 1),(1 - z*t)^(a + b - \[Lambda])]*Hypergeometric2F1Regularized[\[Lambda]- a, \[Lambda]- b, d, z*t]*Hypergeometric2F1Regularized[a + b - \[Lambda], \[Lambda]- d, c - d, Divide[(1 - t)*z,1 - z*t]], {t, 0, 1}, GenerateConditions->None]
Failure Aborted Skipped - Because timed out Skipped - Because timed out
15.7#Ex1 t n = c + n subscript 𝑑 𝑛 𝑐 𝑛 {\displaystyle{\displaystyle t_{n}=c+n}}
t_{n} = c+n

t[n] = c + n
Subscript[t, n] == c + n
Skipped - no semantic math Skipped - no semantic math - -
15.7#Ex2 u 2 ⁒ n + 1 = ( a + n ) ⁒ ( c - b + n ) subscript 𝑒 2 𝑛 1 π‘Ž 𝑛 𝑐 𝑏 𝑛 {\displaystyle{\displaystyle u_{2n+1}=(a+n)(c-b+n)}}
u_{2n+1} = (a+n)(c-b+n)

u[2*n + 1] = (a + n)*(c - b + n)
Subscript[u, 2*n + 1] == (a + n)*(c - b + n)
Skipped - no semantic math Skipped - no semantic math - -
15.7#Ex3 u 2 ⁒ n = ( b + n ) ⁒ ( c - a + n ) subscript 𝑒 2 𝑛 𝑏 𝑛 𝑐 π‘Ž 𝑛 {\displaystyle{\displaystyle u_{2n}=(b+n)(c-a+n)}}
u_{2n} = (b+n)(c-a+n)

u[2*n] = (b + n)*(c - a + n)
Subscript[u, 2*n] == (b + n)*(c - a + n)
Skipped - no semantic math Skipped - no semantic math - -
15.7#Ex4 v n = c + n + ( b - a + n + 1 ) ⁒ z subscript 𝑣 𝑛 𝑐 𝑛 𝑏 π‘Ž 𝑛 1 𝑧 {\displaystyle{\displaystyle v_{n}=c+n+(b-a+n+1)z}}
v_{n} = c+n+(b-a+n+1)z

v[n] = c + n +(b - a + n + 1)*z
Subscript[v, n] == c + n +(b - a + n + 1)*z
Skipped - no semantic math Skipped - no semantic math - -
15.7#Ex5 w n = ( b + n ) ⁒ ( c - a + n ) ⁒ z subscript 𝑀 𝑛 𝑏 𝑛 𝑐 π‘Ž 𝑛 𝑧 {\displaystyle{\displaystyle w_{n}=(b+n)(c-a+n)z}}
w_{n} = (b+n)(c-a+n)z

w[n] = (b + n)*(c - a + n)*z
Subscript[w, n] == (b + n)*(c - a + n)*z
Skipped - no semantic math Skipped - no semantic math - -
15.7#Ex6 x n = c + n - ( a + b + 2 ⁒ n + 1 ) ⁒ z subscript π‘₯ 𝑛 𝑐 𝑛 π‘Ž 𝑏 2 𝑛 1 𝑧 {\displaystyle{\displaystyle x_{n}=c+n-(a+b+2n+1)z}}
x_{n} = c+n-(a+b+2n+1)z

x[n] = c + n -(a + b + 2*n + 1)*(x + y*I)
Subscript[x, n] == c + n -(a + b + 2*n + 1)*(x + y*I)
Skipped - no semantic math Skipped - no semantic math - -
15.7#Ex7 y n = ( a + n ) ⁒ ( b + n ) ⁒ z ⁒ ( 1 - z ) subscript 𝑦 𝑛 π‘Ž 𝑛 𝑏 𝑛 𝑧 1 𝑧 {\displaystyle{\displaystyle y_{n}=(a+n)(b+n)z(1-z)}}
y_{n} = (a+n)(b+n)z(1-z)

y[n] = (a + n)*(b + n)*(x + y*I)*(1 -(x + y*I))
Subscript[y, n] == (a + n)*(b + n)*(x + y*I)*(1 -(x + y*I))
Skipped - no semantic math Skipped - no semantic math - -
15.8.E1 𝐅 ⁑ ( a , b c ; z ) = ( 1 - z ) - a ⁒ 𝐅 ⁑ ( a , c - b c ; z z - 1 ) scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 1 𝑧 π‘Ž scaled-hypergeometric-bold-F π‘Ž 𝑐 𝑏 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop c};z\right)=(1-z)^{-a}% \mathbf{F}\left({a,c-b\atop c};\frac{z}{z-1}\right)}}
\hyperOlverF@@{a}{b}{c}{z} = (1-z)^{-a}\hyperOlverF@@{a}{c-b}{c}{\frac{z}{z-1}}
| ph ⁑ ( 1 - z ) | < Ο€ phase 1 𝑧 πœ‹ {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
hypergeom([a, b], [c], z)/GAMMA(c) = (1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1))/GAMMA(c)
Hypergeometric2F1Regularized[a, b, c, z] == (1 - z)^(- a)* Hypergeometric2F1Regularized[a, c - b, c, Divide[z,z - 1]]
Failure Failure Error
Failed [1 / 300]
Result: Complex[-0.028209479177387697, -0.04886025119029158]
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}

15.8.E1 ( 1 - z ) - a ⁒ 𝐅 ⁑ ( a , c - b c ; z z - 1 ) = ( 1 - z ) - b ⁒ 𝐅 ⁑ ( c - a , b c ; z z - 1 ) superscript 1 𝑧 π‘Ž scaled-hypergeometric-bold-F π‘Ž 𝑐 𝑏 𝑐 𝑧 𝑧 1 superscript 1 𝑧 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 𝑏 𝑐 𝑧 𝑧 1 {\displaystyle{\displaystyle(1-z)^{-a}\mathbf{F}\left({a,c-b\atop c};\frac{z}{% z-1}\right)=(1-z)^{-b}\mathbf{F}\left({c-a,b\atop c};\frac{z}{z-1}\right)}}
(1-z)^{-a}\hyperOlverF@@{a}{c-b}{c}{\frac{z}{z-1}} = (1-z)^{-b}\hyperOlverF@@{c-a}{b}{c}{\frac{z}{z-1}}
| ph ⁑ ( 1 - z ) | < Ο€ phase 1 𝑧 πœ‹ {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
(1 - z)^(- a)* hypergeom([a, c - b], [c], (z)/(z - 1))/GAMMA(c) = (1 - z)^(- b)* hypergeom([c - a, b], [c], (z)/(z - 1))/GAMMA(c)
(1 - z)^(- a)* Hypergeometric2F1Regularized[a, c - b, c, Divide[z,z - 1]] == (1 - z)^(- b)* Hypergeometric2F1Regularized[c - a, b, c, Divide[z,z - 1]]
Failure Failure Error Successful [Tested: 300]
15.8.E1 ( 1 - z ) - b ⁒ 𝐅 ⁑ ( c - a , b c ; z z - 1 ) = ( 1 - z ) c - a - b ⁒ 𝐅 ⁑ ( c - a , c - b c ; z ) superscript 1 𝑧 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 𝑏 𝑐 𝑧 𝑧 1 superscript 1 𝑧 𝑐 π‘Ž 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 𝑧 {\displaystyle{\displaystyle(1-z)^{-b}\mathbf{F}\left({c-a,b\atop c};\frac{z}{% z-1}\right)=(1-z)^{c-a-b}\mathbf{F}\left({c-a,c-b\atop c};z\right)}}
(1-z)^{-b}\hyperOlverF@@{c-a}{b}{c}{\frac{z}{z-1}} = (1-z)^{c-a-b}\hyperOlverF@@{c-a}{c-b}{c}{z}
| ph ⁑ ( 1 - z ) | < Ο€ phase 1 𝑧 πœ‹ {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
(1 - z)^(- b)* hypergeom([c - a, b], [c], (z)/(z - 1))/GAMMA(c) = (1 - z)^(c - a - b)* hypergeom([c - a, c - b], [c], z)/GAMMA(c)
(1 - z)^(- b)* Hypergeometric2F1Regularized[c - a, b, c, Divide[z,z - 1]] == (1 - z)^(c - a - b)* Hypergeometric2F1Regularized[c - a, c - b, c, z]
Failure Failure Error
Failed [1 / 300]
Result: Complex[0.02820947917738814, 0.04886025119029169]
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[c, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}

15.8.E2 sin ⁑ ( Ο€ ⁒ ( b - a ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = ( - z ) - a Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ 𝐅 ⁑ ( a , a - c + 1 a - b + 1 ; 1 z ) - ( - z ) - b Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ 𝐅 ⁑ ( b , b - c + 1 b - a + 1 ; 1 z ) πœ‹ 𝑏 π‘Ž πœ‹ scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 𝑧 π‘Ž Euler-Gamma 𝑏 Euler-Gamma 𝑐 π‘Ž scaled-hypergeometric-bold-F π‘Ž π‘Ž 𝑐 1 π‘Ž 𝑏 1 1 𝑧 superscript 𝑧 𝑏 Euler-Gamma π‘Ž Euler-Gamma 𝑐 𝑏 scaled-hypergeometric-bold-F 𝑏 𝑏 𝑐 1 𝑏 π‘Ž 1 1 𝑧 {\displaystyle{\displaystyle\frac{\sin\left(\pi(b-a)\right)}{\pi}\mathbf{F}% \left({a,b\atop c};z\right)=\frac{(-z)^{-a}}{\Gamma\left(b\right)\Gamma\left(c% -a\right)}\mathbf{F}\left({a,a-c+1\atop a-b+1};\frac{1}{z}\right)-\frac{(-z)^{% -b}}{\Gamma\left(a\right)\Gamma\left(c-b\right)}\mathbf{F}\left({b,b-c+1\atop b% -a+1};\frac{1}{z}\right)}}
\frac{\sin@{\pi(b-a)}}{\pi}\hyperOlverF@@{a}{b}{c}{z} = \frac{(-z)^{-a}}{\EulerGamma@{b}\EulerGamma@{c-a}}\hyperOlverF@@{a}{a-c+1}{a-b+1}{\frac{1}{z}}-\frac{(-z)^{-b}}{\EulerGamma@{a}\EulerGamma@{c-b}}\hyperOlverF@@{b}{b-c+1}{b-a+1}{\frac{1}{z}}
| ph ⁑ ( - z ) | < Ο€ , β„œ ⁑ b > 0 , β„œ ⁑ ( c - a ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ ( c - b ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence 𝑏 0 formulae-sequence 𝑐 π‘Ž 0 formulae-sequence π‘Ž 0 𝑐 𝑏 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(-z\right)|<\pi,\Re b>0,\Re% (c-a)>0,\Re a>0,\Re(c-b)>0}}
(sin(Pi*(b - a)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c) = ((- z)^(- a))/(GAMMA(b)*GAMMA(c - a))*hypergeom([a, a - c + 1], [a - b + 1], (1)/(z))/GAMMA(a - b + 1)-((- z)^(- b))/(GAMMA(a)*GAMMA(c - b))*hypergeom([b, b - c + 1], [b - a + 1], (1)/(z))/GAMMA(b - a + 1)
Divide[Sin[Pi*(b - a)],Pi]*Hypergeometric2F1Regularized[a, b, c, z] == Divide[(- z)^(- a),Gamma[b]*Gamma[c - a]]*Hypergeometric2F1Regularized[a, a - c + 1, a - b + 1, Divide[1,z]]-Divide[(- z)^(- b),Gamma[a]*Gamma[c - b]]*Hypergeometric2F1Regularized[b, b - c + 1, b - a + 1, Divide[1,z]]
Failure Failure Error Skip - No test values generated
15.8.E3 sin ⁑ ( Ο€ ⁒ ( b - a ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = ( 1 - z ) - a Ξ“ ⁑ ( b ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ 𝐅 ⁑ ( a , c - b a - b + 1 ; 1 1 - z ) - ( 1 - z ) - b Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ 𝐅 ⁑ ( b , c - a b - a + 1 ; 1 1 - z ) πœ‹ 𝑏 π‘Ž πœ‹ scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 1 𝑧 π‘Ž Euler-Gamma 𝑏 Euler-Gamma 𝑐 π‘Ž scaled-hypergeometric-bold-F π‘Ž 𝑐 𝑏 π‘Ž 𝑏 1 1 1 𝑧 superscript 1 𝑧 𝑏 Euler-Gamma π‘Ž Euler-Gamma 𝑐 𝑏 scaled-hypergeometric-bold-F 𝑏 𝑐 π‘Ž 𝑏 π‘Ž 1 1 1 𝑧 {\displaystyle{\displaystyle\frac{\sin\left(\pi(b-a)\right)}{\pi}\mathbf{F}% \left({a,b\atop c};z\right)=\frac{(1-z)^{-a}}{\Gamma\left(b\right)\Gamma\left(% c-a\right)}\mathbf{F}\left({a,c-b\atop a-b+1};\frac{1}{1-z}\right)-\frac{(1-z)% ^{-b}}{\Gamma\left(a\right)\Gamma\left(c-b\right)}\mathbf{F}\left({b,c-a\atop b% -a+1};\frac{1}{1-z}\right)}}
\frac{\sin@{\pi(b-a)}}{\pi}\hyperOlverF@@{a}{b}{c}{z} = \frac{(1-z)^{-a}}{\EulerGamma@{b}\EulerGamma@{c-a}}\hyperOlverF@@{a}{c-b}{a-b+1}{\frac{1}{1-z}}-\frac{(1-z)^{-b}}{\EulerGamma@{a}\EulerGamma@{c-b}}\hyperOlverF@@{b}{c-a}{b-a+1}{\frac{1}{1-z}}
| ph ⁑ ( - z ) | < Ο€ , β„œ ⁑ b > 0 , β„œ ⁑ ( c - a ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ ( c - b ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence 𝑏 0 formulae-sequence 𝑐 π‘Ž 0 formulae-sequence π‘Ž 0 𝑐 𝑏 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(-z\right)|<\pi,\Re b>0,\Re% (c-a)>0,\Re a>0,\Re(c-b)>0}}
(sin(Pi*(b - a)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c) = ((1 - z)^(- a))/(GAMMA(b)*GAMMA(c - a))*hypergeom([a, c - b], [a - b + 1], (1)/(1 - z))/GAMMA(a - b + 1)-((1 - z)^(- b))/(GAMMA(a)*GAMMA(c - b))*hypergeom([b, c - a], [b - a + 1], (1)/(1 - z))/GAMMA(b - a + 1)
Divide[Sin[Pi*(b - a)],Pi]*Hypergeometric2F1Regularized[a, b, c, z] == Divide[(1 - z)^(- a),Gamma[b]*Gamma[c - a]]*Hypergeometric2F1Regularized[a, c - b, a - b + 1, Divide[1,1 - z]]-Divide[(1 - z)^(- b),Gamma[a]*Gamma[c - b]]*Hypergeometric2F1Regularized[b, c - a, b - a + 1, Divide[1,1 - z]]
Failure Failure Error Successful [Tested: 10]
15.8.E4 sin ⁑ ( Ο€ ⁒ ( c - a - b ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = 1 Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ 𝐅 ⁑ ( a , b a + b - c + 1 ; 1 - z ) - ( 1 - z ) c - a - b Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ 𝐅 ⁑ ( c - a , c - b c - a - b + 1 ; 1 - z ) πœ‹ 𝑐 π‘Ž 𝑏 πœ‹ scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 1 Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 scaled-hypergeometric-bold-F π‘Ž 𝑏 π‘Ž 𝑏 𝑐 1 1 𝑧 superscript 1 𝑧 𝑐 π‘Ž 𝑏 Euler-Gamma π‘Ž Euler-Gamma 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 𝑐 𝑏 𝑐 π‘Ž 𝑏 1 1 𝑧 {\displaystyle{\displaystyle\frac{\sin\left(\pi(c-a-b)\right)}{\pi}\mathbf{F}% \left({a,b\atop c};z\right)=\frac{1}{\Gamma\left(c-a\right)\Gamma\left(c-b% \right)}\mathbf{F}\left({a,b\atop a+b-c+1};1-z\right)-\frac{(1-z)^{c-a-b}}{% \Gamma\left(a\right)\Gamma\left(b\right)}\mathbf{F}\left({c-a,c-b\atop c-a-b+1% };1-z\right)}}
\frac{\sin@{\pi(c-a-b)}}{\pi}\hyperOlverF@@{a}{b}{c}{z} = \frac{1}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\hyperOlverF@@{a}{b}{a+b-c+1}{1-z}-\frac{(1-z)^{c-a-b}}{\EulerGamma@{a}\EulerGamma@{b}}\hyperOlverF@@{c-a}{c-b}{c-a-b+1}{1-z}
| ph ⁑ z | < Ο€ , | ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( c - a ) > 0 , β„œ ⁑ ( c - b ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ b > 0 , | z | < 1 , | ( 1 - z ) | < 1 , β„œ ⁑ ( c + s ) > 0 , β„œ ⁑ ( ( a + b - c + 1 ) + s ) > 0 , β„œ ⁑ ( ( c - a - b + 1 ) + s ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence 𝑐 π‘Ž 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence π‘Ž 0 formulae-sequence 𝑏 0 formulae-sequence 𝑧 1 formulae-sequence 1 𝑧 1 formulae-sequence 𝑐 𝑠 0 formulae-sequence π‘Ž 𝑏 𝑐 1 𝑠 0 𝑐 π‘Ž 𝑏 1 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|\operatorname{ph}\left(1% -z\right)|<\pi,\Re(c-a)>0,\Re(c-b)>0,\Re a>0,\Re b>0,|z|<1,|(1-z)|<1,\Re(c+s)>% 0,\Re((a+b-c+1)+s)>0,\Re((c-a-b+1)+s)>0}}
(sin(Pi*(c - a - b)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c) = (1)/(GAMMA(c - a)*GAMMA(c - b))*hypergeom([a, b], [a + b - c + 1], 1 - z)/GAMMA(a + b - c + 1)-((1 - z)^(c - a - b))/(GAMMA(a)*GAMMA(b))*hypergeom([c - a, c - b], [c - a - b + 1], 1 - z)/GAMMA(c - a - b + 1)
Divide[Sin[Pi*(c - a - b)],Pi]*Hypergeometric2F1Regularized[a, b, c, z] == Divide[1,Gamma[c - a]*Gamma[c - b]]*Hypergeometric2F1Regularized[a, b, a + b - c + 1, 1 - z]-Divide[(1 - z)^(c - a - b),Gamma[a]*Gamma[b]]*Hypergeometric2F1Regularized[c - a, c - b, c - a - b + 1, 1 - z]
Failure Failure
Failed [2 / 5]
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 3/2, b = 3/2, c = 2, z = 1/2}

Result: Float(undefined)+Float(undefined)*I
Test Values: {a = 1/2, b = 1/2, c = 2, z = 1/2}

