DLMF:22.6.E22 (Q6956)

From testwiki
Revision as of 21:38, 29 December 2019 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:22.6.E22
No description defined

    Statements

    p q 2 ( 1 2 z , k ) = p s ( z , k ) + r s ( z , k ) q s ( z , k ) + r s ( z , k ) = p q ( z , k ) + r q ( z , k ) 1 + r q ( z , k ) = p r ( z , k ) + 1 q r ( z , k ) + 1 . abstract-Jacobi-elliptic p q 2 1 2 𝑧 𝑘 abstract-Jacobi-elliptic p s 𝑧 𝑘 abstract-Jacobi-elliptic r s 𝑧 𝑘 abstract-Jacobi-elliptic q s 𝑧 𝑘 abstract-Jacobi-elliptic r s 𝑧 𝑘 abstract-Jacobi-elliptic p q 𝑧 𝑘 abstract-Jacobi-elliptic r q 𝑧 𝑘 1 abstract-Jacobi-elliptic r q 𝑧 𝑘 abstract-Jacobi-elliptic p r 𝑧 𝑘 1 abstract-Jacobi-elliptic q r 𝑧 𝑘 1 {\displaystyle{\displaystyle{\operatorname{pq}^{2}}\left(\tfrac{1}{2}z,k\right% )=\frac{\operatorname{ps}\left(z,k\right)+\operatorname{rs}\left(z,k\right)}{% \operatorname{qs}\left(z,k\right)+\operatorname{rs}\left(z,k\right)}=\frac{% \operatorname{pq}\left(z,k\right)+\operatorname{rq}\left(z,k\right)}{1+% \operatorname{rq}\left(z,k\right)}=\frac{\operatorname{pr}\left(z,k\right)+1}{% \operatorname{qr}\left(z,k\right)+1}.}}
    0 references
    0 references