DLMF:28.28.E28 (Q8455)

From testwiki
Revision as of 23:17, 29 December 2019 by imported>Admin (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
No description defined
Language Label Description Also known as
English
DLMF:28.28.E28
No description defined

    Statements

    α ν , m ( 1 ) = 1 2 π 0 2 π sin t me ν ( t , h 2 ) me - ν - 2 m - 1 ( t , h 2 ) d t = ( - 1 ) m + 1 2 i π me ν ( 0 , h 2 ) me - ν - 2 m - 1 ( 0 , h 2 ) h D 1 ( ν , ν + 2 m + 1 , 0 ) . subscript superscript 𝛼 1 𝜈 𝑚 1 2 𝜋 superscript subscript 0 2 𝜋 𝑡 Mathieu-me 𝜈 𝑡 superscript 2 Mathieu-me 𝜈 2 𝑚 1 𝑡 superscript 2 𝑡 superscript 1 𝑚 1 2 imaginary-unit 𝜋 diffop Mathieu-me 𝜈 1 0 superscript 2 Mathieu-me 𝜈 2 𝑚 1 0 superscript 2 Mathieu-D 1 𝜈 𝜈 2 𝑚 1 0 {\displaystyle{\displaystyle\alpha^{(1)}_{\nu,m}=\dfrac{1}{2\pi}\int_{0}^{2\pi% }\sin t\mathrm{me}_{\nu}\left(t,h^{2}\right)\mathrm{me}_{-\nu-2m-1}\left(t,h^{% 2}\right)\mathrm{d}t=(-1)^{m+1}\dfrac{2\mathrm{i}}{\pi}\dfrac{\mathrm{me}_{\nu% }'\left(0,h^{2}\right)\mathrm{me}_{-\nu-2m-1}\left(0,h^{2}\right)}{h\mathrm{D}% _{1}\left(\nu,\nu+2m+1,0\right)}.}}
    0 references
    0 references