Successful [Tested: 15]
15.8.E5 sin ⁑ ( Ο€ ⁒ ( c - a - b ) ) Ο€ ⁒ 𝐅 ⁑ ( a , b c ; z ) = z - a Ξ“ ⁑ ( c - a ) ⁒ Ξ“ ⁑ ( c - b ) ⁒ 𝐅 ⁑ ( a , a - c + 1 a + b - c + 1 ; 1 - 1 z ) - ( 1 - z ) c - a - b ⁒ z a - c Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ 𝐅 ⁑ ( c - a , 1 - a c - a - b + 1 ; 1 - 1 z ) πœ‹ 𝑐 π‘Ž 𝑏 πœ‹ scaled-hypergeometric-bold-F π‘Ž 𝑏 𝑐 𝑧 superscript 𝑧 π‘Ž Euler-Gamma 𝑐 π‘Ž Euler-Gamma 𝑐 𝑏 scaled-hypergeometric-bold-F π‘Ž π‘Ž 𝑐 1 π‘Ž 𝑏 𝑐 1 1 1 𝑧 superscript 1 𝑧 𝑐 π‘Ž 𝑏 superscript 𝑧 π‘Ž 𝑐 Euler-Gamma π‘Ž Euler-Gamma 𝑏 scaled-hypergeometric-bold-F 𝑐 π‘Ž 1 π‘Ž 𝑐 π‘Ž 𝑏 1 1 1 𝑧 {\displaystyle{\displaystyle\frac{\sin\left(\pi(c-a-b)\right)}{\pi}\mathbf{F}% \left({a,b\atop c};z\right)=\frac{z^{-a}}{\Gamma\left(c-a\right)\Gamma\left(c-% b\right)}\mathbf{F}\left({a,a-c+1\atop a+b-c+1};1-\frac{1}{z}\right)-\frac{(1-% z)^{c-a-b}z^{a-c}}{\Gamma\left(a\right)\Gamma\left(b\right)}\mathbf{F}\left({c% -a,1-a\atop c-a-b+1};1-\frac{1}{z}\right)}}
\frac{\sin@{\pi(c-a-b)}}{\pi}\hyperOlverF@@{a}{b}{c}{z} = \frac{z^{-a}}{\EulerGamma@{c-a}\EulerGamma@{c-b}}\hyperOlverF@@{a}{a-c+1}{a+b-c+1}{1-\frac{1}{z}}-\frac{(1-z)^{c-a-b}z^{a-c}}{\EulerGamma@{a}\EulerGamma@{b}}\hyperOlverF@@{c-a}{1-a}{c-a-b+1}{1-\frac{1}{z}}
| ph ⁑ z | < Ο€ , | ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( c - a ) > 0 , β„œ ⁑ ( c - b ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ b > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence 𝑐 π‘Ž 0 formulae-sequence 𝑐 𝑏 0 formulae-sequence π‘Ž 0 𝑏 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|\operatorname{ph}\left(1% -z\right)|<\pi,\Re(c-a)>0,\Re(c-b)>0,\Re a>0,\Re b>0}}
(sin(Pi*(c - a - b)))/(Pi)*hypergeom([a, b], [c], z)/GAMMA(c) = ((z)^(- a))/(GAMMA(c - a)*GAMMA(c - b))*hypergeom([a, a - c + 1], [a + b - c + 1], 1 -(1)/(z))/GAMMA(a + b - c + 1)-((1 - z)^(c - a - b)* (z)^(a - c))/(GAMMA(a)*GAMMA(b))*hypergeom([c - a, 1 - a], [c - a - b + 1], 1 -(1)/(z))/GAMMA(c - a - b + 1)
Divide[Sin[Pi*(c - a - b)],Pi]*Hypergeometric2F1Regularized[a, b, c, z] == Divide[(z)^(- a),Gamma[c - a]*Gamma[c - b]]*Hypergeometric2F1Regularized[a, a - c + 1, a + b - c + 1, 1 -Divide[1,z]]-Divide[(1 - z)^(c - a - b)* (z)^(a - c),Gamma[a]*Gamma[b]]*Hypergeometric2F1Regularized[c - a, 1 - a, c - a - b + 1, 1 -Divide[1,z]]
Failure Failure Error Skip - No test values generated
15.8.E6 F ⁑ ( - m , b c ; z ) = ( b ) m ( c ) m ⁒ ( - z ) m ⁒ F ⁑ ( - m , 1 - c - m 1 - b - m ; 1 z ) Gauss-hypergeometric-F π‘š 𝑏 𝑐 𝑧 subscript 𝑏 π‘š subscript 𝑐 π‘š superscript 𝑧 π‘š Gauss-hypergeometric-F π‘š 1 𝑐 π‘š 1 𝑏 π‘š 1 𝑧 {\displaystyle{\displaystyle F\left({-m,b\atop c};z\right)=\frac{(b)_{m}}{(c)_% {m}}(-z)^{m}F\left({-m,1-c-m\atop 1-b-m};\frac{1}{z}\right)}}
\hyperF@@{-m}{b}{c}{z} = \frac{(b)_{m}}{(c)_{m}}(-z)^{m}\hyperF@@{-m}{1-c-m}{1-b-m}{\frac{1}{z}}

hypergeom([- m, b], [c], z) = (b[m])/(c[m])*(- z)^(m)* hypergeom([- m, 1 - c - m], [1 - b - m], (1)/(z))
Hypergeometric2F1[- m, b, c, z] == Divide[Subscript[b, m],Subscript[c, m]]*(- z)^(m)* Hypergeometric2F1[- m, 1 - c - m, 1 - b - m, Divide[1,z]]
Failure Failure Error
Failed [252 / 300]
Result: Plus[Complex[1.4330127018922194, 0.24999999999999997], Times[Complex[1.4330127018922196, 0.25], Subscript[-1.5, 1], Power[Subscript[1.5, 1], -1]]]
Test Values: {Rule[b, -1.5], Rule[c, 1.5], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Plus[Complex[1.8910254037844387, 0.5433012701892219], Times[Complex[-9.455127018922195, -2.7165063509461094], Subscript[-1.5, 2], Power[Subscript[1.5, 2], -1]]]
Test Values: {Rule[b, -1.5], Rule[c, 1.5], Rule[m, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.8.E6 ( b ) m ( c ) m ⁒ ( - z ) m ⁒ F ⁑ ( - m , 1 - c - m 1 - b - m ; 1 z ) = ( b ) m ( c ) m ⁒ ( 1 - z ) m ⁒ F ⁑ ( - m , c - b 1 - b - m ; 1 1 - z ) subscript 𝑏 π‘š subscript 𝑐 π‘š superscript 𝑧 π‘š Gauss-hypergeometric-F π‘š 1 𝑐 π‘š 1 𝑏 π‘š 1 𝑧 subscript 𝑏 π‘š subscript 𝑐 π‘š superscript 1 𝑧 π‘š Gauss-hypergeometric-F π‘š 𝑐 𝑏 1 𝑏 π‘š 1 1 𝑧 {\displaystyle{\displaystyle\frac{(b)_{m}}{(c)_{m}}(-z)^{m}F\left({-m,1-c-m% \atop 1-b-m};\frac{1}{z}\right)=\frac{(b)_{m}}{(c)_{m}}(1-z)^{m}F\left({-m,c-b% \atop 1-b-m};\frac{1}{1-z}\right)}}
\frac{(b)_{m}}{(c)_{m}}(-z)^{m}\hyperF@@{-m}{1-c-m}{1-b-m}{\frac{1}{z}} = \frac{(b)_{m}}{(c)_{m}}(1-z)^{m}\hyperF@@{-m}{c-b}{1-b-m}{\frac{1}{1-z}}

(b[m])/(c[m])*(- z)^(m)* hypergeom([- m, 1 - c - m], [1 - b - m], (1)/(z)) = (b[m])/(c[m])*(1 - z)^(m)* hypergeom([- m, c - b], [1 - b - m], (1)/(1 - z))
Divide[Subscript[b, m],Subscript[c, m]]*(- z)^(m)* Hypergeometric2F1[- m, 1 - c - m, 1 - b - m, Divide[1,z]] == Divide[Subscript[b, m],Subscript[c, m]]*(1 - z)^(m)* Hypergeometric2F1[- m, c - b, 1 - b - m, Divide[1,1 - z]]
Failure Failure Error
Failed [164 / 300]
Result: Times[Complex[0.0, -5.551115123125783*^-17], Subscript[-1.5, 1], Power[Subscript[1.5, 1], -1]]
Test Values: {Rule[b, -1.5], Rule[c, 1.5], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Times[Complex[0.0, 4.440892098500626*^-16], Subscript[-1.5, 2], Power[Subscript[1.5, 2], -1]]
Test Values: {Rule[b, -1.5], Rule[c, 1.5], Rule[m, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.8.E7 F ⁑ ( - m , b c ; z ) = ( c - b ) m ( c ) m ⁒ F ⁑ ( - m , b b - c - m + 1 ; 1 - z ) Gauss-hypergeometric-F π‘š 𝑏 𝑐 𝑧 subscript 𝑐 𝑏 π‘š subscript 𝑐 π‘š Gauss-hypergeometric-F π‘š 𝑏 𝑏 𝑐 π‘š 1 1 𝑧 {\displaystyle{\displaystyle F\left({-m,b\atop c};z\right)=\frac{(c-b)_{m}}{(c% )_{m}}F\left({-m,b\atop b-c-m+1};1-z\right)}}
\hyperF@@{-m}{b}{c}{z} = \frac{(c-b)_{m}}{(c)_{m}}\hyperF@@{-m}{b}{b-c-m+1}{1-z}

hypergeom([- m, b], [c], z) = (c - b[m])/(c[m])*hypergeom([- m, b], [b - c - m + 1], 1 - z)
Hypergeometric2F1[- m, b, c, z] == Divide[Subscript[c - b, m],Subscript[c, m]]*Hypergeometric2F1[- m, b, b - c - m + 1, 1 - z]
Failure Failure Error
Failed [300 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[b, -1.5], Rule[c, -1.5], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: DirectedInfinity[]
Test Values: {Rule[b, -1.5], Rule[c, -1.5], Rule[m, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.8.E7 ( c - b ) m ( c ) m ⁒ F ⁑ ( - m , b b - c - m + 1 ; 1 - z ) = ( c - b ) m ( c ) m ⁒ z m ⁒ F ⁑ ( - m , 1 - c - m b - c - m + 1 ; 1 - 1 z ) subscript 𝑐 𝑏 π‘š subscript 𝑐 π‘š Gauss-hypergeometric-F π‘š 𝑏 𝑏 𝑐 π‘š 1 1 𝑧 subscript 𝑐 𝑏 π‘š subscript 𝑐 π‘š superscript 𝑧 π‘š Gauss-hypergeometric-F π‘š 1 𝑐 π‘š 𝑏 𝑐 π‘š 1 1 1 𝑧 {\displaystyle{\displaystyle\frac{(c-b)_{m}}{(c)_{m}}F\left({-m,b\atop b-c-m+1% };1-z\right)=\frac{(c-b)_{m}}{(c)_{m}}z^{m}F\left({-m,1-c-m\atop b-c-m+1};1-% \frac{1}{z}\right)}}
\frac{(c-b)_{m}}{(c)_{m}}\hyperF@@{-m}{b}{b-c-m+1}{1-z} = \frac{(c-b)_{m}}{(c)_{m}}z^{m}\hyperF@@{-m}{1-c-m}{b-c-m+1}{1-\frac{1}{z}}

(c - b[m])/(c[m])*hypergeom([- m, b], [b - c - m + 1], 1 - z) = (c - b[m])/(c[m])*(z)^(m)* hypergeom([- m, 1 - c - m], [b - c - m + 1], 1 -(1)/(z))
Divide[Subscript[c - b, m],Subscript[c, m]]*Hypergeometric2F1[- m, b, b - c - m + 1, 1 - z] == Divide[Subscript[c - b, m],Subscript[c, m]]*(z)^(m)* Hypergeometric2F1[- m, 1 - c - m, b - c - m + 1, 1 -Divide[1,z]]
Failure Failure Error
Failed [206 / 300]
Result: Indeterminate
Test Values: {Rule[b, -1.5], Rule[c, -1.5], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[b, -1.5], Rule[c, -1.5], Rule[m, 2], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

... skip entries to safe data
15.8.E8 𝐅 ⁑ ( a , a + m c ; z ) = ( - z ) - a Ξ“ ⁑ ( a + m ) ⁒ βˆ‘ k = 0 m - 1 ( a ) k ⁒ ( m - k - 1 ) ! k ! ⁒ Ξ“ ⁑ ( c - a - k ) ⁒ z - k + ( - z ) - a Ξ“ ⁑ ( a ) ⁒ βˆ‘ k = 0 ∞ ( a + m ) k k ! ⁒ ( k + m ) ! ⁒ Ξ“ ⁑ ( c - a - k - m ) ⁒ ( - 1 ) k ⁒ z - k - m ⁒ ( ln ⁑ ( - z ) + ψ ⁑ ( k + 1 ) + ψ ⁑ ( k + m + 1 ) - ψ ⁑ ( a + k + m ) - ψ ⁑ ( c - a - k - m ) ) scaled-hypergeometric-bold-F π‘Ž π‘Ž π‘š 𝑐 𝑧 superscript 𝑧 π‘Ž Euler-Gamma π‘Ž π‘š superscript subscript π‘˜ 0 π‘š 1 subscript π‘Ž π‘˜ π‘š π‘˜ 1 π‘˜ Euler-Gamma 𝑐 π‘Ž π‘˜ superscript 𝑧 π‘˜ superscript 𝑧 π‘Ž Euler-Gamma π‘Ž superscript subscript π‘˜ 0 subscript π‘Ž π‘š π‘˜ π‘˜ π‘˜ π‘š Euler-Gamma 𝑐 π‘Ž π‘˜ π‘š superscript 1 π‘˜ superscript 𝑧 π‘˜ π‘š 𝑧 digamma π‘˜ 1 digamma π‘˜ π‘š 1 digamma π‘Ž π‘˜ π‘š digamma 𝑐 π‘Ž π‘˜ π‘š {\displaystyle{\displaystyle\mathbf{F}\left({a,a+m\atop c};z\right)=\frac{(-z)% ^{-a}}{\Gamma\left(a+m\right)}\sum_{k=0}^{m-1}\frac{(a)_{k}(m-k-1)!}{k!\Gamma% \left(c-a-k\right)}z^{-k}+\frac{(-z)^{-a}}{\Gamma\left(a\right)}\sum_{k=0}^{% \infty}\frac{(a+m)_{k}}{k!(k+m)!\Gamma\left(c-a-k-m\right)}(-1)^{k}z^{-k-m}\*% \left(\ln\left(-z\right)+\psi\left(k+1\right)+\psi\left(k+m+1\right)-\psi\left% (a+k+m\right)-\psi\left(c-a-k-m\right)\right)}}
\hyperOlverF@@{a}{a+m}{c}{z} = \frac{(-z)^{-a}}{\EulerGamma@{a+m}}\sum_{k=0}^{m-1}\frac{(a)_{k}(m-k-1)!}{k!\EulerGamma@{c-a-k}}z^{-k}+\frac{(-z)^{-a}}{\EulerGamma@{a}}\sum_{k=0}^{\infty}\frac{(a+m)_{k}}{k!(k+m)!\EulerGamma@{c-a-k-m}}(-1)^{k}z^{-k-m}\*\left(\ln@{-z}+\digamma@{k+1}+\digamma@{k+m+1}-\digamma@{a+k+m}-\digamma@{c-a-k-m}\right)
| z | > 1 , | ph ⁑ ( - z ) | < Ο€ , β„œ ⁑ ( a + m ) > 0 , β„œ ⁑ ( c - a - k ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ ( c - a - k - m ) > 0 , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence 𝑧 1 formulae-sequence phase 𝑧 πœ‹ formulae-sequence π‘Ž π‘š 0 formulae-sequence 𝑐 π‘Ž π‘˜ 0 formulae-sequence π‘Ž 0 formulae-sequence 𝑐 π‘Ž π‘˜ π‘š 0 formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|z|>1,|\operatorname{ph}\left(-z\right)|<\pi,\Re(a% +m)>0,\Re(c-a-k)>0,\Re a>0,\Re(c-a-k-m)>0,|z|<1,\Re(c+s)>0}}
hypergeom([a, a + m], [c], z)/GAMMA(c) = ((- z)^(- a))/(GAMMA(a + m))*sum((a[k]*factorial(m - k - 1))/(factorial(k)*GAMMA(c - a - k))*(z)^(- k), k = 0..m - 1)+((- z)^(- a))/(GAMMA(a))*sum((a + m[k])/(factorial(k)*factorial(k + m)*GAMMA(c - a - k - m))*(- 1)^(k)* (z)^(- k - m)*(ln(- z)+ Psi(k + 1)+ Psi(k + m + 1)- Psi(a + k + m)- Psi(c - a - k - m)), k = 0..infinity)
Hypergeometric2F1Regularized[a, a + m, c, z] == Divide[(- z)^(- a),Gamma[a + m]]*Sum[Divide[Subscript[a, k]*(m - k - 1)!,(k)!*Gamma[c - a - k]]*(z)^(- k), {k, 0, m - 1}, GenerateConditions->None]+Divide[(- z)^(- a),Gamma[a]]*Sum[Divide[Subscript[a + m, k],(k)!*(k + m)!*Gamma[c - a - k - m]]*(- 1)^(k)* (z)^(- k - m)*(Log[- z]+ PolyGamma[k + 1]+ PolyGamma[k + m + 1]- PolyGamma[a + k + m]- PolyGamma[c - a - k - m]), {k, 0, Infinity}, GenerateConditions->None]
Error Failure - Skip - No test values generated
15.8.E9 𝐅 ⁑ ( a , a + m c ; z ) = ( 1 - z ) - a Ξ“ ⁑ ( a + m ) ⁒ Ξ“ ⁑ ( c - a ) ⁒ βˆ‘ k = 0 m - 1 ( a ) k ⁒ ( c - a - m ) k ⁒ ( m - k - 1 ) ! k ! ⁒ ( z - 1 ) - k + ( - 1 ) m ⁒ ( 1 - z ) - a - m Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( c - a - m ) ⁒ βˆ‘ k = 0 ∞ ( a + m ) k ⁒ ( c - a ) k k ! ⁒ ( k + m ) ! ⁒ ( 1 - z ) - k ⁒ ( ln ⁑ ( 1 - z ) + ψ ⁑ ( k + 1 ) + ψ ⁑ ( k + m + 1 ) - ψ ⁑ ( a + k + m ) - ψ ⁑ ( c - a + k ) ) scaled-hypergeometric-bold-F π‘Ž π‘Ž π‘š 𝑐 𝑧 superscript 1 𝑧 π‘Ž Euler-Gamma π‘Ž π‘š Euler-Gamma 𝑐 π‘Ž superscript subscript π‘˜ 0 π‘š 1 subscript π‘Ž π‘˜ subscript 𝑐 π‘Ž π‘š π‘˜ π‘š π‘˜ 1 π‘˜ superscript 𝑧 1 π‘˜ superscript 1 π‘š superscript 1 𝑧 π‘Ž π‘š Euler-Gamma π‘Ž Euler-Gamma 𝑐 π‘Ž π‘š superscript subscript π‘˜ 0 subscript π‘Ž π‘š π‘˜ subscript 𝑐 π‘Ž π‘˜ π‘˜ π‘˜ π‘š superscript 1 𝑧 π‘˜ 1 𝑧 digamma π‘˜ 1 digamma π‘˜ π‘š 1 digamma π‘Ž π‘˜ π‘š digamma 𝑐 π‘Ž π‘˜ {\displaystyle{\displaystyle\mathbf{F}\left({a,a+m\atop c};z\right)=\frac{(1-z% )^{-a}}{\Gamma\left(a+m\right)\Gamma\left(c-a\right)}\sum_{k=0}^{m-1}\frac{(a)% _{k}(c-a-m)_{k}(m-k-1)!}{k!}(z-1)^{-k}+\frac{(-1)^{m}(1-z)^{-a-m}}{\Gamma\left% (a\right)\Gamma\left(c-a-m\right)}\sum_{k=0}^{\infty}\frac{(a+m)_{k}(c-a)_{k}}% {k!(k+m)!}(1-z)^{-k}\*(\ln\left(1-z\right)+\psi\left(k+1\right)+\psi\left(k+m+% 1\right)-\psi\left(a+k+m\right)-\psi\left(c-a+k\right))}}
\hyperOlverF@@{a}{a+m}{c}{z} = \frac{(1-z)^{-a}}{\EulerGamma@{a+m}\EulerGamma@{c-a}}\sum_{k=0}^{m-1}\frac{(a)_{k}(c-a-m)_{k}(m-k-1)!}{k!}(z-1)^{-k}+\frac{(-1)^{m}(1-z)^{-a-m}}{\EulerGamma@{a}\EulerGamma@{c-a-m}}\sum_{k=0}^{\infty}\frac{(a+m)_{k}(c-a)_{k}}{k!(k+m)!}(1-z)^{-k}\*(\ln@{1-z}+\digamma@{k+1}+\digamma@{k+m+1}-\digamma@{a+k+m}-\digamma@{c-a+k})
| z - 1 | > 1 , | ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( a + m ) > 0 , β„œ ⁑ ( c - a ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ ( c - a - m ) > 0 , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence 𝑧 1 1 formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence π‘Ž π‘š 0 formulae-sequence 𝑐 π‘Ž 0 formulae-sequence π‘Ž 0 formulae-sequence 𝑐 π‘Ž π‘š 0 formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|z-1|>1,|\operatorname{ph}\left(1-z\right)|<\pi,% \Re(a+m)>0,\Re(c-a)>0,\Re a>0,\Re(c-a-m)>0,|z|<1,\Re(c+s)>0}}
hypergeom([a, a + m], [c], z)/GAMMA(c) = ((1 - z)^(- a))/(GAMMA(a + m)*GAMMA(c - a))*sum((a[k]*c - a - m[k]*factorial(m - k - 1))/(factorial(k))*(z - 1)^(- k), k = 0..m - 1)+((- 1)^(m)*(1 - z)^(- a - m))/(GAMMA(a)*GAMMA(c - a - m))*sum((a + m[k]*c - a[k])/(factorial(k)*factorial(k + m))*(1 - z)^(- k)*(ln(1 - z)+ Psi(k + 1)+ Psi(k + m + 1)- Psi(a + k + m)- Psi(c - a + k)), k = 0..infinity)
Hypergeometric2F1Regularized[a, a + m, c, z] == Divide[(1 - z)^(- a),Gamma[a + m]*Gamma[c - a]]*Sum[Divide[Subscript[a, k]*Subscript[c - a - m, k]*(m - k - 1)!,(k)!]*(z - 1)^(- k), {k, 0, m - 1}, GenerateConditions->None]+Divide[(- 1)^(m)*(1 - z)^(- a - m),Gamma[a]*Gamma[c - a - m]]*Sum[Divide[Subscript[a + m, k]*Subscript[c - a, k],(k)!*(k + m)!]*(1 - z)^(- k)*(Log[1 - z]+ PolyGamma[k + 1]+ PolyGamma[k + m + 1]- PolyGamma[a + k + m]- PolyGamma[c - a + k]), {k, 0, Infinity}, GenerateConditions->None]
Error Aborted -
Failed [2 / 2]
Result: Plus[Complex[0.8934823398107985, 0.11625604883874943], Times[Complex[0.18357341911556996, 0.10033661972146816], NSum[Times[Power[Plus[1, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Times[-1, k]], Power[Factorial[k], -1], Power[Factorial[Plus[1, k]], -1], Plus[Log[Plus[1, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]], PolyGamma[0, Plus[1, k]], Times[-2, PolyGamma[0, Plus[1.5, k]]], PolyGamma[0, Plus[2, k]]], Power[Subscript[1.5, k], 2]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[Complex[-1.0916552187951503, -0.18372460978003777], Power[Subscript[0.5, 0], 2]]], {Rule[a, 0.5], Rule[c, 2], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

