DLMF:22.11.E5 (Q7029)

From testwiki
Revision as of 15:12, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:22.11.E5
No description defined

    Statements

    sd ( z , k ) = 2 π K k k n = 0 ( - 1 ) n q n + 1 2 sin ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 , Jacobi-elliptic-sd 𝑧 𝑘 2 𝜋 𝐾 𝑘 superscript 𝑘 superscript subscript 𝑛 0 superscript 1 𝑛 superscript 𝑞 𝑛 1 2 2 𝑛 1 𝜁 1 superscript 𝑞 2 𝑛 1 {\displaystyle{\displaystyle\operatorname{sd}\left(z,k\right)=\frac{2\pi}{Kkk^% {\prime}}\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{n+\frac{1}{2}}\sin\left((2n+1)% \zeta\right)}{1+q^{2n+1}},}}
    0 references
    0 references
    sd ( z , k ) Jacobi-elliptic-sd 𝑧 𝑘 {\displaystyle{\displaystyle\operatorname{sd}\left(\NVar{z},\NVar{k}\right)}}
    C22.S2.E7.m2adec
    0 references
    π {\displaystyle{\displaystyle\pi}}
    C3.S12.E1.m2addec
    0 references
    K ( k ) complete-elliptic-integral-first-kind-K 𝑘 {\displaystyle{\displaystyle K\left(\NVar{k}\right)}}
    C19.S2.E8.m1addec
    0 references
    q 𝑞 {\displaystyle{\displaystyle q}}
    C22.S2.E1.m2addec
    0 references