DLMF:25.11.E32 (Q7706)

From testwiki
Revision as of 12:44, 2 January 2020 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:25.11.E32
No description defined

    Statements

    0 a x n ψ ( x ) d x = ( - 1 ) n - 1 ζ ( - n ) + ( - 1 ) n h ( n ) B n + 1 n + 1 - k = 0 n ( - 1 ) k ( n k ) h ( k ) B k + 1 ( a ) k + 1 a n - k + k = 0 n ( - 1 ) k ( n k ) ζ ( - k , a ) a n - k , superscript subscript 0 𝑎 superscript 𝑥 𝑛 digamma 𝑥 𝑥 superscript 1 𝑛 1 diffop Riemann-zeta 1 𝑛 superscript 1 𝑛 𝑛 Bernoulli-number-B 𝑛 1 𝑛 1 superscript subscript 𝑘 0 𝑛 superscript 1 𝑘 binomial 𝑛 𝑘 𝑘 Bernoulli-number-B 𝑘 1 𝑎 𝑘 1 superscript 𝑎 𝑛 𝑘 superscript subscript 𝑘 0 𝑛 superscript 1 𝑘 binomial 𝑛 𝑘 diffop Hurwitz-zeta 1 𝑘 𝑎 superscript 𝑎 𝑛 𝑘 {\displaystyle{\displaystyle\int_{0}^{a}x^{n}\psi\left(x\right)\mathrm{d}x=(-1% )^{n-1}\zeta'\left(-n\right)+(-1)^{n}h(n)\frac{B_{n+1}}{n+1}-\sum_{k=0}^{n}(-1% )^{k}\genfrac{(}{)}{0.0pt}{}{n}{k}h(k)\frac{B_{k+1}(a)}{k+1}a^{n-k}+\sum_{k=0}% ^{n}(-1)^{k}\genfrac{(}{)}{0.0pt}{}{n}{k}\zeta'\left(-k,a\right)a^{n-k},}}
    0 references
    0 references
    a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
    0 references
    n = 1 , 2 , 𝑛 1 2 {\displaystyle{\displaystyle n=1,2,\dots}}
    0 references
    a > 0 𝑎 0 {\displaystyle{\displaystyle\Re a>0}}
    0 references
    B n Bernoulli-number-B 𝑛 {\displaystyle{\displaystyle B_{\NVar{n}}}}
    C24.S2.SS1.m1ahdec
    0 references
    ζ ( s , a ) Hurwitz-zeta 𝑠 𝑎 {\displaystyle{\displaystyle\zeta\left(\NVar{s},\NVar{a}\right)}}
    C25.S11.E1.m2aagdec
    0 references
    ζ ( s ) Riemann-zeta 𝑠 {\displaystyle{\displaystyle\zeta\left(\NVar{s}\right)}}
    C25.S2.E1.m2agdec
    0 references