Result: Plus[Complex[0.8646684259719354, -0.05865467444211362], Times[Complex[0.17537516348927204, -0.04648067160197167], NSum[Times[Power[Plus[1, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]], Times[-1, k]], Power[Factorial[k], -1], Power[Factorial[Plus[1, k]], -1], Plus[Log[Plus[1, Times[Rational[-1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]], PolyGamma[0, Plus[1, k]], Times[-2, PolyGamma[0, Plus[1.5, k]]], PolyGamma[0, Plus[2, k]]], Power[Subscript[1.5, k], 2]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]], Times[Complex[-1.0517400191081774, 0.0910544077031535], Power[Subscript[0.5, 0], 2]]], {Rule[a, 0.5], Rule[c, 2], Rule[m, 1], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}

15.8.E10 𝐅 ⁑ ( a , b a + b + m ; z ) = 1 Ξ“ ⁑ ( a + m ) ⁒ Ξ“ ⁑ ( b + m ) ⁒ βˆ‘ k = 0 m - 1 ( a ) k ⁒ ( b ) k ⁒ ( m - k - 1 ) ! k ! ⁒ ( z - 1 ) k - ( z - 1 ) m Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( b ) ⁒ βˆ‘ k = 0 ∞ ( a + m ) k ⁒ ( b + m ) k k ! ⁒ ( k + m ) ! ⁒ ( 1 - z ) k ⁒ ( ln ⁑ ( 1 - z ) - ψ ⁑ ( k + 1 ) - ψ ⁑ ( k + m + 1 ) + ψ ⁑ ( a + k + m ) + ψ ⁑ ( b + k + m ) ) scaled-hypergeometric-bold-F π‘Ž 𝑏 π‘Ž 𝑏 π‘š 𝑧 1 Euler-Gamma π‘Ž π‘š Euler-Gamma 𝑏 π‘š superscript subscript π‘˜ 0 π‘š 1 subscript π‘Ž π‘˜ subscript 𝑏 π‘˜ π‘š π‘˜ 1 π‘˜ superscript 𝑧 1 π‘˜ superscript 𝑧 1 π‘š Euler-Gamma π‘Ž Euler-Gamma 𝑏 superscript subscript π‘˜ 0 subscript π‘Ž π‘š π‘˜ subscript 𝑏 π‘š π‘˜ π‘˜ π‘˜ π‘š superscript 1 𝑧 π‘˜ 1 𝑧 digamma π‘˜ 1 digamma π‘˜ π‘š 1 digamma π‘Ž π‘˜ π‘š digamma 𝑏 π‘˜ π‘š {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop a+b+m};z\right)=\frac{1}% {\Gamma\left(a+m\right)\Gamma\left(b+m\right)}\sum_{k=0}^{m-1}\frac{(a)_{k}(b)% _{k}(m-k-1)!}{k!}(z-1)^{k}-\frac{(z-1)^{m}}{\Gamma\left(a\right)\Gamma\left(b% \right)}\sum_{k=0}^{\infty}\frac{(a+m)_{k}(b+m)_{k}}{k!(k+m)!}(1-z)^{k}\*\left% (\ln\left(1-z\right)-\psi\left(k+1\right)-\psi\left(k+m+1\right)+\psi\left(a+k% +m\right)+\psi\left(b+k+m\right)\right)}}
\hyperOlverF@@{a}{b}{a+b+m}{z} = \frac{1}{\EulerGamma@{a+m}\EulerGamma@{b+m}}\sum_{k=0}^{m-1}\frac{(a)_{k}(b)_{k}(m-k-1)!}{k!}(z-1)^{k}-\frac{(z-1)^{m}}{\EulerGamma@{a}\EulerGamma@{b}}\sum_{k=0}^{\infty}\frac{(a+m)_{k}(b+m)_{k}}{k!(k+m)!}(1-z)^{k}\*\left(\ln@{1-z}-\digamma@{k+1}-\digamma@{k+m+1}+\digamma@{a+k+m}+\digamma@{b+k+m}\right)
| z - 1 | < 1 , | ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( a + m ) > 0 , β„œ ⁑ ( b + m ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ b > 0 , | z | < 1 , β„œ ⁑ ( ( a + b + m ) + s ) > 0 formulae-sequence 𝑧 1 1 formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence π‘Ž π‘š 0 formulae-sequence 𝑏 π‘š 0 formulae-sequence π‘Ž 0 formulae-sequence 𝑏 0 formulae-sequence 𝑧 1 π‘Ž 𝑏 π‘š 𝑠 0 {\displaystyle{\displaystyle|z-1|<1,|\operatorname{ph}\left(1-z\right)|<\pi,% \Re(a+m)>0,\Re(b+m)>0,\Re a>0,\Re b>0,|z|<1,\Re((a+b+m)+s)>0}}
hypergeom([a, b], [a + b + m], z)/GAMMA(a + b + m) = (1)/(GAMMA(a + m)*GAMMA(b + m))*sum((a[k]*b[k]*factorial(m - k - 1))/(factorial(k))*(z - 1)^(k), k = 0..m - 1)-((z - 1)^(m))/(GAMMA(a)*GAMMA(b))*sum((a + m[k]*b + m[k])/(factorial(k)*factorial(k + m))*(1 - z)^(k)*(ln(1 - z)- Psi(k + 1)- Psi(k + m + 1)+ Psi(a + k + m)+ Psi(b + k + m)), k = 0..infinity)
Hypergeometric2F1Regularized[a, b, a + b + m, z] == Divide[1,Gamma[a + m]*Gamma[b + m]]*Sum[Divide[Subscript[a, k]*Subscript[b, k]*(m - k - 1)!,(k)!]*(z - 1)^(k), {k, 0, m - 1}, GenerateConditions->None]-Divide[(z - 1)^(m),Gamma[a]*Gamma[b]]*Sum[Divide[Subscript[a + m, k]*Subscript[b + m, k],(k)!*(k + m)!]*(1 - z)^(k)*(Log[1 - z]- PolyGamma[k + 1]- PolyGamma[k + m + 1]+ PolyGamma[a + k + m]+ PolyGamma[b + k + m]), {k, 0, Infinity}, GenerateConditions->None]
Error Failure - Skipped - Because timed out
15.8.E11 𝐅 ⁑ ( a , b a + b + m ; z ) = z - a Ξ“ ⁑ ( a + m ) ⁒ βˆ‘ k = 0 m - 1 ( a ) k ⁒ ( m - k - 1 ) ! k ! ⁒ Ξ“ ⁑ ( b + m - k ) ⁒ ( 1 - 1 z ) k - z - a Ξ“ ⁑ ( a ) ⁒ βˆ‘ k = 0 ∞ ( a + m ) k k ! ⁒ ( k + m ) ! ⁒ Ξ“ ⁑ ( b - k ) ⁒ ( - 1 ) k ⁒ ( 1 - 1 z ) k + m ⁒ ( ln ⁑ ( 1 - z z ) - ψ ⁑ ( k + 1 ) - ψ ⁑ ( k + m + 1 ) + ψ ⁑ ( a + k + m ) + ψ ⁑ ( b - k ) ) scaled-hypergeometric-bold-F π‘Ž 𝑏 π‘Ž 𝑏 π‘š 𝑧 superscript 𝑧 π‘Ž Euler-Gamma π‘Ž π‘š superscript subscript π‘˜ 0 π‘š 1 subscript π‘Ž π‘˜ π‘š π‘˜ 1 π‘˜ Euler-Gamma 𝑏 π‘š π‘˜ superscript 1 1 𝑧 π‘˜ superscript 𝑧 π‘Ž Euler-Gamma π‘Ž superscript subscript π‘˜ 0 subscript π‘Ž π‘š π‘˜ π‘˜ π‘˜ π‘š Euler-Gamma 𝑏 π‘˜ superscript 1 π‘˜ superscript 1 1 𝑧 π‘˜ π‘š 1 𝑧 𝑧 digamma π‘˜ 1 digamma π‘˜ π‘š 1 digamma π‘Ž π‘˜ π‘š digamma 𝑏 π‘˜ {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop a+b+m};z\right)=\frac{z^% {-a}}{\Gamma\left(a+m\right)}\sum_{k=0}^{m-1}\frac{(a)_{k}(m-k-1)!}{k!\Gamma% \left(b+m-k\right)}\left(1-\frac{1}{z}\right)^{k}-\frac{z^{-a}}{\Gamma\left(a% \right)}\sum_{k=0}^{\infty}\frac{(a+m)_{k}}{k!(k+m)!\Gamma\left(b-k\right)}(-1% )^{k}\left(1-\frac{1}{z}\right)^{k+m}\*\left(\ln\left(\frac{1-z}{z}\right)-% \psi\left(k+1\right)-\psi\left(k+m+1\right)+\psi\left(a+k+m\right)+\psi\left(b% -k\right)\right)}}
\hyperOlverF@@{a}{b}{a+b+m}{z} = \frac{z^{-a}}{\EulerGamma@{a+m}}\sum_{k=0}^{m-1}\frac{(a)_{k}(m-k-1)!}{k!\EulerGamma@{b+m-k}}\left(1-\frac{1}{z}\right)^{k}-\frac{z^{-a}}{\EulerGamma@{a}}\sum_{k=0}^{\infty}\frac{(a+m)_{k}}{k!(k+m)!\EulerGamma@{b-k}}(-1)^{k}\left(1-\frac{1}{z}\right)^{k+m}\*\left(\ln\left(\frac{1-z}{z}\right)-\digamma@{k+1}-\digamma@{k+m+1}+\digamma@{a+k+m}+\digamma@{b-k}\right)
β„œ ⁑ z > 1 2 , | ph ⁑ z | < Ο€ , | ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( a + m ) > 0 , β„œ ⁑ ( b + m - k ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ ( b - k ) > 0 , | z | < 1 , β„œ ⁑ ( ( a + b + m ) + s ) > 0 formulae-sequence 𝑧 1 2 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence π‘Ž π‘š 0 formulae-sequence 𝑏 π‘š π‘˜ 0 formulae-sequence π‘Ž 0 formulae-sequence 𝑏 π‘˜ 0 formulae-sequence 𝑧 1 π‘Ž 𝑏 π‘š 𝑠 0 {\displaystyle{\displaystyle\Re z>\tfrac{1}{2},|\operatorname{ph}z|<\pi,|% \operatorname{ph}\left(1-z\right)|<\pi,\Re(a+m)>0,\Re(b+m-k)>0,\Re a>0,\Re(b-k% )>0,|z|<1,\Re((a+b+m)+s)>0}}
hypergeom([a, b], [a + b + m], z)/GAMMA(a + b + m) = ((z)^(- a))/(GAMMA(a + m))*sum((a[k]*factorial(m - k - 1))/(factorial(k)*GAMMA(b + m - k))*(1 -(1)/(z))^(k), k = 0..m - 1)-((z)^(- a))/(GAMMA(a))*sum((a + m[k])/(factorial(k)*factorial(k + m)*GAMMA(b - k))*(- 1)^(k)*(1 -(1)/(z))^(k + m)*(ln((1 - z)/(z))- Psi(k + 1)- Psi(k + m + 1)+ Psi(a + k + m)+ Psi(b - k)), k = 0..infinity)
Hypergeometric2F1Regularized[a, b, a + b + m, z] == Divide[(z)^(- a),Gamma[a + m]]*Sum[Divide[Subscript[a, k]*(m - k - 1)!,(k)!*Gamma[b + m - k]]*(1 -Divide[1,z])^(k), {k, 0, m - 1}, GenerateConditions->None]-Divide[(z)^(- a),Gamma[a]]*Sum[Divide[Subscript[a + m, k],(k)!*(k + m)!*Gamma[b - k]]*(- 1)^(k)*(1 -Divide[1,z])^(k + m)*(Log[Divide[1 - z,z]]- PolyGamma[k + 1]- PolyGamma[k + m + 1]+ PolyGamma[a + k + m]+ PolyGamma[b - k]), {k, 0, Infinity}, GenerateConditions->None]
Translation Error Translation Error - -
15.8.E13 F ⁑ ( a , b 2 ⁒ b ; z ) = ( 1 - 1 2 ⁒ z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 b + 1 2 ; ( z 2 - z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 2 𝑏 𝑧 superscript 1 1 2 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 1 2 𝑏 1 2 superscript 𝑧 2 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop 2b};z\right)=\left(1-\tfrac{1}{2% }z\right)^{-a}F\left({\tfrac{1}{2}a,\tfrac{1}{2}a+\tfrac{1}{2}\atop b+\tfrac{1% }{2}};\left(\frac{z}{2-z}\right)^{2}\right)}}
\hyperF@@{a}{b}{2b}{z} = \left(1-\tfrac{1}{2}z\right)^{-a}\hyperF@@{\tfrac{1}{2}a}{\tfrac{1}{2}a+\tfrac{1}{2}}{b+\tfrac{1}{2}}{\left(\frac{z}{2-z}\right)^{2}}
| ph ⁑ ( 1 - z ) | < Ο€ phase 1 𝑧 πœ‹ {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
hypergeom([a, b], [2*b], z) = (1 -(1)/(2)*z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [b +(1)/(2)], ((z)/(2 - z))^(2))
Hypergeometric2F1[a, b, 2*b, z] == (1 -Divide[1,2]*z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], b +Divide[1,2], (Divide[z,2 - z])^(2)]
Failure Failure
Failed [74 / 180]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, z = 1/2*3^(1/2)+1/2*I}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [67 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.8.E14 F ⁑ ( a , b 2 ⁒ b ; z ) = ( 1 - z ) - a / 2 ⁒ F ⁑ ( 1 2 ⁒ a , b - 1 2 ⁒ a b + 1 2 ; z 2 4 ⁒ z - 4 ) Gauss-hypergeometric-F π‘Ž 𝑏 2 𝑏 𝑧 superscript 1 𝑧 π‘Ž 2 Gauss-hypergeometric-F 1 2 π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 2 superscript 𝑧 2 4 𝑧 4 {\displaystyle{\displaystyle F\left({a,b\atop 2b};z\right)=\left(1-z\right)^{-% \ifrac{a}{2}}F\left({\tfrac{1}{2}a,b-\tfrac{1}{2}a\atop b+\tfrac{1}{2}};\frac{% z^{2}}{4z-4}\right)}}
\hyperF@@{a}{b}{2b}{z} = \left(1-z\right)^{-\ifrac{a}{2}}\hyperF@@{\tfrac{1}{2}a}{b-\tfrac{1}{2}a}{b+\tfrac{1}{2}}{\frac{z^{2}}{4z-4}}
| ph ⁑ ( 1 - z ) | < Ο€ phase 1 𝑧 πœ‹ {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi}}
hypergeom([a, b], [2*b], z) = (1 - z)^(-(a)/(2))* hypergeom([(1)/(2)*a, b -(1)/(2)*a], [b +(1)/(2)], ((z)^(2))/(4*z - 4))
Hypergeometric2F1[a, b, 2*b, z] == (1 - z)^(-Divide[a,2])* Hypergeometric2F1[Divide[1,2]*a, b -Divide[1,2]*a, b +Divide[1,2], Divide[(z)^(2),4*z - 4]]
Failure Failure
Failed [74 / 180]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, z = 1/2*3^(1/2)+1/2*I}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [67 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.8.E15 F ⁑ ( a , b a - b + 1 ; z ) = ( 1 + z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 a - b + 1 ; 4 ⁒ z ( 1 + z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑧 superscript 1 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 1 2 π‘Ž 𝑏 1 4 𝑧 superscript 1 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop a-b+1};z\right)=(1+z)^{-a}F\left% ({\frac{1}{2}a,\frac{1}{2}a+\frac{1}{2}\atop a-b+1};\frac{4z}{(1+z)^{2}}\right% )}}
\hyperF@@{a}{b}{a-b+1}{z} = (1+z)^{-a}\hyperF@@{\frac{1}{2}a}{\frac{1}{2}a+\frac{1}{2}}{a-b+1}{\frac{4z}{(1+z)^{2}}}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
hypergeom([a, b], [a - b + 1], z) = (1 + z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [a - b + 1], (4*z)/((1 + z)^(2)))
Hypergeometric2F1[a, b, a - b + 1, z] == (1 + z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], a - b + 1, Divide[4*z,(1 + z)^(2)]]
Failure Failure
Failed [6 / 36]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = 3/2, z = 1/2}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -1/2, z = 1/2}

... skip entries to safe data
Failed [30 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.8.E16 F ⁑ ( a , b a - b + 1 ; z ) = ( 1 - z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a - b + 1 2 a - b + 1 ; - 4 ⁒ z ( 1 - z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑧 superscript 1 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 4 𝑧 superscript 1 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop a-b+1};z\right)=(1-z)^{-a}F\left% ({\frac{1}{2}a,\frac{1}{2}a-b+\frac{1}{2}\atop a-b+1};\frac{-4z}{(1-z)^{2}}% \right)}}
\hyperF@@{a}{b}{a-b+1}{z} = (1-z)^{-a}\hyperF@@{\frac{1}{2}a}{\frac{1}{2}a-b+\frac{1}{2}}{a-b+1}{\frac{-4z}{(1-z)^{2}}}
| z | < 1 𝑧 1 {\displaystyle{\displaystyle|z|<1}}
hypergeom([a, b], [a - b + 1], z) = (1 - z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a - b +(1)/(2)], [a - b + 1], (- 4*z)/((1 - z)^(2)))
Hypergeometric2F1[a, b, a - b + 1, z] == (1 - z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a - b +Divide[1,2], a - b + 1, Divide[- 4*z,(1 - z)^(2)]]
Failure Failure
Failed [6 / 36]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = 3/2, z = 1/2}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -1/2, z = 1/2}

... skip entries to safe data
Failed [30 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.8.E17 F ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = ( 1 - 2 ⁒ z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 1 2 ⁒ ( a + b + 1 ) ; 4 ⁒ z ⁒ ( z - 1 ) ( 1 - 2 ⁒ z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 𝑧 superscript 1 2 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 1 2 1 2 π‘Ž 𝑏 1 4 𝑧 𝑧 1 superscript 1 2 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop\frac{1}{2}(a+b+1)};z\right)=(1-2% z)^{-a}F\left({\frac{1}{2}a,\frac{1}{2}a+\frac{1}{2}\atop\frac{1}{2}(a+b+1)};% \frac{4z(z-1)}{(1-2z)^{2}}\right)}}
\hyperF@@{a}{b}{\frac{1}{2}(a+b+1)}{z} = (1-2z)^{-a}\hyperF@@{\frac{1}{2}a}{\frac{1}{2}a+\frac{1}{2}}{\frac{1}{2}(a+b+1)}{\frac{4z(z-1)}{(1-2z)^{2}}}

hypergeom([a, b], [(1)/(2)*(a + b + 1)], z) = (1 - 2*z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [(1)/(2)*(a + b + 1)], (4*z*(z - 1))/((1 - 2*z)^(2)))
Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z] == (1 - 2*z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], Divide[1,2]*(a + b + 1), Divide[4*z*(z - 1),(1 - 2*z)^(2)]]
Failure Failure Successful [Tested: 36]
Failed [3 / 36]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 0.5], Rule[z, 0]}

Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[b, -0.5], Rule[z, 0]}

... skip entries to safe data
15.8.E18 F ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ b 1 2 ⁒ ( a + b + 1 ) ; 4 ⁒ z ⁒ ( 1 - z ) ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 𝑧 Gauss-hypergeometric-F 1 2 π‘Ž 1 2 𝑏 1 2 π‘Ž 𝑏 1 4 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left({a,b\atop\frac{1}{2}(a+b+1)};z\right)=F% \left({\frac{1}{2}a,\frac{1}{2}b\atop\frac{1}{2}(a+b+1)};4z(1-z)\right)}}
\hyperF@@{a}{b}{\frac{1}{2}(a+b+1)}{z} = \hyperF@@{\frac{1}{2}a}{\frac{1}{2}b}{\frac{1}{2}(a+b+1)}{4z(1-z)}

hypergeom([a, b], [(1)/(2)*(a + b + 1)], z) = hypergeom([(1)/(2)*a, (1)/(2)*b], [(1)/(2)*(a + b + 1)], 4*z*(1 - z))
Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z] == Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*b, Divide[1,2]*(a + b + 1), 4*z*(1 - z)]
Failure Failure Successful [Tested: 36]
Failed [3 / 36]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 0.5], Rule[z, 0]}

Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[b, -0.5], Rule[z, 0]}

... skip entries to safe data
15.8.E19 F ⁑ ( a , 1 - a c ; z ) = ( 1 - 2 ⁒ z ) 1 - a - c ⁒ ( 1 - z ) c - 1 ⁒ F ⁑ ( 1 2 ⁒ ( a + c ) , 1 2 ⁒ ( a + c - 1 ) c ; 4 ⁒ z ⁒ ( z - 1 ) ( 1 - 2 ⁒ z ) 2 ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 𝑐 𝑧 superscript 1 2 𝑧 1 π‘Ž 𝑐 superscript 1 𝑧 𝑐 1 Gauss-hypergeometric-F 1 2 π‘Ž 𝑐 1 2 π‘Ž 𝑐 1 𝑐 4 𝑧 𝑧 1 superscript 1 2 𝑧 2 {\displaystyle{\displaystyle F\left({a,1-a\atop c};z\right)=(1-2z)^{1-a-c}(1-z% )^{c-1}F\left({\frac{1}{2}(a+c),\frac{1}{2}(a+c-1)\atop c};\frac{4z(z-1)}{(1-2% z)^{2}}\right)}}
\hyperF@@{a}{1-a}{c}{z} = (1-2z)^{1-a-c}(1-z)^{c-1}\hyperF@@{\frac{1}{2}(a+c)}{\frac{1}{2}(a+c-1)}{c}{\frac{4z(z-1)}{(1-2z)^{2}}}

hypergeom([a, 1 - a], [c], z) = (1 - 2*z)^(1 - a - c)*(1 - z)^(c - 1)* hypergeom([(1)/(2)*(a + c), (1)/(2)*(a + c - 1)], [c], (4*z*(z - 1))/((1 - 2*z)^(2)))
Hypergeometric2F1[a, 1 - a, c, z] == (1 - 2*z)^(1 - a - c)*(1 - z)^(c - 1)* Hypergeometric2F1[Divide[1,2]*(a + c), Divide[1,2]*(a + c - 1), c, Divide[4*z*(z - 1),(1 - 2*z)^(2)]]
Failure Failure Successful [Tested: 36] Successful [Tested: 36]
15.8.E20 F ⁑ ( a , 1 - a c ; z ) = ( 1 - z ) c - 1 ⁒ F ⁑ ( 1 2 ⁒ ( c - a ) , 1 2 ⁒ ( a + c - 1 ) c ; 4 ⁒ z ⁒ ( 1 - z ) ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 𝑐 𝑧 superscript 1 𝑧 𝑐 1 Gauss-hypergeometric-F 1 2 𝑐 π‘Ž 1 2 π‘Ž 𝑐 1 𝑐 4 𝑧 1 𝑧 {\displaystyle{\displaystyle F\left({a,1-a\atop c};z\right)=(1-z)^{c-1}F\left(% {\frac{1}{2}(c-a),\frac{1}{2}(a+c-1)\atop c};4z(1-z)\right)}}
\hyperF@@{a}{1-a}{c}{z} = (1-z)^{c-1}\hyperF@@{\frac{1}{2}(c-a)}{\frac{1}{2}(a+c-1)}{c}{4z(1-z)}

hypergeom([a, 1 - a], [c], z) = (1 - z)^(c - 1)* hypergeom([(1)/(2)*(c - a), (1)/(2)*(a + c - 1)], [c], 4*z*(1 - z))
Hypergeometric2F1[a, 1 - a, c, z] == (1 - z)^(c - 1)* Hypergeometric2F1[Divide[1,2]*(c - a), Divide[1,2]*(a + c - 1), c, 4*z*(1 - z)]
Failure Failure Successful [Tested: 36] Successful [Tested: 36]
15.8.E21 F ⁑ ( a , b a - b + 1 ; z ) = ( 1 + z ) - 2 ⁒ a ⁒ F ⁑ ( a , a - b + 1 2 2 ⁒ a - 2 ⁒ b + 1 ; 4 ⁒ z ( 1 + z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑧 superscript 1 𝑧 2 π‘Ž Gauss-hypergeometric-F π‘Ž π‘Ž 𝑏 1 2 2 π‘Ž 2 𝑏 1 4 𝑧 superscript 1 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop a-b+1};z\right)=\left(1+\sqrt{z}% \right)^{-2a}F\left({a,a-b+\tfrac{1}{2}\atop 2a-2b+1};\frac{4\sqrt{z}}{(1+% \sqrt{z})^{2}}\right)}}
\hyperF@@{a}{b}{a-b+1}{z} = \left(1+\sqrt{z}\right)^{-2a}\hyperF@@{a}{a-b+\tfrac{1}{2}}{2a-2b+1}{\frac{4\sqrt{z}}{(1+\sqrt{z})^{2}}}
| ph ⁑ z | < Ο€ , | z | < 1 formulae-sequence phase 𝑧 πœ‹ 𝑧 1 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|z|<1}}
hypergeom([a, b], [a - b + 1], z) = (1 +sqrt(z))^(- 2*a)* hypergeom([a, a - b +(1)/(2)], [2*a - 2*b + 1], (4*sqrt(z))/((1 +sqrt(z))^(2)))
Hypergeometric2F1[a, b, a - b + 1, z] == (1 +Sqrt[z])^(- 2*a)* Hypergeometric2F1[a, a - b +Divide[1,2], 2*a - 2*b + 1, Divide[4*Sqrt[z],(1 +Sqrt[z])^(2)]]
Failure Failure
Failed [11 / 36]
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = 3/2, z = 1/2}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -3/2, b = -1/2, z = 1/2}

... skip entries to safe data
Failed [55 / 180]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.8.E22 F ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = ( 1 - z - 1 - 1 1 - z - 1 + 1 ) a ⁒ F ⁑ ( a , 1 2 ⁒ ( a + b ) a + b ; 4 ⁒ 1 - z - 1 ( 1 - z - 1 + 1 ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 𝑧 superscript 1 superscript 𝑧 1 1 1 superscript 𝑧 1 1 π‘Ž Gauss-hypergeometric-F π‘Ž 1 2 π‘Ž 𝑏 π‘Ž 𝑏 4 1 superscript 𝑧 1 superscript 1 superscript 𝑧 1 1 2 {\displaystyle{\displaystyle F\left({a,b\atop\tfrac{1}{2}(a+b+1)};z\right)=% \left(\frac{\sqrt{1-z^{-1}}-1}{\sqrt{1-z^{-1}}+1}\right)^{a}F\left({a,\tfrac{1% }{2}(a+b)\atop a+b};\frac{4\sqrt{1-z^{-1}}}{\left(\sqrt{1-z^{-1}}+1\right)^{2}% }\right)}}
\hyperF@@{a}{b}{\tfrac{1}{2}(a+b+1)}{z} = \left(\frac{\sqrt{1-z^{-1}}-1}{\sqrt{1-z^{-1}}+1}\right)^{a}\hyperF@@{a}{\tfrac{1}{2}(a+b)}{a+b}{\frac{4\sqrt{1-z^{-1}}}{\left(\sqrt{1-z^{-1}}+1\right)^{2}}}
| ph ⁑ ( - z ) | < Ο€ phase 𝑧 πœ‹ {\displaystyle{\displaystyle|\operatorname{ph}\left(-z\right)|<\pi}}
hypergeom([a, b], [(1)/(2)*(a + b + 1)], z) = ((sqrt(1 - (z)^(- 1))- 1)/(sqrt(1 - (z)^(- 1))+ 1))^(a)* hypergeom([a, (1)/(2)*(a + b)], [a + b], (4*sqrt(1 - (z)^(- 1)))/((sqrt(1 - (z)^(- 1))+ 1)^(2)))
Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z] == (Divide[Sqrt[1 - (z)^(- 1)]- 1,Sqrt[1 - (z)^(- 1)]+ 1])^(a)* Hypergeometric2F1[a, Divide[1,2]*(a + b), a + b, Divide[4*Sqrt[1 - (z)^(- 1)],(Sqrt[1 - (z)^(- 1)]+ 1)^(2)]]
Failure Failure Error
Failed [36 / 36]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[z, 0]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[z, 0]}

... skip entries to safe data
15.8.E23 F ⁑ ( a , 1 - a c ; z ) = ( 1 - z - 1 - 1 ) 1 - a ⁒ ( 1 - z - 1 + 1 ) a - 2 ⁒ c + 1 ⁒ ( 1 - z - 1 ) c - 1 ⁒ F ⁑ ( c - a , c - 1 2 2 ⁒ c - 1 ; 4 ⁒ 1 - z - 1 ( 1 - z - 1 + 1 ) 2 ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 𝑐 𝑧 superscript 1 superscript 𝑧 1 1 1 π‘Ž superscript 1 superscript 𝑧 1 1 π‘Ž 2 𝑐 1 superscript 1 superscript 𝑧 1 𝑐 1 Gauss-hypergeometric-F 𝑐 π‘Ž 𝑐 1 2 2 𝑐 1 4 1 superscript 𝑧 1 superscript 1 superscript 𝑧 1 1 2 {\displaystyle{\displaystyle F\left({a,1-a\atop c};z\right)=\left(\sqrt{1-z^{-% 1}}-1\right)^{1-a}\left(\sqrt{1-z^{-1}}+1\right)^{a-2c+1}\left(1-z^{-1}\right)% ^{c-1}F\left({c-a,c-\tfrac{1}{2}\atop 2c-1};\frac{4\sqrt{1-z^{-1}}}{\left(% \sqrt{1-z^{-1}}+1\right)^{2}}\right)}}
\hyperF@@{a}{1-a}{c}{z} = \left(\sqrt{1-z^{-1}}-1\right)^{1-a}\left(\sqrt{1-z^{-1}}+1\right)^{a-2c+1}\left(1-z^{-1}\right)^{c-1}\hyperF@@{c-a}{c-\tfrac{1}{2}}{2c-1}{\frac{4\sqrt{1-z^{-1}}}{\left(\sqrt{1-z^{-1}}+1\right)^{2}}}
| ph ⁑ ( - z ) | < Ο€ phase 𝑧 πœ‹ {\displaystyle{\displaystyle|\operatorname{ph}\left(-z\right)|<\pi}}
hypergeom([a, 1 - a], [c], z) = (sqrt(1 - (z)^(- 1))- 1)^(1 - a)*(sqrt(1 - (z)^(- 1))+ 1)^(a - 2*c + 1)*(1 - (z)^(- 1))^(c - 1)* hypergeom([c - a, c -(1)/(2)], [2*c - 1], (4*sqrt(1 - (z)^(- 1)))/((sqrt(1 - (z)^(- 1))+ 1)^(2)))
Hypergeometric2F1[a, 1 - a, c, z] == (Sqrt[1 - (z)^(- 1)]- 1)^(1 - a)*(Sqrt[1 - (z)^(- 1)]+ 1)^(a - 2*c + 1)*(1 - (z)^(- 1))^(c - 1)* Hypergeometric2F1[c - a, c -Divide[1,2], 2*c - 1, Divide[4*Sqrt[1 - (z)^(- 1)],(Sqrt[1 - (z)^(- 1)]+ 1)^(2)]]
Failure Failure Error
Failed [36 / 36]
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[c, -1.5], Rule[z, 0]}

Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[c, 1.5], Rule[z, 0]}

... skip entries to safe data
15.8.E24 F ⁑ ( a , b a - b + 1 ; z ) = ( 1 - z ) - a ⁒ Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ a - b + 1 ) ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a - b + 1 2 1 2 ; ( z + 1 z - 1 ) 2 ) + ( 1 + z ) ⁒ ( 1 - z ) - a - 1 ⁒ Ξ“ ⁑ ( a - b + 1 ) ⁒ Ξ“ ⁑ ( - 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ a ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ a - b + 1 2 ) ⁒ F ⁑ ( 1 2 ⁒ a + 1 2 , 1 2 ⁒ a - b + 1 3 2 ; ( z + 1 z - 1 ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑧 superscript 1 𝑧 π‘Ž Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma 1 2 Euler-Gamma 1 2 π‘Ž 1 2 Euler-Gamma 1 2 π‘Ž 𝑏 1 Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 𝑏 1 2 1 2 superscript 𝑧 1 𝑧 1 2 1 𝑧 superscript 1 𝑧 π‘Ž 1 Euler-Gamma π‘Ž 𝑏 1 Euler-Gamma 1 2 Euler-Gamma 1 2 π‘Ž Euler-Gamma 1 2 π‘Ž 𝑏 1 2 Gauss-hypergeometric-F 1 2 π‘Ž 1 2 1 2 π‘Ž 𝑏 1 3 2 superscript 𝑧 1 𝑧 1 2 {\displaystyle{\displaystyle F\left({a,b\atop a-b+1};z\right)=(1-z)^{-a}\frac{% \Gamma\left(a-b+1\right)\Gamma\left(\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}% {2}a+\tfrac{1}{2}\right)\Gamma\left(\tfrac{1}{2}a-b+1\right)}F\left({\tfrac{1}% {2}a,\tfrac{1}{2}a-b+\tfrac{1}{2}\atop\tfrac{1}{2}};\left(\frac{z+1}{z-1}% \right)^{2}\right)+(1+z)(1-z)^{-a-1}\frac{\Gamma\left(a-b+1\right)\Gamma\left(% -\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}a\right)\Gamma\left(\tfrac{1}{2}% a-b+\tfrac{1}{2}\right)}F\left({\tfrac{1}{2}a+\tfrac{1}{2},\tfrac{1}{2}a-b+1% \atop\tfrac{3}{2}};\left(\frac{z+1}{z-1}\right)^{2}\right)}}
\hyperF@@{a}{b}{a-b+1}{z} = (1-z)^{-a}\frac{\EulerGamma@{a-b+1}\EulerGamma@{\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}a-b+1}}\hyperF@@{\tfrac{1}{2}a}{\tfrac{1}{2}a-b+\tfrac{1}{2}}{\tfrac{1}{2}}{\left(\frac{z+1}{z-1}\right)^{2}}+(1+z)(1-z)^{-a-1}\frac{\EulerGamma@{a-b+1}\EulerGamma@{-\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}a-b+\tfrac{1}{2}}}\hyperF@@{\tfrac{1}{2}a+\tfrac{1}{2}}{\tfrac{1}{2}a-b+1}{\tfrac{3}{2}}{\left(\frac{z+1}{z-1}\right)^{2}}
| ph ⁑ ( - z ) | < Ο€ , β„œ ⁑ ( a - b + 1 ) > 0 , β„œ ⁑ ( 1 2 ⁒ a + 1 2 ) > 0 , β„œ ⁑ ( 1 2 ⁒ a - b + 1 ) > 0 , β„œ ⁑ ( 1 2 ⁒ a ) > 0 , β„œ ⁑ ( 1 2 ⁒ a - b + 1 2 ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence π‘Ž 𝑏 1 0 formulae-sequence 1 2 π‘Ž 1 2 0 formulae-sequence 1 2 π‘Ž 𝑏 1 0 formulae-sequence 1 2 π‘Ž 0 1 2 π‘Ž 𝑏 1 2 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(-z\right)|<\pi,\Re(a-b+1)>% 0,\Re(\tfrac{1}{2}a+\tfrac{1}{2})>0,\Re(\tfrac{1}{2}a-b+1)>0,\Re(\tfrac{1}{2}a% )>0,\Re(\tfrac{1}{2}a-b+\tfrac{1}{2})>0}}
hypergeom([a, b], [a - b + 1], z) = (1 - z)^(- a)*(GAMMA(a - b + 1)*GAMMA((1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*a - b + 1))*hypergeom([(1)/(2)*a, (1)/(2)*a - b +(1)/(2)], [(1)/(2)], ((z + 1)/(z - 1))^(2))+(1 + z)*(1 - z)^(- a - 1)*(GAMMA(a - b + 1)*GAMMA(-(1)/(2)))/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*a - b +(1)/(2)))*hypergeom([(1)/(2)*a +(1)/(2), (1)/(2)*a - b + 1], [(3)/(2)], ((z + 1)/(z - 1))^(2))
Hypergeometric2F1[a, b, a - b + 1, z] == (1 - z)^(- a)*Divide[Gamma[a - b + 1]*Gamma[Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*a - b + 1]]*Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a - b +Divide[1,2], Divide[1,2], (Divide[z + 1,z - 1])^(2)]+(1 + z)*(1 - z)^(- a - 1)*Divide[Gamma[a - b + 1]*Gamma[-Divide[1,2]],Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*a - b +Divide[1,2]]]*Hypergeometric2F1[Divide[1,2]*a +Divide[1,2], Divide[1,2]*a - b + 1, Divide[3,2], (Divide[z + 1,z - 1])^(2)]
Failure Failure Error Skip - No test values generated
15.8.E25 F ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = Ξ“ ⁑ ( 1 2 ⁒ ( a + b + 1 ) ) ⁒ Ξ“ ⁑ ( 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ a + 1 2 ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b + 1 2 ) ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ b 1 2 ; ( 1 - 2 ⁒ z ) 2 ) + ( 1 - 2 ⁒ z ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ ( a + b + 1 ) ) ⁒ Ξ“ ⁑ ( - 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ a ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ b ) ⁒ F ⁑ ( 1 2 ⁒ a + 1 2 , 1 2 ⁒ b + 1 2 3 2 ; ( 1 - 2 ⁒ z ) 2 ) Gauss-hypergeometric-F π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 𝑧 Euler-Gamma 1 2 π‘Ž 𝑏 1 Euler-Gamma 1 2 Euler-Gamma 1 2 π‘Ž 1 2 Euler-Gamma 1 2 𝑏 1 2 Gauss-hypergeometric-F 1 2 π‘Ž 1 2 𝑏 1 2 superscript 1 2 𝑧 2 1 2 𝑧 Euler-Gamma 1 2 π‘Ž 𝑏 1 Euler-Gamma 1 2 Euler-Gamma 1 2 π‘Ž Euler-Gamma 1 2 𝑏 Gauss-hypergeometric-F 1 2 π‘Ž 1 2 1 2 𝑏 1 2 3 2 superscript 1 2 𝑧 2 {\displaystyle{\displaystyle F\left({a,b\atop\tfrac{1}{2}(a+b+1)};z\right)=% \frac{\Gamma\left(\tfrac{1}{2}(a+b+1)\right)\Gamma\left(\tfrac{1}{2}\right)}{% \Gamma\left(\tfrac{1}{2}a+\tfrac{1}{2}\right)\Gamma\left(\tfrac{1}{2}b+\tfrac{% 1}{2}\right)}F\left({\tfrac{1}{2}a,\tfrac{1}{2}b\atop\tfrac{1}{2}};(1-2z)^{2}% \right)+(1-2z)\frac{\Gamma\left(\tfrac{1}{2}(a+b+1)\right)\Gamma\left(-\tfrac{% 1}{2}\right)}{\Gamma\left(\tfrac{1}{2}a\right)\Gamma\left(\tfrac{1}{2}b\right)% }F\left({\tfrac{1}{2}a+\tfrac{1}{2},\tfrac{1}{2}b+\tfrac{1}{2}\atop\tfrac{3}{2% }};(1-2z)^{2}\right)}}
\hyperF@@{a}{b}{\tfrac{1}{2}(a+b+1)}{z} = \frac{\EulerGamma@{\tfrac{1}{2}(a+b+1)}\EulerGamma@{\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a+\tfrac{1}{2}}\EulerGamma@{\tfrac{1}{2}b+\tfrac{1}{2}}}\hyperF@@{\tfrac{1}{2}a}{\tfrac{1}{2}b}{\tfrac{1}{2}}{(1-2z)^{2}}+(1-2z)\frac{\EulerGamma@{\tfrac{1}{2}(a+b+1)}\EulerGamma@{-\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}b}}\hyperF@@{\tfrac{1}{2}a+\tfrac{1}{2}}{\tfrac{1}{2}b+\tfrac{1}{2}}{\tfrac{3}{2}}{(1-2z)^{2}}
| ph ⁑ z | < Ο€ , | ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( 1 2 ⁒ ( a + b + 1 ) ) > 0 , β„œ ⁑ ( 1 2 ⁒ a + 1 2 ) > 0 , β„œ ⁑ ( 1 2 ⁒ b + 1 2 ) > 0 , β„œ ⁑ ( 1 2 ⁒ a ) > 0 , β„œ ⁑ ( 1 2 ⁒ b ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence 1 2 π‘Ž 𝑏 1 0 formulae-sequence 1 2 π‘Ž 1 2 0 formulae-sequence 1 2 𝑏 1 2 0 formulae-sequence 1 2 π‘Ž 0 1 2 𝑏 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|\operatorname{ph}\left(1% -z\right)|<\pi,\Re(\tfrac{1}{2}(a+b+1))>0,\Re(\tfrac{1}{2}a+\tfrac{1}{2})>0,% \Re(\tfrac{1}{2}b+\tfrac{1}{2})>0,\Re(\tfrac{1}{2}a)>0,\Re(\tfrac{1}{2}b)>0}}
hypergeom([a, b], [(1)/(2)*(a + b + 1)], z) = (GAMMA((1)/(2)*(a + b + 1))*GAMMA((1)/(2)))/(GAMMA((1)/(2)*a +(1)/(2))*GAMMA((1)/(2)*b +(1)/(2)))*hypergeom([(1)/(2)*a, (1)/(2)*b], [(1)/(2)], (1 - 2*z)^(2))+(1 - 2*z)*(GAMMA((1)/(2)*(a + b + 1))*GAMMA(-(1)/(2)))/(GAMMA((1)/(2)*a)*GAMMA((1)/(2)*b))*hypergeom([(1)/(2)*a +(1)/(2), (1)/(2)*b +(1)/(2)], [(3)/(2)], (1 - 2*z)^(2))
Hypergeometric2F1[a, b, Divide[1,2]*(a + b + 1), z] == Divide[Gamma[Divide[1,2]*(a + b + 1)]*Gamma[Divide[1,2]],Gamma[Divide[1,2]*a +Divide[1,2]]*Gamma[Divide[1,2]*b +Divide[1,2]]]*Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*b, Divide[1,2], (1 - 2*z)^(2)]+(1 - 2*z)*Divide[Gamma[Divide[1,2]*(a + b + 1)]*Gamma[-Divide[1,2]],Gamma[Divide[1,2]*a]*Gamma[Divide[1,2]*b]]*Hypergeometric2F1[Divide[1,2]*a +Divide[1,2], Divide[1,2]*b +Divide[1,2], Divide[3,2], (1 - 2*z)^(2)]
Failure Failure Error Skip - No test values generated
15.8.E26 F ⁑ ( a , 1 - a c ; z ) = ( 1 - z ) c - 1 ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ ( c - a + 1 ) ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ c + 1 2 ⁒ a ) ⁒ F ⁑ ( 1 2 ⁒ c - 1 2 ⁒ a , 1 2 ⁒ c + 1 2 ⁒ a - 1 2 1 2 ; ( 1 - 2 ⁒ z ) 2 ) + ( 1 - 2 ⁒ z ) ⁒ ( 1 - z ) c - 1 ⁒ Ξ“ ⁑ ( c ) ⁒ Ξ“ ⁑ ( - 1 2 ) Ξ“ ⁑ ( 1 2 ⁒ c - 1 2 ⁒ a ) ⁒ Ξ“ ⁑ ( 1 2 ⁒ ( c + a - 1 ) ) ⁒ F ⁑ ( 1 2 ⁒ c - 1 2 ⁒ a + 1 2 , 1 2 ⁒ c + 1 2 ⁒ a 3 2 ; ( 1 - 2 ⁒ z ) 2 ) Gauss-hypergeometric-F π‘Ž 1 π‘Ž 𝑐 𝑧 superscript 1 𝑧 𝑐 1 Euler-Gamma 𝑐 Euler-Gamma 1 2 Euler-Gamma 1 2 𝑐 π‘Ž 1 Euler-Gamma 1 2 𝑐 1 2 π‘Ž Gauss-hypergeometric-F 1 2 𝑐 1 2 π‘Ž 1 2 𝑐 1 2 π‘Ž 1 2 1 2 superscript 1 2 𝑧 2 1 2 𝑧 superscript 1 𝑧 𝑐 1 Euler-Gamma 𝑐 Euler-Gamma 1 2 Euler-Gamma 1 2 𝑐 1 2 π‘Ž Euler-Gamma 1 2 𝑐 π‘Ž 1 Gauss-hypergeometric-F 1 2 𝑐 1 2 π‘Ž 1 2 1 2 𝑐 1 2 π‘Ž 3 2 superscript 1 2 𝑧 2 {\displaystyle{\displaystyle F\left({a,1-a\atop c};z\right)=(1-z)^{c-1}\frac{% \Gamma\left(c\right)\Gamma\left(\tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}(% c-a+1)\right)\Gamma\left(\tfrac{1}{2}c+\tfrac{1}{2}a\right)}F\left({\tfrac{1}{% 2}c-\tfrac{1}{2}a,\tfrac{1}{2}c+\tfrac{1}{2}a-\tfrac{1}{2}\atop\tfrac{1}{2}};(% 1-2z)^{2}\right)+(1-2z)(1-z)^{c-1}\frac{\Gamma\left(c\right)\Gamma\left(-% \tfrac{1}{2}\right)}{\Gamma\left(\tfrac{1}{2}c-\tfrac{1}{2}a\right)\Gamma\left% (\tfrac{1}{2}(c+a-1)\right)}F\left({\tfrac{1}{2}c-\tfrac{1}{2}a+\tfrac{1}{2},% \tfrac{1}{2}c+\tfrac{1}{2}a\atop\tfrac{3}{2}};(1-2z)^{2}\right)}}
\hyperF@@{a}{1-a}{c}{z} = (1-z)^{c-1}\frac{\EulerGamma@{c}\EulerGamma@{\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}(c-a+1)}\EulerGamma@{\tfrac{1}{2}c+\tfrac{1}{2}a}}\hyperF@@{\tfrac{1}{2}c-\tfrac{1}{2}a}{\tfrac{1}{2}c+\tfrac{1}{2}a-\tfrac{1}{2}}{\tfrac{1}{2}}{(1-2z)^{2}}+(1-2z)(1-z)^{c-1}\frac{\EulerGamma@{c}\EulerGamma@{-\tfrac{1}{2}}}{\EulerGamma@{\tfrac{1}{2}c-\tfrac{1}{2}a}\EulerGamma@{\tfrac{1}{2}(c+a-1)}}\hyperF@@{\tfrac{1}{2}c-\tfrac{1}{2}a+\tfrac{1}{2}}{\tfrac{1}{2}c+\tfrac{1}{2}a}{\tfrac{3}{2}}{(1-2z)^{2}}
| ph ⁑ z | < Ο€ , | ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ c > 0 , β„œ ⁑ ( 1 2 ⁒ ( c - a + 1 ) ) > 0 , β„œ ⁑ ( 1 2 ⁒ c + 1 2 ⁒ a ) > 0 , β„œ ⁑ ( 1 2 ⁒ c - 1 2 ⁒ a ) > 0 , β„œ ⁑ ( 1 2 ⁒ ( c + a - 1 ) ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence 𝑐 0 formulae-sequence 1 2 𝑐 π‘Ž 1 0 formulae-sequence 1 2 𝑐 1 2 π‘Ž 0 formulae-sequence 1 2 𝑐 1 2 π‘Ž 0 1 2 𝑐 π‘Ž 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|\operatorname{ph}\left(1% -z\right)|<\pi,\Re c>0,\Re(\tfrac{1}{2}(c-a+1))>0,\Re(\tfrac{1}{2}c+\tfrac{1}{% 2}a)>0,\Re(\tfrac{1}{2}c-\tfrac{1}{2}a)>0,\Re(\tfrac{1}{2}(c+a-1))>0}}
hypergeom([a, 1 - a], [c], z) = (1 - z)^(c - 1)*(GAMMA(c)*GAMMA((1)/(2)))/(GAMMA((1)/(2)*(c - a + 1))*GAMMA((1)/(2)*c +(1)/(2)*a))*hypergeom([(1)/(2)*c -(1)/(2)*a, (1)/(2)*c +(1)/(2)*a -(1)/(2)], [(1)/(2)], (1 - 2*z)^(2))+(1 - 2*z)*(1 - z)^(c - 1)*(GAMMA(c)*GAMMA(-(1)/(2)))/(GAMMA((1)/(2)*c -(1)/(2)*a)*GAMMA((1)/(2)*(c + a - 1)))*hypergeom([(1)/(2)*c -(1)/(2)*a +(1)/(2), (1)/(2)*c +(1)/(2)*a], [(3)/(2)], (1 - 2*z)^(2))
Hypergeometric2F1[a, 1 - a, c, z] == (1 - z)^(c - 1)*Divide[Gamma[c]*Gamma[Divide[1,2]],Gamma[Divide[1,2]*(c - a + 1)]*Gamma[Divide[1,2]*c +Divide[1,2]*a]]*Hypergeometric2F1[Divide[1,2]*c -Divide[1,2]*a, Divide[1,2]*c +Divide[1,2]*a -Divide[1,2], Divide[1,2], (1 - 2*z)^(2)]+(1 - 2*z)*(1 - z)^(c - 1)*Divide[Gamma[c]*Gamma[-Divide[1,2]],Gamma[Divide[1,2]*c -Divide[1,2]*a]*Gamma[Divide[1,2]*(c + a - 1)]]*Hypergeometric2F1[Divide[1,2]*c -Divide[1,2]*a +Divide[1,2], Divide[1,2]*c +Divide[1,2]*a, Divide[3,2], (1 - 2*z)^(2)]
Failure Failure Error Skip - No test values generated
15.8.E27 2 ⁒ Ξ“ ⁑ ( 1 2 ) ⁒ Ξ“ ⁑ ( a + b + 1 2 ) Ξ“ ⁑ ( a + 1 2 ) ⁒ Ξ“ ⁑ ( b + 1 2 ) ⁒ F ⁑ ( a , b ; 1 2 ; z ) = F ⁑ ( 2 ⁒ a , 2 ⁒ b ; a + b + 1 2 ; 1 2 - 1 2 ⁒ z ) + F ⁑ ( 2 ⁒ a , 2 ⁒ b ; a + b + 1 2 ; 1 2 + 1 2 ⁒ z ) 2 Euler-Gamma 1 2 Euler-Gamma π‘Ž 𝑏 1 2 Euler-Gamma π‘Ž 1 2 Euler-Gamma 𝑏 1 2 Gauss-hypergeometric-F π‘Ž 𝑏 1 2 𝑧 Gauss-hypergeometric-F 2 π‘Ž 2 𝑏 π‘Ž 𝑏 1 2 1 2 1 2 𝑧 Gauss-hypergeometric-F 2 π‘Ž 2 𝑏 π‘Ž 𝑏 1 2 1 2 1 2 𝑧 {\displaystyle{\displaystyle\frac{2\Gamma\left(\tfrac{1}{2}\right)\Gamma\left(% a+b+\tfrac{1}{2}\right)}{\Gamma\left(a+\tfrac{1}{2}\right)\Gamma\left(b+\tfrac% {1}{2}\right)}F\left(a,b;\tfrac{1}{2};z\right)=F\left(2a,2b;a+b+\tfrac{1}{2};% \tfrac{1}{2}-\tfrac{1}{2}\sqrt{z}\right)+F\left(2a,2b;a+b+\tfrac{1}{2};\tfrac{% 1}{2}+\tfrac{1}{2}\sqrt{z}\right)}}
\frac{2\EulerGamma@{\tfrac{1}{2}}\EulerGamma@{a+b+\tfrac{1}{2}}}{\EulerGamma@{a+\tfrac{1}{2}}\EulerGamma@{b+\tfrac{1}{2}}}\hyperF@{a}{b}{\tfrac{1}{2}}{z} = \hyperF@{2a}{2b}{a+b+\tfrac{1}{2}}{\tfrac{1}{2}-\tfrac{1}{2}\sqrt{z}}+\hyperF@{2a}{2b}{a+b+\tfrac{1}{2}}{\tfrac{1}{2}+\tfrac{1}{2}\sqrt{z}}
| ph ⁑ z | < Ο€ , | ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( a + b + 1 2 ) > 0 , β„œ ⁑ ( a + 1 2 ) > 0 , β„œ ⁑ ( b + 1 2 ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence π‘Ž 𝑏 1 2 0 formulae-sequence π‘Ž 1 2 0 𝑏 1 2 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|\operatorname{ph}\left(1% -z\right)|<\pi,\Re(a+b+\tfrac{1}{2})>0,\Re(a+\tfrac{1}{2})>0,\Re(b+\tfrac{1}{2% })>0}}
(2*GAMMA((1)/(2))*GAMMA(a + b +(1)/(2)))/(GAMMA(a +(1)/(2))*GAMMA(b +(1)/(2)))*hypergeom([a, b], [(1)/(2)], z) = hypergeom([2*a, 2*b], [a + b +(1)/(2)], (1)/(2)-(1)/(2)*sqrt(z))+ hypergeom([2*a, 2*b], [a + b +(1)/(2)], (1)/(2)+(1)/(2)*sqrt(z))
Divide[2*Gamma[Divide[1,2]]*Gamma[a + b +Divide[1,2]],Gamma[a +Divide[1,2]]*Gamma[b +Divide[1,2]]]*Hypergeometric2F1[a, b, Divide[1,2], z] == Hypergeometric2F1[2*a, 2*b, a + b +Divide[1,2], Divide[1,2]-Divide[1,2]*Sqrt[z]]+ Hypergeometric2F1[2*a, 2*b, a + b +Divide[1,2], Divide[1,2]+Divide[1,2]*Sqrt[z]]
Failure Failure Successful [Tested: 45] Successful [Tested: 45]
15.8.E28 2 ⁒ z ⁒ Ξ“ ⁑ ( - 1 2 ) ⁒ Ξ“ ⁑ ( a + b - 1 2 ) Ξ“ ⁑ ( a - 1 2 ) ⁒ Ξ“ ⁑ ( b - 1 2 ) ⁒ F ⁑ ( a , b ; 3 2 ; z ) = F ⁑ ( 2 ⁒ a - 1 , 2 ⁒ b - 1 ; a + b - 1 2 ; 1 2 - 1 2 ⁒ z ) - F ⁑ ( 2 ⁒ a - 1 , 2 ⁒ b - 1 ; a + b - 1 2 ; 1 2 + 1 2 ⁒ z ) 2 𝑧 Euler-Gamma 1 2 Euler-Gamma π‘Ž 𝑏 1 2 Euler-Gamma π‘Ž 1 2 Euler-Gamma 𝑏 1 2 Gauss-hypergeometric-F π‘Ž 𝑏 3 2 𝑧 Gauss-hypergeometric-F 2 π‘Ž 1 2 𝑏 1 π‘Ž 𝑏 1 2 1 2 1 2 𝑧 Gauss-hypergeometric-F 2 π‘Ž 1 2 𝑏 1 π‘Ž 𝑏 1 2 1 2 1 2 𝑧 {\displaystyle{\displaystyle\frac{2\sqrt{z}\Gamma\left(-\tfrac{1}{2}\right)% \Gamma\left(a+b-\tfrac{1}{2}\right)}{\Gamma\left(a-\tfrac{1}{2}\right)\Gamma% \left(b-\tfrac{1}{2}\right)}F\left(a,b;\tfrac{3}{2};z\right)=F\left(2a-1,2b-1;% a+b-\tfrac{1}{2};\tfrac{1}{2}-\tfrac{1}{2}\sqrt{z}\right)-F\left(2a-1,2b-1;a+b% -\tfrac{1}{2};\tfrac{1}{2}+\tfrac{1}{2}\sqrt{z}\right)}}
\frac{2\sqrt{z}\EulerGamma@{-\tfrac{1}{2}}\EulerGamma@{a+b-\tfrac{1}{2}}}{\EulerGamma@{a-\tfrac{1}{2}}\EulerGamma@{b-\tfrac{1}{2}}}\hyperF@{a}{b}{\tfrac{3}{2}}{z} = \hyperF@{2a-1}{2b-1}{a+b-\tfrac{1}{2}}{\tfrac{1}{2}-\tfrac{1}{2}\sqrt{z}}-\hyperF@{2a-1}{2b-1}{a+b-\tfrac{1}{2}}{\tfrac{1}{2}+\tfrac{1}{2}\sqrt{z}}
| ph ⁑ z | < Ο€ , | ph ⁑ ( 1 - z ) | < Ο€ , β„œ ⁑ ( a + b - 1 2 ) > 0 , β„œ ⁑ ( a - 1 2 ) > 0 , β„œ ⁑ ( b - 1 2 ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence π‘Ž 𝑏 1 2 0 formulae-sequence π‘Ž 1 2 0 𝑏 1 2 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|\operatorname{ph}\left(1% -z\right)|<\pi,\Re(a+b-\tfrac{1}{2})>0,\Re(a-\tfrac{1}{2})>0,\Re(b-\tfrac{1}{2% })>0}}
(2*sqrt(z)*GAMMA(-(1)/(2))*GAMMA(a + b -(1)/(2)))/(GAMMA(a -(1)/(2))*GAMMA(b -(1)/(2)))*hypergeom([a, b], [(3)/(2)], z) = hypergeom([2*a - 1, 2*b - 1], [a + b -(1)/(2)], (1)/(2)-(1)/(2)*sqrt(z))- hypergeom([2*a - 1, 2*b - 1], [a + b -(1)/(2)], (1)/(2)+(1)/(2)*sqrt(z))
Divide[2*Sqrt[z]*Gamma[-Divide[1,2]]*Gamma[a + b -Divide[1,2]],Gamma[a -Divide[1,2]]*Gamma[b -Divide[1,2]]]*Hypergeometric2F1[a, b, Divide[3,2], z] == Hypergeometric2F1[2*a - 1, 2*b - 1, a + b -Divide[1,2], Divide[1,2]-Divide[1,2]*Sqrt[z]]- Hypergeometric2F1[2*a - 1, 2*b - 1, a + b -Divide[1,2], Divide[1,2]+Divide[1,2]*Sqrt[z]]
Failure Failure Error Skip - No test values generated
15.8.E29 F ⁑ ( a , 1 3 ⁒ a + 1 3 2 3 ⁒ a + 2 3 ; z ) = ( 1 + z ) - 2 ⁒ a ⁒ F ⁑ ( a , 2 3 ⁒ a + 1 6 4 3 ⁒ a + 1 3 ; 4 ⁒ z ( 1 + z ) 2 ) Gauss-hypergeometric-F π‘Ž 1 3 π‘Ž 1 3 2 3 π‘Ž 2 3 𝑧 superscript 1 𝑧 2 π‘Ž Gauss-hypergeometric-F π‘Ž 2 3 π‘Ž 1 6 4 3 π‘Ž 1 3 4 𝑧 superscript 1 𝑧 2 {\displaystyle{\displaystyle F\left({a,\tfrac{1}{3}a+\tfrac{1}{3}\atop\tfrac{2% }{3}a+\tfrac{2}{3}};z\right)=\left(1+\sqrt{z}\right)^{-2a}\*F\left({a,\tfrac{2% }{3}a+\tfrac{1}{6}\atop\tfrac{4}{3}a+\tfrac{1}{3}};\frac{4\sqrt{z}}{(1+\sqrt{z% })^{2}}\right)}}
\hyperF@@{a}{\tfrac{1}{3}a+\tfrac{1}{3}}{\tfrac{2}{3}a+\tfrac{2}{3}}{z} = \left(1+\sqrt{z}\right)^{-2a}\*\hyperF@@{a}{\tfrac{2}{3}a+\tfrac{1}{6}}{\tfrac{4}{3}a+\tfrac{1}{3}}{\frac{4\sqrt{z}}{(1+\sqrt{z})^{2}}}

hypergeom([a, (1)/(3)*a +(1)/(3)], [(2)/(3)*a +(2)/(3)], z) = (1 +sqrt(z))^(- 2*a)* hypergeom([a, (2)/(3)*a +(1)/(6)], [(4)/(3)*a +(1)/(3)], (4*sqrt(z))/((1 +sqrt(z))^(2)))
Hypergeometric2F1[a, Divide[1,3]*a +Divide[1,3], Divide[2,3]*a +Divide[2,3], z] == (1 +Sqrt[z])^(- 2*a)* Hypergeometric2F1[a, Divide[2,3]*a +Divide[1,6], Divide[4,3]*a +Divide[1,3], Divide[4*Sqrt[z],(1 +Sqrt[z])^(2)]]
Failure Failure
Failed [25 / 42]
Result: .2121145592-.5120898515*I
Test Values: {a = -3/2, z = 1/2*3^(1/2)+1/2*I}

Result: 2.582409423-.3e-9*I
Test Values: {a = -3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [10 / 42]
Result: Complex[-0.4773575227812281, -0.2756024942774353]
Test Values: {Rule[a, -1.5], Rule[z, 1.5]}

Result: Complex[-1.2380680865464244, -0.7147989430426637]
Test Values: {Rule[a, -1.5], Rule[z, 2]}

... skip entries to safe data
15.8.E30 ( 1 - 1 2 ⁒ z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 1 3 ⁒ a + 5 6 ; ( z 2 - z ) 2 ) = F ⁑ ( a , 1 3 ⁒ a + 1 3 2 3 ⁒ a + 2 3 ; z ) superscript 1 1 2 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 1 2 1 3 π‘Ž 5 6 superscript 𝑧 2 𝑧 2 Gauss-hypergeometric-F π‘Ž 1 3 π‘Ž 1 3 2 3 π‘Ž 2 3 𝑧 {\displaystyle{\displaystyle\left(1-\tfrac{1}{2}z\right)^{-a}F\left({\tfrac{1}% {2}a,\tfrac{1}{2}a+\tfrac{1}{2}\atop\tfrac{1}{3}a+\tfrac{5}{6}};\left(\frac{z}% {2-z}\right)^{2}\right)=F\left({a,\tfrac{1}{3}a+\tfrac{1}{3}\atop\tfrac{2}{3}a% +\tfrac{2}{3}};z\right)}}
\left(1-\tfrac{1}{2}z\right)^{-a}\hyperF@@{\tfrac{1}{2}a}{\tfrac{1}{2}a+\tfrac{1}{2}}{\tfrac{1}{3}a+\tfrac{5}{6}}{\left(\frac{z}{2-z}\right)^{2}} = \hyperF@@{a}{\tfrac{1}{3}a+\tfrac{1}{3}}{\tfrac{2}{3}a+\tfrac{2}{3}}{z}

