Elementary Functions - 4.31 Special Values and Limits

From testwiki
Revision as of 16:37, 25 May 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
4.31.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1}
\lim_{z\to 0}\frac{\sinh@@{z}}{z} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((sinh(z))/(z), z = 0) = 1
Limit[Divide[Sinh[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.31.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1}
\lim_{z\to 0}\frac{\tanh@@{z}}{z} = 1
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((tanh(z))/(z), z = 0) = 1
Limit[Divide[Tanh[z],z], z -> 0, GenerateConditions->None] == 1
Successful Successful - Successful [Tested: 1]
4.31.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}}
\lim_{z\to 0}\frac{\cosh@@{z}-1}{z^{2}} = \frac{1}{2}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((cosh(z)- 1)/((z)^(2)), z = 0) = (1)/(2)
Limit[Divide[Cosh[z]- 1,(z)^(2)], z -> 0, GenerateConditions->None] == Divide[1,2]
Successful Successful - Successful [Tested: 1]