(1 -(1)/(2)*z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [(1)/(3)*a +(5)/(6)], ((z)/(2 - z))^(2)) = hypergeom([a, (1)/(3)*a +(1)/(3)], [(2)/(3)*a +(2)/(3)], z)
(1 -Divide[1,2]*z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], Divide[1,3]*a +Divide[5,6], (Divide[z,2 - z])^(2)] == Hypergeometric2F1[a, Divide[1,3]*a +Divide[1,3], Divide[2,3]*a +Divide[2,3], z]
Failure Failure
Failed [6 / 42]
Result: Float(undefined)+Float(undefined)*I
Test Values: {a = -3/2, z = 2}

Result: Float(infinity)+Float(infinity)*I
Test Values: {a = 3/2, z = 2}

... skip entries to safe data
Failed [6 / 42]
Result: Complex[-0.7147989430426644, 0.7147989430426637]
Test Values: {Rule[a, -1.5], Rule[z, 2]}

Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[z, 2]}

... skip entries to safe data
15.8.E30 F ⁑ ( a , 1 3 ⁒ a + 1 3 2 3 ⁒ a + 2 3 ; z ) = ( 1 + z ) - a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 2 3 ⁒ a + 2 3 ; 4 ⁒ z ( 1 + z ) 2 ) Gauss-hypergeometric-F π‘Ž 1 3 π‘Ž 1 3 2 3 π‘Ž 2 3 𝑧 superscript 1 𝑧 π‘Ž Gauss-hypergeometric-F 1 2 π‘Ž 1 2 π‘Ž 1 2 2 3 π‘Ž 2 3 4 𝑧 superscript 1 𝑧 2 {\displaystyle{\displaystyle F\left({a,\tfrac{1}{3}a+\tfrac{1}{3}\atop\tfrac{2% }{3}a+\tfrac{2}{3}};z\right)=(1+z)^{-a}F\left({\tfrac{1}{2}a,\tfrac{1}{2}a+% \tfrac{1}{2}\atop\tfrac{2}{3}a+\tfrac{2}{3}};\frac{4z}{(1+z)^{2}}\right)}}
\hyperF@@{a}{\tfrac{1}{3}a+\tfrac{1}{3}}{\tfrac{2}{3}a+\tfrac{2}{3}}{z} = (1+z)^{-a}\hyperF@@{\tfrac{1}{2}a}{\tfrac{1}{2}a+\tfrac{1}{2}}{\tfrac{2}{3}a+\tfrac{2}{3}}{\frac{4z}{(1+z)^{2}}}

hypergeom([a, (1)/(3)*a +(1)/(3)], [(2)/(3)*a +(2)/(3)], z) = (1 + z)^(- a)* hypergeom([(1)/(2)*a, (1)/(2)*a +(1)/(2)], [(2)/(3)*a +(2)/(3)], (4*z)/((1 + z)^(2)))
Hypergeometric2F1[a, Divide[1,3]*a +Divide[1,3], Divide[2,3]*a +Divide[2,3], z] == (1 + z)^(- a)* Hypergeometric2F1[Divide[1,2]*a, Divide[1,2]*a +Divide[1,2], Divide[2,3]*a +Divide[2,3], Divide[4*z,(1 + z)^(2)]]
Failure Failure
Failed [30 / 42]
Result: .2121145619-.5120898515*I
Test Values: {a = -3/2, z = 1/2*3^(1/2)+1/2*I}

Result: 2.582409420-.7e-9*I
Test Values: {a = -3/2, z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [10 / 42]
Result: Complex[-0.477357522781229, -0.2756024942774353]
Test Values: {Rule[a, -1.5], Rule[z, 1.5]}

Result: Complex[-1.238068086546428, -0.7147989430426637]
Test Values: {Rule[a, -1.5], Rule[z, 2]}

... skip entries to safe data
15.8.E31 F ⁑ ( 3 ⁒ a , 3 ⁒ a + 1 2 4 ⁒ a + 2 3 ; z ) = ( 1 - 9 8 ⁒ z ) - 2 ⁒ a ⁒ F ⁑ ( a , a + 1 2 2 ⁒ a + 5 6 ; 27 ⁒ z 2 ⁒ ( z - 1 ) ( 9 ⁒ z - 8 ) 2 ) Gauss-hypergeometric-F 3 π‘Ž 3 π‘Ž 1 2 4 π‘Ž 2 3 𝑧 superscript 1 9 8 𝑧 2 π‘Ž Gauss-hypergeometric-F π‘Ž π‘Ž 1 2 2 π‘Ž 5 6 27 superscript 𝑧 2 𝑧 1 superscript 9 𝑧 8 2 {\displaystyle{\displaystyle F\left({3a,3a+\frac{1}{2}\atop 4a+\frac{2}{3}};z% \right)=\left(1-\tfrac{9}{8}z\right)^{-2a}\*F\left({a,a+\frac{1}{2}\atop 2a+% \frac{5}{6}};\frac{27z^{2}(z-1)}{(9z-8)^{2}}\right)}}
\hyperF@@{3a}{3a+\frac{1}{2}}{4a+\frac{2}{3}}{z} = \left(1-\tfrac{9}{8}z\right)^{-2a}\*\hyperF@@{a}{a+\frac{1}{2}}{2a+\frac{5}{6}}{\frac{27z^{2}(z-1)}{(9z-8)^{2}}}

hypergeom([3*a, 3*a +(1)/(2)], [4*a +(2)/(3)], z) = (1 -(9)/(8)*z)^(- 2*a)* hypergeom([a, a +(1)/(2)], [2*a +(5)/(6)], (27*(z)^(2)*(z - 1))/((9*z - 8)^(2)))
Hypergeometric2F1[3*a, 3*a +Divide[1,2], 4*a +Divide[2,3], z] == (1 -Divide[9,8]*z)^(- 2*a)* Hypergeometric2F1[a, a +Divide[1,2], 2*a +Divide[5,6], Divide[27*(z)^(2)*(z - 1),(9*z - 8)^(2)]]
Failure Failure Successful [Tested: 6] Successful [Tested: 6]
15.8.E32 ( 1 - z 3 ) a ( - z ) 3 ⁒ a ⁒ ( 1 Ξ“ ⁑ ( a + 2 3 ) ⁒ Ξ“ ⁑ ( 2 3 ) ⁒ F ⁑ ( a , a + 1 3 2 3 ; z - 3 ) + e 1 3 ⁒ Ο€ ⁒ i z ⁒ Ξ“ ⁑ ( a ) ⁒ Ξ“ ⁑ ( 4 3 ) ⁒ F ⁑ ( a + 1 3 , a + 2 3 4 3 ; z - 3 ) ) = 3 3 2 ⁒ a + 1 2 ⁒ e 1 2 ⁒ a ⁒ Ο€ ⁒ i ⁒ Ξ“ ⁑ ( a + 1 3 ) ⁒ ( 1 - ΞΆ ) a 2 ⁒ Ο€ ⁒ Ξ“ ⁑ ( 2 ⁒ a + 2 3 ) ⁒ ( - ΞΆ ) 2 ⁒ a ⁒ F ⁑ ( a + 1 3 , 3 ⁒ a 2 ⁒ a + 2 3 ; ΞΆ - 1 ) superscript 1 superscript 𝑧 3 π‘Ž superscript 𝑧 3 π‘Ž 1 Euler-Gamma π‘Ž 2 3 Euler-Gamma 2 3 Gauss-hypergeometric-F π‘Ž π‘Ž 1 3 2 3 superscript 𝑧 3 superscript 𝑒 1 3 πœ‹ imaginary-unit 𝑧 Euler-Gamma π‘Ž Euler-Gamma 4 3 Gauss-hypergeometric-F π‘Ž 1 3 π‘Ž 2 3 4 3 superscript 𝑧 3 superscript 3 3 2 π‘Ž 1 2 superscript 𝑒 1 2 π‘Ž πœ‹ imaginary-unit Euler-Gamma π‘Ž 1 3 superscript 1 𝜁 π‘Ž 2 πœ‹ Euler-Gamma 2 π‘Ž 2 3 superscript 𝜁 2 π‘Ž Gauss-hypergeometric-F π‘Ž 1 3 3 π‘Ž 2 π‘Ž 2 3 superscript 𝜁 1 {\displaystyle{\displaystyle\frac{\left(1-z^{3}\right)^{a}}{\left(-z\right)^{3% a}}\left(\frac{1}{\Gamma\left(a+\frac{2}{3}\right)\Gamma\left(\frac{2}{3}% \right)}F\left({a,a+\frac{1}{3}\atop\frac{2}{3}};z^{-3}\right)+\frac{e^{\frac{% 1}{3}\pi\mathrm{i}}}{z\Gamma\left(a\right)\Gamma\left(\frac{4}{3}\right)}F% \left({a+\frac{1}{3},a+\frac{2}{3}\atop\frac{4}{3}};z^{-3}\right)\right)=\frac% {3^{\frac{3}{2}a+\frac{1}{2}}e^{\frac{1}{2}a\pi\mathrm{i}}\Gamma\left(a+\frac{% 1}{3}\right)(1-\zeta)^{a}}{2\pi\Gamma\left(2a+\frac{2}{3}\right)(-\zeta)^{2a}}% F\left({a+\frac{1}{3},3a\atop 2a+\frac{2}{3}};\zeta^{-1}\right)}}
\frac{\left(1-z^{3}\right)^{a}}{\left(-z\right)^{3a}}\left(\frac{1}{\EulerGamma@{a+\frac{2}{3}}\EulerGamma@{\frac{2}{3}}}\hyperF@@{a}{a+\frac{1}{3}}{\frac{2}{3}}{z^{-3}}+\frac{e^{\frac{1}{3}\pi\iunit}}{z\EulerGamma@{a}\EulerGamma@{\frac{4}{3}}}\hyperF@@{a+\frac{1}{3}}{a+\frac{2}{3}}{\frac{4}{3}}{z^{-3}}\right) = \frac{3^{\frac{3}{2}a+\frac{1}{2}}e^{\frac{1}{2}a\pi\iunit}\EulerGamma@{a+\frac{1}{3}}(1-\zeta)^{a}}{2\pi\EulerGamma@{2a+\frac{2}{3}}(-\zeta)^{2a}}\hyperF@@{a+\frac{1}{3}}{3a}{2a+\frac{2}{3}}{\zeta^{-1}}
| z | > 1 , | ph ⁑ ( - z ) | < 1 3 ⁒ Ο€ , β„œ ⁑ ( a + 2 3 ) > 0 , β„œ ⁑ a > 0 , β„œ ⁑ ( a + 1 3 ) > 0 , β„œ ⁑ ( 2 ⁒ a + 2 3 ) > 0 formulae-sequence 𝑧 1 formulae-sequence phase 𝑧 1 3 πœ‹ formulae-sequence π‘Ž 2 3 0 formulae-sequence π‘Ž 0 formulae-sequence π‘Ž 1 3 0 2 π‘Ž 2 3 0 {\displaystyle{\displaystyle|z|>1,|\operatorname{ph}\left(-z\right)|<\frac{1}{% 3}\pi,\Re(a+\frac{2}{3})>0,\Re a>0,\Re(a+\frac{1}{3})>0,\Re(2a+\frac{2}{3})>0}}
((1 - (z)^(3))^(a))/((- z)^(3*a))*((1)/(GAMMA(a +(2)/(3))*GAMMA((2)/(3)))*hypergeom([a, a +(1)/(3)], [(2)/(3)], (z)^(- 3))+(exp((1)/(3)*Pi*I))/(z*GAMMA(a)*GAMMA((4)/(3)))*hypergeom([a +(1)/(3), a +(2)/(3)], [(4)/(3)], (z)^(- 3))) = ((3)^((3)/(2)*a +(1)/(2))* exp((1)/(2)*a*Pi*I)*GAMMA(a +(1)/(3))*(1 - zeta)^(a))/(2*Pi*GAMMA(2*a +(2)/(3))*(- zeta)^(2*a))*hypergeom([a +(1)/(3), 3*a], [2*a +(2)/(3)], (zeta)^(- 1))
Divide[(1 - (z)^(3))^(a),(- z)^(3*a)]*(Divide[1,Gamma[a +Divide[2,3]]*Gamma[Divide[2,3]]]*Hypergeometric2F1[a, a +Divide[1,3], Divide[2,3], (z)^(- 3)]+Divide[Exp[Divide[1,3]*Pi*I],z*Gamma[a]*Gamma[Divide[4,3]]]*Hypergeometric2F1[a +Divide[1,3], a +Divide[2,3], Divide[4,3], (z)^(- 3)]) == Divide[(3)^(Divide[3,2]*a +Divide[1,2])* Exp[Divide[1,2]*a*Pi*I]*Gamma[a +Divide[1,3]]*(1 - \[Zeta])^(a),2*Pi*Gamma[2*a +Divide[2,3]]*(- \[Zeta])^(2*a)]*Hypergeometric2F1[a +Divide[1,3], 3*a, 2*a +Divide[2,3], \[Zeta]^(- 1)]
Failure Failure Error Skip - No test values generated
15.8.E33 F ⁑ ( 1 3 , 2 3 1 ; 1 - ( 1 - z 1 + 2 ⁒ z ) 3 ) = ( 1 + 2 ⁒ z ) ⁒ F ⁑ ( 1 3 , 2 3 1 ; z 3 ) Gauss-hypergeometric-F 1 3 2 3 1 1 superscript 1 𝑧 1 2 𝑧 3 1 2 𝑧 Gauss-hypergeometric-F 1 3 2 3 1 superscript 𝑧 3 {\displaystyle{\displaystyle F\left({\frac{1}{3},\frac{2}{3}\atop 1};1-\left(% \frac{1-z}{1+2z}\right)^{3}\right)=(1+2z)F\left({\frac{1}{3},\frac{2}{3}\atop 1% };z^{3}\right)}}
\hyperF@@{\frac{1}{3}}{\frac{2}{3}}{1}{1-\left(\frac{1-z}{1+2z}\right)^{3}} = (1+2z)\hyperF@@{\frac{1}{3}}{\frac{2}{3}}{1}{z^{3}}

hypergeom([(1)/(3), (2)/(3)], [1], 1 -((1 - z)/(1 + 2*z))^(3)) = (1 + 2*z)*hypergeom([(1)/(3), (2)/(3)], [1], (z)^(3))
Hypergeometric2F1[Divide[1,3], Divide[2,3], 1, 1 -(Divide[1 - z,1 + 2*z])^(3)] == (1 + 2*z)*Hypergeometric2F1[Divide[1,3], Divide[2,3], 1, (z)^(3)]
Failure Failure
Failed [6 / 7]
Result: .2094462e-2-1.732617448*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: -.350667893-11.44453323*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Failed [4 / 7]
Result: Complex[0.23768141357499772, -1.326441364739111]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

Result: Complex[0.2791710117197028, 0.7366165529284218]
Test Values: {Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}

... skip entries to safe data
15.9.E1 P n ( Ξ± , Ξ² ) ⁑ ( x ) = ( Ξ± + 1 ) n n ! ⁒ F ⁑ ( - n , n + Ξ± + Ξ² + 1 Ξ± + 1 ; 1 - x 2 ) Jacobi-polynomial-P 𝛼 𝛽 𝑛 π‘₯ Pochhammer 𝛼 1 𝑛 𝑛 Gauss-hypergeometric-F 𝑛 𝑛 𝛼 𝛽 1 𝛼 1 1 π‘₯ 2 {\displaystyle{\displaystyle P^{(\alpha,\beta)}_{n}\left(x\right)=\frac{{\left% (\alpha+1\right)_{n}}}{n!}F\left({-n,n+\alpha+\beta+1\atop\alpha+1};\frac{1-x}% {2}\right)}}
\JacobipolyP{\alpha}{\beta}{n}@{x} = \frac{\Pochhammersym{\alpha+1}{n}}{n!}\hyperF@@{-n}{n+\alpha+\beta+1}{\alpha+1}{\frac{1-x}{2}}

JacobiP(n, alpha, beta, x) = (pochhammer(alpha + 1, n))/(factorial(n))*hypergeom([- n, n + alpha + beta + 1], [alpha + 1], (1 - x)/(2))
JacobiP[n, \[Alpha], \[Beta], x] == Divide[Pochhammer[\[Alpha]+ 1, n],(n)!]*Hypergeometric2F1[- n, n + \[Alpha]+ \[Beta]+ 1, \[Alpha]+ 1, Divide[1 - x,2]]
Successful Successful - Successful [Tested: 81]
15.9.E2 C n ( Ξ» ) ⁑ ( x ) = ( 2 ⁒ Ξ» ) n n ! ⁒ F ⁑ ( - n , n + 2 ⁒ Ξ» Ξ» + 1 2 ; 1 - x 2 ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ Pochhammer 2 πœ† 𝑛 𝑛 Gauss-hypergeometric-F 𝑛 𝑛 2 πœ† πœ† 1 2 1 π‘₯ 2 {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(x\right)=\frac{{\left(2% \lambda\right)_{n}}}{n!}F\left({-n,n+2\lambda\atop\lambda+\frac{1}{2}};\frac{1% -x}{2}\right)}}
\ultrasphpoly{\lambda}{n}@{x} = \frac{\Pochhammersym{2\lambda}{n}}{n!}\hyperF@@{-n}{n+2\lambda}{\lambda+\frac{1}{2}}{\frac{1-x}{2}}

GegenbauerC(n, lambda, x) = (pochhammer(2*lambda, n))/(factorial(n))*hypergeom([- n, n + 2*lambda], [lambda +(1)/(2)], (1 - x)/(2))
GegenbauerC[n, \[Lambda], x] == Divide[Pochhammer[2*\[Lambda], n],(n)!]*Hypergeometric2F1[- n, n + 2*\[Lambda], \[Lambda]+Divide[1,2], Divide[1 - x,2]]
Successful Successful -
Failed [15 / 90]
Result: 0.375
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[Ξ», -1.5]}

Result: 0.4375
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[Ξ», -1.5]}

... skip entries to safe data
15.9.E3 C n ( Ξ» ) ⁑ ( x ) = ( 2 ⁒ x ) n ⁒ ( Ξ» ) n n ! ⁒ F ⁑ ( - 1 2 ⁒ n , 1 2 ⁒ ( 1 - n ) 1 - Ξ» - n ; 1 x 2 ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 π‘₯ superscript 2 π‘₯ 𝑛 Pochhammer πœ† 𝑛 𝑛 Gauss-hypergeometric-F 1 2 𝑛 1 2 1 𝑛 1 πœ† 𝑛 1 superscript π‘₯ 2 {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(x\right)=(2x)^{n}\frac{{% \left(\lambda\right)_{n}}}{n!}F\left({-\frac{1}{2}n,\frac{1}{2}(1-n)\atop 1-% \lambda-n};\frac{1}{x^{2}}\right)}}
\ultrasphpoly{\lambda}{n}@{x} = (2x)^{n}\frac{\Pochhammersym{\lambda}{n}}{n!}\hyperF@@{-\frac{1}{2}n}{\frac{1}{2}(1-n)}{1-\lambda-n}{\frac{1}{x^{2}}}

GegenbauerC(n, lambda, x) = (2*x)^(n)*(pochhammer(lambda, n))/(factorial(n))*hypergeom([-(1)/(2)*n, (1)/(2)*(1 - n)], [1 - lambda - n], (1)/((x)^(2)))
GegenbauerC[n, \[Lambda], x] == (2*x)^(n)*Divide[Pochhammer[\[Lambda], n],(n)!]*Hypergeometric2F1[-Divide[1,2]*n, Divide[1,2]*(1 - n), 1 - \[Lambda]- n, Divide[1,(x)^(2)]]
Failure Failure
Failed [3 / 90]
Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -2, x = 3/2, n = 3}

Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -2, x = 1/2, n = 3}

... skip entries to safe data
Failed [3 / 90]
Result: Indeterminate
Test Values: {Rule[n, 3], Rule[x, 1.5], Rule[Ξ», -2]}

Result: Indeterminate
Test Values: {Rule[n, 3], Rule[x, 0.5], Rule[Ξ», -2]}

... skip entries to safe data
15.9.E4 C n ( Ξ» ) ⁑ ( cos ⁑ ΞΈ ) = e n ⁒ i ⁒ ΞΈ ⁒ ( Ξ» ) n n ! ⁒ F ⁑ ( - n , Ξ» 1 - Ξ» - n ; e - 2 ⁒ i ⁒ ΞΈ ) ultraspherical-Gegenbauer-polynomial πœ† 𝑛 πœƒ superscript 𝑒 𝑛 imaginary-unit πœƒ Pochhammer πœ† 𝑛 𝑛 Gauss-hypergeometric-F 𝑛 πœ† 1 πœ† 𝑛 superscript 𝑒 2 imaginary-unit πœƒ {\displaystyle{\displaystyle C^{(\lambda)}_{n}\left(\cos\theta\right)=e^{n% \mathrm{i}\theta}\frac{{\left(\lambda\right)_{n}}}{n!}F\left({-n,\lambda\atop 1% -\lambda-n};e^{-2\mathrm{i}\theta}\right)}}
\ultrasphpoly{\lambda}{n}@{\cos@@{\theta}} = e^{n\iunit\theta}\frac{\Pochhammersym{\lambda}{n}}{n!}\hyperF@@{-n}{\lambda}{1-\lambda-n}{e^{-2\iunit\theta}}

GegenbauerC(n, lambda, cos(theta)) = exp(n*I*theta)*(pochhammer(lambda, n))/(factorial(n))*hypergeom([- n, lambda], [1 - lambda - n], exp(- 2*I*theta))
GegenbauerC[n, \[Lambda], Cos[\[Theta]]] == Exp[n*I*\[Theta]]*Divide[Pochhammer[\[Lambda], n],(n)!]*Hypergeometric2F1[- n, \[Lambda], 1 - \[Lambda]- n, Exp[- 2*I*\[Theta]]]
Failure Failure
Failed [10 / 300]
Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -2, theta = 1/2*3^(1/2)+1/2*I, n = 3}

Result: Float(undefined)+Float(undefined)*I
Test Values: {lambda = -2, theta = -1/2+1/2*I*3^(1/2), n = 3}

... skip entries to safe data
Failed [10 / 300]
Result: Indeterminate
Test Values: {Rule[n, 3], Rule[ΞΈ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Rule[Ξ», -2]}

Result: Indeterminate
Test Values: {Rule[n, 3], Rule[ΞΈ, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], Rule[Ξ», -2]}

... skip entries to safe data
15.9.E5 T n ⁑ ( x ) = F ⁑ ( - n , n 1 2 ; 1 - x 2 ) Chebyshev-polynomial-first-kind-T 𝑛 π‘₯ Gauss-hypergeometric-F 𝑛 𝑛 1 2 1 π‘₯ 2 {\displaystyle{\displaystyle T_{n}\left(x\right)=F\left({-n,n\atop\frac{1}{2}}% ;\frac{1-x}{2}\right)}}
\ChebyshevpolyT{n}@{x} = \hyperF@@{-n}{n}{\frac{1}{2}}{\frac{1-x}{2}}

ChebyshevT(n, x) = hypergeom([- n, n], [(1)/(2)], (1 - x)/(2))
ChebyshevT[n, x] == Hypergeometric2F1[- n, n, Divide[1,2], Divide[1 - x,2]]
Successful Successful - Successful [Tested: 9]
15.9.E6 U n ⁑ ( x ) = ( n + 1 ) ⁒ F ⁑ ( - n , n + 2 3 2 ; 1 - x 2 ) Chebyshev-polynomial-second-kind-U 𝑛 π‘₯ 𝑛 1 Gauss-hypergeometric-F 𝑛 𝑛 2 3 2 1 π‘₯ 2 {\displaystyle{\displaystyle U_{n}\left(x\right)=(n+1)F\left({-n,n+2\atop\frac% {3}{2}};\frac{1-x}{2}\right)}}
\ChebyshevpolyU{n}@{x} = (n+1)\hyperF@@{-n}{n+2}{\frac{3}{2}}{\frac{1-x}{2}}

ChebyshevU(n, x) = (n + 1)*hypergeom([- n, n + 2], [(3)/(2)], (1 - x)/(2))
ChebyshevU[n, x] == (n + 1)*Hypergeometric2F1[- n, n + 2, Divide[3,2], Divide[1 - x,2]]
Successful Failure - Successful [Tested: 9]
15.9.E7 P n ⁑ ( x ) = F ⁑ ( - n , n + 1 1 ; 1 - x 2 ) Legendre-spherical-polynomial 𝑛 π‘₯ Gauss-hypergeometric-F 𝑛 𝑛 1 1 1 π‘₯ 2 {\displaystyle{\displaystyle P_{n}\left(x\right)=F\left({-n,n+1\atop 1};\frac{% 1-x}{2}\right)}}
\LegendrepolyP{n}@{x} = \hyperF@@{-n}{n+1}{1}{\frac{1-x}{2}}

LegendreP(n, x) = hypergeom([- n, n + 1], [1], (1 - x)/(2))
LegendreP[n, x] == Hypergeometric2F1[- n, n + 1, 1, Divide[1 - x,2]]
Successful Successful - Successful [Tested: 9]
15.9.E11 Ο• Ξ» ( Ξ± , Ξ² ) ⁑ ( t ) = F ⁑ ( 1 2 ⁒ ( Ξ± + Ξ² + 1 - i ⁒ Ξ» ) , 1 2 ⁒ ( Ξ± + Ξ² + 1 + i ⁒ Ξ» ) Ξ± + 1 ; - sinh 2 ⁑ t ) Jacobi-hypergeometric-phi 𝛼 𝛽 πœ† 𝑑 Gauss-hypergeometric-F 1 2 𝛼 𝛽 1 imaginary-unit πœ† 1 2 𝛼 𝛽 1 imaginary-unit πœ† 𝛼 1 2 𝑑 {\displaystyle{\displaystyle\phi^{(\alpha,\beta)}_{\lambda}\left(t\right)=F% \left({\tfrac{1}{2}(\alpha+\beta+1-\mathrm{i}\lambda),\tfrac{1}{2}(\alpha+% \beta+1+\mathrm{i}\lambda)\atop\alpha+1};-{\sinh^{2}}t\right)}}
\Jacobiphi{\alpha}{\beta}{\lambda}@{t} = \hyperF@@{\tfrac{1}{2}(\alpha+\beta+1-\iunit\lambda)}{\tfrac{1}{2}(\alpha+\beta+1+\iunit\lambda)}{\alpha+1}{-\sinh^{2}@@{t}}

hypergeom([((alpha)+(beta)+1-I*(lambda))/2, ((alpha)+(beta)+1+I*(lambda))], [(alpha)+1], -sinh(t)^2) = hypergeom([(1)/(2)*(alpha + beta + 1 - I*lambda), (1)/(2)*(alpha + beta + 1 + I*lambda)], [alpha + 1], - (sinh(t))^(2))
Error
Failure Missing Macro Error
Failed [288 / 300]
Result: -.4877482336e-1+.1329197787e-1*I
Test Values: {alpha = 3/2, beta = 3/2, lambda = 1/2*3^(1/2)+1/2*I, t = -3/2}

Result: -.4877482336e-1+.1329197787e-1*I
Test Values: {alpha = 3/2, beta = 3/2, lambda = 1/2*3^(1/2)+1/2*I, t = 3/2}

... skip entries to safe data
-
15.9.E15 C Ξ± ( Ξ» ) ⁑ ( z ) = Ξ“ ⁑ ( Ξ± + 2 ⁒ Ξ» ) Ξ“ ⁑ ( 2 ⁒ Ξ» ) ⁒ Ξ“ ⁑ ( Ξ± + 1 ) ⁒ F ⁑ ( - Ξ± , Ξ± + 2 ⁒ Ξ» Ξ» + 1 2 ; 1 - z 2 ) ultraspherical-Gegenbauer-polynomial πœ† 𝛼 𝑧 Euler-Gamma 𝛼 2 πœ† Euler-Gamma 2 πœ† Euler-Gamma 𝛼 1 Gauss-hypergeometric-F 𝛼 𝛼 2 πœ† πœ† 1 2 1 𝑧 2 {\displaystyle{\displaystyle C^{(\lambda)}_{\alpha}\left(z\right)=\frac{\Gamma% \left(\alpha+2\lambda\right)}{\Gamma\left(2\lambda\right)\Gamma\left(\alpha+1% \right)}F\left({-\alpha,\alpha+2\lambda\atop\lambda+\tfrac{1}{2}};\frac{1-z}{2% }\right)}}
\ultrasphpoly{\lambda}{\alpha}@{z} = \frac{\EulerGamma@{\alpha+2\lambda}}{\EulerGamma@{2\lambda}\EulerGamma@{\alpha+1}}\hyperF@@{-\alpha}{\alpha+2\lambda}{\lambda+\tfrac{1}{2}}{\frac{1-z}{2}}
β„œ ⁑ ( Ξ± + 2 ⁒ Ξ» ) > 0 , β„œ ⁑ ( 2 ⁒ Ξ» ) > 0 , β„œ ⁑ ( Ξ± + 1 ) > 0 formulae-sequence 𝛼 2 πœ† 0 formulae-sequence 2 πœ† 0 𝛼 1 0 {\displaystyle{\displaystyle\Re(\alpha+2\lambda)>0,\Re(2\lambda)>0,\Re(\alpha+% 1)>0}}
GegenbauerC(alpha, lambda, z) = (GAMMA(alpha + 2*lambda))/(GAMMA(2*lambda)*GAMMA(alpha + 1))*hypergeom([- alpha, alpha + 2*lambda], [lambda +(1)/(2)], (1 - z)/(2))
GegenbauerC[\[Alpha], \[Lambda], z] == Divide[Gamma[\[Alpha]+ 2*\[Lambda]],Gamma[2*\[Lambda]]*Gamma[\[Alpha]+ 1]]*Hypergeometric2F1[- \[Alpha], \[Alpha]+ 2*\[Lambda], \[Lambda]+Divide[1,2], Divide[1 - z,2]]
Successful Successful - Successful [Tested: 105]
15.9.E16 𝐅 ⁑ ( a , b 2 ⁒ b ; z ) = Ο€ Ξ“ ⁑ ( b ) ⁒ z - b + ( 1 / 2 ) ⁒ ( 1 - z ) ( b - a - ( 1 / 2 ) ) / 2 ⁒ P a - b - ( 1 / 2 ) - b + ( 1 / 2 ) ⁑ ( 2 - z 2 ⁒ 1 - z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 2 𝑏 𝑧 πœ‹ Euler-Gamma 𝑏 superscript 𝑧 𝑏 1 2 superscript 1 𝑧 𝑏 π‘Ž 1 2 2 Legendre-P-first-kind 𝑏 1 2 π‘Ž 𝑏 1 2 2 𝑧 2 1 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop 2b};z\right)=\frac{\sqrt% {\pi}}{\Gamma\left(b\right)}z^{-b+(\ifrac{1}{2})}(1-z)^{(b-a-(\ifrac{1}{2}))/2% }\*P^{-b+(\ifrac{1}{2})}_{a-b-(\ifrac{1}{2})}\left(\frac{2-z}{2\sqrt{1-z}}% \right)}}
\hyperOlverF@@{a}{b}{2b}{z} = \frac{\sqrt{\pi}}{\EulerGamma@{b}}z^{-b+(\ifrac{1}{2})}(1-z)^{(b-a-(\ifrac{1}{2}))/2}\*\assLegendreP[-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{\frac{2-z}{2\sqrt{1-z}}}
| ph ⁑ ( 1 - z ) | < Ο€ , | 1 - z | < 1 , β„œ ⁑ b > 0 , | z | < 1 , β„œ ⁑ ( ( 2 ⁒ b ) + s ) > 0 formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence 1 𝑧 1 formulae-sequence 𝑏 0 formulae-sequence 𝑧 1 2 𝑏 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}\left(1-z\right)|<\pi,|1-z|<1,% \Re b>0,|z|<1,\Re((2b)+s)>0}}
hypergeom([a, b], [2*b], z)/GAMMA(2*b) = (sqrt(Pi))/(GAMMA(b))*(z)^(- b +((1)/(2)))*(1 - z)^((b - a -((1)/(2)))/2)* LegendreP(a - b -((1)/(2)), - b +((1)/(2)), (2 - z)/(2*sqrt(1 - z)))
Hypergeometric2F1Regularized[a, b, 2*b, z] == Divide[Sqrt[Pi],Gamma[b]]*(z)^(- b +(Divide[1,2]))*(1 - z)^((b - a -(Divide[1,2]))/2)* LegendreP[a - b -(Divide[1,2]), - b +(Divide[1,2]), 3, Divide[2 - z,2*Sqrt[1 - z]]]
Failure Failure Successful [Tested: 6] Successful [Tested: 18]
15.9.E17 𝐅 ⁑ ( a , a + 1 2 c ; z ) = 2 c - 1 ⁒ z ( 1 - c ) / 2 ⁒ ( 1 - z ) - a + ( ( c - 1 ) / 2 ) ⁒ P 2 ⁒ a - c 1 - c ⁑ ( 1 1 - z ) scaled-hypergeometric-bold-F π‘Ž π‘Ž 1 2 𝑐 𝑧 superscript 2 𝑐 1 superscript 𝑧 1 𝑐 2 superscript 1 𝑧 π‘Ž 𝑐 1 2 Legendre-P-first-kind 1 𝑐 2 π‘Ž 𝑐 1 1 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,a+\tfrac{1}{2}\atop c};z\right)% =2^{c-1}z^{\ifrac{(1-c)}{2}}(1-z)^{-a+(\ifrac{(c-1)}{2})}\*P^{1-c}_{2a-c}\left% (\frac{1}{\sqrt{1-z}}\right)}}
\hyperOlverF@@{a}{a+\tfrac{1}{2}}{c}{z} = 2^{c-1}z^{\ifrac{(1-c)}{2}}(1-z)^{-a+(\ifrac{(c-1)}{2})}\*\assLegendreP[1-c]{2a-c}@{\frac{1}{\sqrt{1-z}}}
| ph ⁑ z | < Ο€ , | ph ⁑ ( 1 - z ) | < Ο€ , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|\operatorname{ph}\left(1% -z\right)|<\pi,|z|<1,\Re(c+s)>0}}
hypergeom([a, a +(1)/(2)], [c], z)/GAMMA(c) = (2)^(c - 1)* (z)^((1 - c)/(2))*(1 - z)^(- a +((c - 1)/(2)))* LegendreP(2*a - c, 1 - c, (1)/(sqrt(1 - z)))
Hypergeometric2F1Regularized[a, a +Divide[1,2], c, z] == (2)^(c - 1)* (z)^(Divide[1 - c,2])*(1 - z)^(- a +(Divide[c - 1,2]))* LegendreP[2*a - c, 1 - c, 3, Divide[1,Sqrt[1 - z]]]
Failure Failure Error Successful [Tested: 180]
15.9.E18 𝐅 ⁑ ( a , b a + b + 1 2 ; z ) = 2 a + b - ( 1 / 2 ) ⁒ ( - z ) ( - a - b + ( 1 / 2 ) ) / 2 ⁒ P a - b - ( 1 / 2 ) - a - b + ( 1 / 2 ) ⁑ ( 1 - z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 π‘Ž 𝑏 1 2 𝑧 superscript 2 π‘Ž 𝑏 1 2 superscript 𝑧 π‘Ž 𝑏 1 2 2 Legendre-P-first-kind π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 2 1 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop a+b+\tfrac{1}{2}};z% \right)=2^{a+b-(\ifrac{1}{2})}(-z)^{(-a-b+(\ifrac{1}{2}))/2}\*P^{-a-b+(\ifrac{% 1}{2})}_{a-b-(\ifrac{1}{2})}\left(\sqrt{1-z}\right)}}
\hyperOlverF@@{a}{b}{a+b+\tfrac{1}{2}}{z} = 2^{a+b-(\ifrac{1}{2})}(-z)^{(-a-b+(\ifrac{1}{2}))/2}\*\assLegendreP[-a-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{\sqrt{1-z}}
| ph ⁑ ( - z ) | < Ο€ , | z | < 1 , β„œ ⁑ ( ( a + b + 1 2 ) + s ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence 𝑧 1 π‘Ž 𝑏 1 2 𝑠 0 {\displaystyle{\displaystyle\left|\operatorname{ph}\left(-z\right)\right|<\pi,% |z|<1,\Re((a+b+\tfrac{1}{2})+s)>0}}
hypergeom([a, b], [a + b +(1)/(2)], z)/GAMMA(a + b +(1)/(2)) = (2)^(a + b -((1)/(2)))*(- z)^((- a - b +((1)/(2)))/2)* LegendreP(a - b -((1)/(2)), - a - b +((1)/(2)), sqrt(1 - z))
Hypergeometric2F1Regularized[a, b, a + b +Divide[1,2], z] == (2)^(a + b -(Divide[1,2]))*(- z)^((- a - b +(Divide[1,2]))/2)* LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[1,2]), 3, Sqrt[1 - z]]
Failure Failure Error Successful [Tested: 144]
15.9.E19 𝐅 ⁑ ( a , b a - b + 1 ; z ) = z ( b - a ) / 2 ⁒ ( 1 - z ) - b ⁒ P - b b - a ⁑ ( 1 + z 1 - z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 π‘Ž 𝑏 1 𝑧 superscript 𝑧 𝑏 π‘Ž 2 superscript 1 𝑧 𝑏 Legendre-P-first-kind 𝑏 π‘Ž 𝑏 1 𝑧 1 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop a-b+1};z\right)=z^{% \ifrac{(b-a)}{2}}(1-z)^{-b}\*P^{b-a}_{-b}\left(\frac{1+z}{1-z}\right)}}
\hyperOlverF@@{a}{b}{a-b+1}{z} = z^{\ifrac{(b-a)}{2}}(1-z)^{-b}\*\assLegendreP[b-a]{-b}@{\frac{1+z}{1-z}}
| ph ⁑ z | < Ο€ , | ph ⁑ ( 1 - z ) | < Ο€ , | z | < 1 , β„œ ⁑ ( ( a - b + 1 ) + s ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 1 𝑧 πœ‹ formulae-sequence 𝑧 1 π‘Ž 𝑏 1 𝑠 0 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi,|\operatorname{ph}\left(1% -z\right)|<\pi,|z|<1,\Re((a-b+1)+s)>0}}
hypergeom([a, b], [a - b + 1], z)/GAMMA(a - b + 1) = (z)^((b - a)/(2))*(1 - z)^(- b)* LegendreP(- b, b - a, (1 + z)/(1 - z))
Hypergeometric2F1Regularized[a, b, a - b + 1, z] == (z)^(Divide[b - a,2])*(1 - z)^(- b)* LegendreP[- b, b - a, 3, Divide[1 + z,1 - z]]
Successful Failure - Successful [Tested: 180]
15.9.E20 𝐅 ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = ( - z ⁒ ( 1 - z ) ) ( 1 - a - b ) / 4 ⁒ P ( a - b - 1 ) / 2 ( 1 - a - b ) / 2 ⁑ ( 1 - 2 ⁒ z ) scaled-hypergeometric-bold-F π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 𝑧 superscript 𝑧 1 𝑧 1 π‘Ž 𝑏 4 Legendre-P-first-kind 1 π‘Ž 𝑏 2 π‘Ž 𝑏 1 2 1 2 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop\tfrac{1}{2}(a+b+1)};z% \right)=\left(-z(1-z)\right)^{\ifrac{(1-a-b)}{4}}\*P^{\ifrac{(1-a-b)}{2}}_{% \ifrac{(a-b-1)}{2}}\left(1-2z\right)}}
\hyperOlverF@@{a}{b}{\tfrac{1}{2}(a+b+1)}{z} = \left(-z(1-z)\right)^{\ifrac{(1-a-b)}{4}}\*\assLegendreP[\ifrac{(1-a-b)}{2}]{\ifrac{(a-b-1)}{2}}@{1-2z}
| ph ⁑ ( - z ) | < Ο€ , | z | < 1 , β„œ ⁑ ( ( 1 2 ⁒ ( a + b + 1 ) ) + s ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence 𝑧 1 1 2 π‘Ž 𝑏 1 𝑠 0 {\displaystyle{\displaystyle\left|\operatorname{ph}\left(-z\right)\right|<\pi,% |z|<1,\Re((\tfrac{1}{2}(a+b+1))+s)>0}}
hypergeom([a, b], [(1)/(2)*(a + b + 1)], z)/GAMMA((1)/(2)*(a + b + 1)) = (- z*(1 - z))^((1 - a - b)/(4))* LegendreP((a - b - 1)/(2), (1 - a - b)/(2), 1 - 2*z)
Hypergeometric2F1Regularized[a, b, Divide[1,2]*(a + b + 1), z] == (- z*(1 - z))^(Divide[1 - a - b,4])* LegendreP[Divide[a - b - 1,2], Divide[1 - a - b,2], 3, 1 - 2*z]
Failure Failure Error Successful [Tested: 144]
15.9.E21 𝐅 ⁑ ( a , 1 - a c ; z ) = ( - z 1 - z ) ( 1 - c ) / 2 ⁒ P - a 1 - c ⁑ ( 1 - 2 ⁒ z ) scaled-hypergeometric-bold-F π‘Ž 1 π‘Ž 𝑐 𝑧 superscript 𝑧 1 𝑧 1 𝑐 2 Legendre-P-first-kind 1 𝑐 π‘Ž 1 2 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,1-a\atop c};z\right)=\left(% \frac{-z}{1-z}\right)^{\ifrac{(1-c)}{2}}\*P^{1-c}_{-a}\left(1-2z\right)}}
\hyperOlverF@@{a}{1-a}{c}{z} = \left(\frac{-z}{1-z}\right)^{\ifrac{(1-c)}{2}}\*\assLegendreP[1-c]{-a}@{1-2z}
| ph ⁑ ( - z ) | < Ο€ , | z | < 1 , β„œ ⁑ ( c + s ) > 0 formulae-sequence phase 𝑧 πœ‹ formulae-sequence 𝑧 1 𝑐 𝑠 0 {\displaystyle{\displaystyle\left|\operatorname{ph}\left(-z\right)\right|<\pi,% |z|<1,\Re(c+s)>0}}
hypergeom([a, 1 - a], [c], z)/GAMMA(c) = ((- z)/(1 - z))^((1 - c)/(2))* LegendreP(- a, 1 - c, 1 - 2*z)
Hypergeometric2F1Regularized[a, 1 - a, c, z] == (Divide[- z,1 - z])^(Divide[1 - c,2])* LegendreP[- a, 1 - c, 3, 1 - 2*z]
Failure Successful Error -
15.9.E22 𝐅 ⁑ ( a , b 1 2 ; z ) = 2 a + b - ( 3 / 2 ) Ο€ ⁒ Ξ“ ⁑ ( a + 1 2 ) ⁒ Ξ“ ⁑ ( b + 1 2 ) ⁒ ( z - 1 ) ( - a - b + ( 1 / 2 ) ) / 2 ⁒ ( e + Ο€ ⁒ i ⁒ ( a + b - ( 1 / 2 ) ) ⁒ P a - b - ( 1 / 2 ) - a - b + ( 1 / 2 ) ⁑ ( - z ) + P a - b - ( 1 / 2 ) - a - b + ( 1 / 2 ) ⁑ ( z ) ) scaled-hypergeometric-bold-F π‘Ž 𝑏 1 2 𝑧 superscript 2 π‘Ž 𝑏 3 2 πœ‹ Euler-Gamma π‘Ž 1 2 Euler-Gamma 𝑏 1 2 superscript 𝑧 1 π‘Ž 𝑏 1 2 2 superscript 𝑒 πœ‹ imaginary-unit π‘Ž 𝑏 1 2 Legendre-P-first-kind π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 2 𝑧 Legendre-P-first-kind π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 2 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop\tfrac{1}{2}};z\right)=% \frac{2^{a+b-(\ifrac{3}{2})}}{\pi}\Gamma\left(a+\tfrac{1}{2}\right)\Gamma\left% (b+\tfrac{1}{2}\right)\*(z-1)^{(-a-b+(\ifrac{1}{2}))/2}\*\left(e^{+\pi\mathrm{% i}(a+b-(\ifrac{1}{2}))}P^{-a-b+(\ifrac{1}{2})}_{a-b-(\ifrac{1}{2})}\left(-% \sqrt{z}\right)+P^{-a-b+(\ifrac{1}{2})}_{a-b-(\ifrac{1}{2})}\left(\sqrt{z}% \right)\right)}}
\hyperOlverF@@{a}{b}{\tfrac{1}{2}}{z} = \frac{2^{a+b-(\ifrac{3}{2})}}{\pi}\EulerGamma@{a+\tfrac{1}{2}}\EulerGamma@{b+\tfrac{1}{2}}\*(z-1)^{(-a-b+(\ifrac{1}{2}))/2}\*\left(e^{+\pi\iunit(a+b-(\ifrac{1}{2}))}\assLegendreP[-a-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{-\sqrt{z}}+\assLegendreP[-a-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{\sqrt{z}}\right)
a β‰  - 1 2 , b β‰  - 1 2 , 0 < | ph ⁑ z | , | ph ⁑ z | < Ο€ , β„œ ⁑ ( a + 1 2 ) > 0 , β„œ ⁑ ( b + 1 2 ) > 0 , | z | < 1 , β„œ ⁑ ( ( 1 2 ) + s ) > 0 formulae-sequence π‘Ž 1 2 formulae-sequence 𝑏 1 2 formulae-sequence 0 phase 𝑧 formulae-sequence phase 𝑧 πœ‹ formulae-sequence π‘Ž 1 2 0 formulae-sequence 𝑏 1 2 0 formulae-sequence 𝑧 1 1 2 𝑠 0 {\displaystyle{\displaystyle a\neq-\frac{1}{2},b\neq-\frac{1}{2},0<|% \operatorname{ph}z|,|\operatorname{ph}z|<\pi,\Re(a+\tfrac{1}{2})>0,\Re(b+% \tfrac{1}{2})>0,|z|<1,\Re((\tfrac{1}{2})+s)>0}}
hypergeom([a, b], [(1)/(2)], z)/GAMMA((1)/(2)) = ((2)^(a + b -((3)/(2))))/(Pi)*GAMMA(a +(1)/(2))*GAMMA(b +(1)/(2))*(z - 1)^((- a - b +((1)/(2)))/2)*(exp(+ Pi*I*(a + b -((1)/(2))))*LegendreP(a - b -((1)/(2)), - a - b +((1)/(2)), -sqrt(z))+ LegendreP(a - b -((1)/(2)), - a - b +((1)/(2)), sqrt(z)))
Hypergeometric2F1Regularized[a, b, Divide[1,2], z] == Divide[(2)^(a + b -(Divide[3,2])),Pi]*Gamma[a +Divide[1,2]]*Gamma[b +Divide[1,2]]*(z - 1)^((- a - b +(Divide[1,2]))/2)*(Exp[+ Pi*I*(a + b -(Divide[1,2]))]*LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[1,2]), 3, -Sqrt[z]]+ LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[1,2]), 3, Sqrt[z]])
Failure Failure Error
Failed [10 / 36]
Result: Complex[-0.8582540688970105, -2.787267603366778]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}

Result: Complex[-0.09762832897349609, -0.474497895465574]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}

... skip entries to safe data
15.9.E22 𝐅 ⁑ ( a , b 1 2 ; z ) = 2 a + b - ( 3 / 2 ) Ο€ ⁒ Ξ“ ⁑ ( a + 1 2 ) ⁒ Ξ“ ⁑ ( b + 1 2 ) ⁒ ( z - 1 ) ( - a - b + ( 1 / 2 ) ) / 2 ⁒ ( e - Ο€ ⁒ i ⁒ ( a + b - ( 1 / 2 ) ) ⁒ P a - b - ( 1 / 2 ) - a - b + ( 1 / 2 ) ⁑ ( - z ) + P a - b - ( 1 / 2 ) - a - b + ( 1 / 2 ) ⁑ ( z ) ) scaled-hypergeometric-bold-F π‘Ž 𝑏 1 2 𝑧 superscript 2 π‘Ž 𝑏 3 2 πœ‹ Euler-Gamma π‘Ž 1 2 Euler-Gamma 𝑏 1 2 superscript 𝑧 1 π‘Ž 𝑏 1 2 2 superscript 𝑒 πœ‹ imaginary-unit π‘Ž 𝑏 1 2 Legendre-P-first-kind π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 2 𝑧 Legendre-P-first-kind π‘Ž 𝑏 1 2 π‘Ž 𝑏 1 2 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop\tfrac{1}{2}};z\right)=% \frac{2^{a+b-(\ifrac{3}{2})}}{\pi}\Gamma\left(a+\tfrac{1}{2}\right)\Gamma\left% (b+\tfrac{1}{2}\right)\*(z-1)^{(-a-b+(\ifrac{1}{2}))/2}\*\left(e^{-\pi\mathrm{% i}(a+b-(\ifrac{1}{2}))}P^{-a-b+(\ifrac{1}{2})}_{a-b-(\ifrac{1}{2})}\left(-% \sqrt{z}\right)+P^{-a-b+(\ifrac{1}{2})}_{a-b-(\ifrac{1}{2})}\left(\sqrt{z}% \right)\right)}}
\hyperOlverF@@{a}{b}{\tfrac{1}{2}}{z} = \frac{2^{a+b-(\ifrac{3}{2})}}{\pi}\EulerGamma@{a+\tfrac{1}{2}}\EulerGamma@{b+\tfrac{1}{2}}\*(z-1)^{(-a-b+(\ifrac{1}{2}))/2}\*\left(e^{-\pi\iunit(a+b-(\ifrac{1}{2}))}\assLegendreP[-a-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{-\sqrt{z}}+\assLegendreP[-a-b+(\ifrac{1}{2})]{a-b-(\ifrac{1}{2})}@{\sqrt{z}}\right)
a β‰  - 1 2 , b β‰  - 1 2 , 0 < | ph ⁑ z | , | ph ⁑ z | < Ο€ , β„œ ⁑ ( a + 1 2 ) > 0 , β„œ ⁑ ( b + 1 2 ) > 0 , | z | < 1 , β„œ ⁑ ( ( 1 2 ) + s ) > 0 formulae-sequence π‘Ž 1 2 formulae-sequence 𝑏 1 2 formulae-sequence 0 phase 𝑧 formulae-sequence phase 𝑧 πœ‹ formulae-sequence π‘Ž 1 2 0 formulae-sequence 𝑏 1 2 0 formulae-sequence 𝑧 1 1 2 𝑠 0 {\displaystyle{\displaystyle a\neq-\frac{1}{2},b\neq-\frac{1}{2},0<|% \operatorname{ph}z|,|\operatorname{ph}z|<\pi,\Re(a+\tfrac{1}{2})>0,\Re(b+% \tfrac{1}{2})>0,|z|<1,\Re((\tfrac{1}{2})+s)>0}}
hypergeom([a, b], [(1)/(2)], z)/GAMMA((1)/(2)) = ((2)^(a + b -((3)/(2))))/(Pi)*GAMMA(a +(1)/(2))*GAMMA(b +(1)/(2))*(z - 1)^((- a - b +((1)/(2)))/2)*(exp(- Pi*I*(a + b -((1)/(2))))*LegendreP(a - b -((1)/(2)), - a - b +((1)/(2)), -sqrt(z))+ LegendreP(a - b -((1)/(2)), - a - b +((1)/(2)), sqrt(z)))
Hypergeometric2F1Regularized[a, b, Divide[1,2], z] == Divide[(2)^(a + b -(Divide[3,2])),Pi]*Gamma[a +Divide[1,2]]*Gamma[b +Divide[1,2]]*(z - 1)^((- a - b +(Divide[1,2]))/2)*(Exp[- Pi*I*(a + b -(Divide[1,2]))]*LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[1,2]), 3, -Sqrt[z]]+ LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[1,2]), 3, Sqrt[z]])
Failure Failure Error
Failed [10 / 36]
Result: Complex[1.7877768256534143, 6.989426464541403]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[-0.26682868759795453, 0.7163138167399228]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data
15.9.E23 𝐅 ⁑ ( a , b 3 2 ; z ) = 2 a + b - ( 5 / 2 ) Ο€ ⁒ z ⁒ Ξ“ ⁑ ( a - 1 2 ) ⁒ Ξ“ ⁑ ( b - 1 2 ) ⁒ ( z - 1 ) ( - a - b + ( 3 / 2 ) ) / 2 ⁒ ( e + Ο€ ⁒ i ⁒ ( a + b - ( 3 / 2 ) ) ⁒ P a - b - ( 1 / 2 ) - a - b + ( 3 / 2 ) ⁑ ( - z ) - P a - b - ( 1 / 2 ) - a - b + ( 3 / 2 ) ⁑ ( z ) ) scaled-hypergeometric-bold-F π‘Ž 𝑏 3 2 𝑧 superscript 2 π‘Ž 𝑏 5 2 πœ‹ 𝑧 Euler-Gamma π‘Ž 1 2 Euler-Gamma 𝑏 1 2 superscript 𝑧 1 π‘Ž 𝑏 3 2 2 superscript 𝑒 πœ‹ imaginary-unit π‘Ž 𝑏 3 2 Legendre-P-first-kind π‘Ž 𝑏 3 2 π‘Ž 𝑏 1 2 𝑧 Legendre-P-first-kind π‘Ž 𝑏 3 2 π‘Ž 𝑏 1 2 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop\tfrac{3}{2}};z\right)=% \frac{2^{a+b-(\ifrac{5}{2})}}{\pi\sqrt{z}}\Gamma\left(a-\tfrac{1}{2}\right)% \Gamma\left(b-\tfrac{1}{2}\right)\*(z-1)^{(-a-b+(\ifrac{3}{2}))/2}\*\left(e^{+% \pi\mathrm{i}(a+b-(\ifrac{3}{2}))}P^{-a-b+(\ifrac{3}{2})}_{a-b-(\ifrac{1}{2})}% \left(-\sqrt{z}\right)-P^{-a-b+(\ifrac{3}{2})}_{a-b-(\ifrac{1}{2})}\left(\sqrt% {z}\right)\right)}}
\hyperOlverF@@{a}{b}{\tfrac{3}{2}}{z} = \frac{2^{a+b-(\ifrac{5}{2})}}{\pi\sqrt{z}}\EulerGamma@{a-\tfrac{1}{2}}\EulerGamma@{b-\tfrac{1}{2}}\*(z-1)^{(-a-b+(\ifrac{3}{2}))/2}\*\left(e^{+\pi\iunit(a+b-(\ifrac{3}{2}))}\assLegendreP[-a-b+(\ifrac{3}{2})]{a-b-(\ifrac{1}{2})}@{-\sqrt{z}}-\assLegendreP[-a-b+(\ifrac{3}{2})]{a-b-(\ifrac{1}{2})}@{\sqrt{z}}\right)
a β‰  1 2 , b β‰  1 2 , 0 < | ph ⁑ z | , | ph ⁑ z | < Ο€ , β„œ ⁑ ( a - 1 2 ) > 0 , β„œ ⁑ ( b - 1 2 ) > 0 , | z | < 1 , β„œ ⁑ ( ( 3 2 ) + s ) > 0 formulae-sequence π‘Ž 1 2 formulae-sequence 𝑏 1 2 formulae-sequence 0 phase 𝑧 formulae-sequence phase 𝑧 πœ‹ formulae-sequence π‘Ž 1 2 0 formulae-sequence 𝑏 1 2 0 formulae-sequence 𝑧 1 3 2 𝑠 0 {\displaystyle{\displaystyle a\neq\frac{1}{2},b\neq\frac{1}{2},0<|% \operatorname{ph}z|,|\operatorname{ph}z|<\pi,\Re(a-\tfrac{1}{2})>0,\Re(b-% \tfrac{1}{2})>0,|z|<1,\Re((\tfrac{3}{2})+s)>0}}
hypergeom([a, b], [(3)/(2)], z)/GAMMA((3)/(2)) = ((2)^(a + b -((5)/(2))))/(Pi*sqrt(z))*GAMMA(a -(1)/(2))*GAMMA(b -(1)/(2))*(z - 1)^((- a - b +((3)/(2)))/2)*(exp(+ Pi*I*(a + b -((3)/(2))))*LegendreP(a - b -((1)/(2)), - a - b +((3)/(2)), -sqrt(z))- LegendreP(a - b -((1)/(2)), - a - b +((3)/(2)), sqrt(z)))
Hypergeometric2F1Regularized[a, b, Divide[3,2], z] == Divide[(2)^(a + b -(Divide[5,2])),Pi*Sqrt[z]]*Gamma[a -Divide[1,2]]*Gamma[b -Divide[1,2]]*(z - 1)^((- a - b +(Divide[3,2]))/2)*(Exp[+ Pi*I*(a + b -(Divide[3,2]))]*LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[3,2]), 3, -Sqrt[z]]- LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[3,2]), 3, Sqrt[z]])
Failure Failure Error
Failed [4 / 16]
Result: Complex[2.2779820596001903, -1.628954540775632]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]]}

Result: Complex[0.907830443893564, 0.19750251034857133]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]]}

... skip entries to safe data
15.9.E23 𝐅 ⁑ ( a , b 3 2 ; z ) = 2 a + b - ( 5 / 2 ) Ο€ ⁒ z ⁒ Ξ“ ⁑ ( a - 1 2 ) ⁒ Ξ“ ⁑ ( b - 1 2 ) ⁒ ( z - 1 ) ( - a - b + ( 3 / 2 ) ) / 2 ⁒ ( e - Ο€ ⁒ i ⁒ ( a + b - ( 3 / 2 ) ) ⁒ P a - b - ( 1 / 2 ) - a - b + ( 3 / 2 ) ⁑ ( - z ) - P a - b - ( 1 / 2 ) - a - b + ( 3 / 2 ) ⁑ ( z ) ) scaled-hypergeometric-bold-F π‘Ž 𝑏 3 2 𝑧 superscript 2 π‘Ž 𝑏 5 2 πœ‹ 𝑧 Euler-Gamma π‘Ž 1 2 Euler-Gamma 𝑏 1 2 superscript 𝑧 1 π‘Ž 𝑏 3 2 2 superscript 𝑒 πœ‹ imaginary-unit π‘Ž 𝑏 3 2 Legendre-P-first-kind π‘Ž 𝑏 3 2 π‘Ž 𝑏 1 2 𝑧 Legendre-P-first-kind π‘Ž 𝑏 3 2 π‘Ž 𝑏 1 2 𝑧 {\displaystyle{\displaystyle\mathbf{F}\left({a,b\atop\tfrac{3}{2}};z\right)=% \frac{2^{a+b-(\ifrac{5}{2})}}{\pi\sqrt{z}}\Gamma\left(a-\tfrac{1}{2}\right)% \Gamma\left(b-\tfrac{1}{2}\right)\*(z-1)^{(-a-b+(\ifrac{3}{2}))/2}\*\left(e^{-% \pi\mathrm{i}(a+b-(\ifrac{3}{2}))}P^{-a-b+(\ifrac{3}{2})}_{a-b-(\ifrac{1}{2})}% \left(-\sqrt{z}\right)-P^{-a-b+(\ifrac{3}{2})}_{a-b-(\ifrac{1}{2})}\left(\sqrt% {z}\right)\right)}}
\hyperOlverF@@{a}{b}{\tfrac{3}{2}}{z} = \frac{2^{a+b-(\ifrac{5}{2})}}{\pi\sqrt{z}}\EulerGamma@{a-\tfrac{1}{2}}\EulerGamma@{b-\tfrac{1}{2}}\*(z-1)^{(-a-b+(\ifrac{3}{2}))/2}\*\left(e^{-\pi\iunit(a+b-(\ifrac{3}{2}))}\assLegendreP[-a-b+(\ifrac{3}{2})]{a-b-(\ifrac{1}{2})}@{-\sqrt{z}}-\assLegendreP[-a-b+(\ifrac{3}{2})]{a-b-(\ifrac{1}{2})}@{\sqrt{z}}\right)
a β‰  1 2 , b β‰  1 2 , 0 < | ph ⁑ z | , | ph ⁑ z | < Ο€ , β„œ ⁑ ( a - 1 2 ) > 0 , β„œ ⁑ ( b - 1 2 ) > 0 , | z | < 1 , β„œ ⁑ ( ( 3 2 ) + s ) > 0 formulae-sequence π‘Ž 1 2 formulae-sequence 𝑏 1 2 formulae-sequence 0 phase 𝑧 formulae-sequence phase 𝑧 πœ‹ formulae-sequence π‘Ž 1 2 0 formulae-sequence 𝑏 1 2 0 formulae-sequence 𝑧 1 3 2 𝑠 0 {\displaystyle{\displaystyle a\neq\frac{1}{2},b\neq\frac{1}{2},0<|% \operatorname{ph}z|,|\operatorname{ph}z|<\pi,\Re(a-\tfrac{1}{2})>0,\Re(b-% \tfrac{1}{2})>0,|z|<1,\Re((\tfrac{3}{2})+s)>0}}
hypergeom([a, b], [(3)/(2)], z)/GAMMA((3)/(2)) = ((2)^(a + b -((5)/(2))))/(Pi*sqrt(z))*GAMMA(a -(1)/(2))*GAMMA(b -(1)/(2))*(z - 1)^((- a - b +((3)/(2)))/2)*(exp(- Pi*I*(a + b -((3)/(2))))*LegendreP(a - b -((1)/(2)), - a - b +((3)/(2)), -sqrt(z))- LegendreP(a - b -((1)/(2)), - a - b +((3)/(2)), sqrt(z)))
Hypergeometric2F1Regularized[a, b, Divide[3,2], z] == Divide[(2)^(a + b -(Divide[5,2])),Pi*Sqrt[z]]*Gamma[a -Divide[1,2]]*Gamma[b -Divide[1,2]]*(z - 1)^((- a - b +(Divide[3,2]))/2)*(Exp[- Pi*I*(a + b -(Divide[3,2]))]*LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[3,2]), 3, -Sqrt[z]]- LegendreP[a - b -(Divide[1,2]), - a - b +(Divide[3,2]), 3, Sqrt[z]])
Failure Failure Error
Failed [4 / 16]
Result: Complex[4.158519870861856, 2.5132294016879406]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]}

Result: Complex[1.2196744558627868, 0.17160454696174166]
Test Values: {Rule[a, 1.5], Rule[b, 1.5], Rule[z, Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]}

... skip entries to safe data