Results of Error Functions, Dawson’s and Fresnel Integrals

From testwiki
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
7.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{2}{\sqrt{\pi}}\int_{0}^{z}e^{-t^{2}}\diff{t}} erf(z) = (2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = 0..z) Erf[z] == Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, 0, z}, GenerateConditions->None] Successful Successful - Successful [Tested: 7]
7.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@@{z} = \frac{2}{\sqrt{\pi}}\int_{z}^{\infty}e^{-t^{2}}\diff{t}} erfc(z) = (2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = z..infinity) Erfc[z] == Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 7]
7.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2}{\sqrt{\pi}}\int_{z}^{\infty}e^{-t^{2}}\diff{t} = 1-\erf@@{z}} (2)/(sqrt(Pi))*int(exp(- (t)^(2)), t = z..infinity) = 1 - erf(z) Divide[2,Sqrt[Pi]]*Integrate[Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None] == 1 - Erf[z] Successful Successful - Successful [Tested: 7]
7.2.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-z^{2}}\left(1+\frac{2i}{\sqrt{\pi}}\int_{0}^{z}e^{t^{2}}\diff{t}\right) = e^{-z^{2}}\erfc@{-iz}} exp(- (z)^(2))*(1 +(2*I)/(sqrt(Pi))*int(exp((t)^(2)), t = 0..z)) = exp(- (z)^(2))*erfc(- I*z) Exp[- (z)^(2)]*(1 +Divide[2*I,Sqrt[Pi]]*Integrate[Exp[(t)^(2)], {t, 0, z}, GenerateConditions->None]) == Exp[- (z)^(2)]*Erfc[- I*z] Successful Successful - Successful [Tested: 7]
7.2#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to\infty}\erf@@{z} = 1} limit(erf(z), z = infinity) = 1 Limit[Erf[z], z -> Infinity, GenerateConditions->None] == 1 Successful Successful - Successful [Tested: 1]
7.2#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{z\to\infty}\erfc@@{z} = 0} limit(erfc(z), z = infinity) = 0 Limit[Erfc[z], z -> Infinity, GenerateConditions->None] == 0 Successful Successful - Successful [Tested: 1]
7.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \DawsonsintF@{z} = e^{-z^{2}}\int_{0}^{z}e^{t^{2}}\diff{t}} dawson(z) = exp(- (z)^(2))*int(exp((t)^(2)), t = 0..z) DawsonF[z] == Exp[- (z)^(2)]*Integrate[Exp[(t)^(2)], {t, 0, z}, GenerateConditions->None] Successful Successful - Successful [Tested: 7]
7.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \FresnelintF@{z} = \int_{z}^{\infty}e^{\tfrac{1}{2}\pi\iunit t^{2}}\diff{t}} Error (1+I)/2-FresnelC[z]-I*FresnelS[z] == Integrate[Exp[Divide[1,2]*Pi*I*(t)^(2)], {t, z, Infinity}, GenerateConditions->None] Missing Macro Error Failure -
Failed [2 / 7]
{Complex[-0.17236809983536389, -1.1316008349021112] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[0.17236809983536283, 1.1316008349021118] <- {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
7.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = \int_{0}^{z}\cos@{\tfrac{1}{2}\pi t^{2}}\diff{t}} FresnelC(z) = int(cos((1)/(2)*Pi*(t)^(2)), t = 0..z) FresnelC[z] == Integrate[Cos[Divide[1,2]*Pi*(t)^(2)], {t, 0, z}, GenerateConditions->None] Successful Successful - Successful [Tested: 7]
7.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = \int_{0}^{z}\sin@{\tfrac{1}{2}\pi t^{2}}\diff{t}} FresnelS(z) = int(sin((1)/(2)*Pi*(t)^(2)), t = 0..z) FresnelS[z] == Integrate[Sin[Divide[1,2]*Pi*(t)^(2)], {t, 0, z}, GenerateConditions->None] Successful Successful - Successful [Tested: 7]
7.2#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{x\to\infty}\Fresnelcosint@{x} = \tfrac{1}{2}} limit(FresnelC(x), x = infinity) = (1)/(2) Limit[FresnelC[x], x -> Infinity, GenerateConditions->None] == Divide[1,2] Successful Successful - Successful [Tested: 1]
7.2#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{x\to\infty}\Fresnelsinint@{x} = \tfrac{1}{2}} limit(FresnelS(x), x = infinity) = (1)/(2) Limit[FresnelS[x], x -> Infinity, GenerateConditions->None] == Divide[1,2] Successful Successful - Successful [Tested: 1]
7.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelf@{z} = \left(\tfrac{1}{2}-\Fresnelsinint@{z}\right)\cos@{\tfrac{1}{2}\pi z^{2}}-\left(\tfrac{1}{2}-\Fresnelcosint@{z}\right)\sin@{\tfrac{1}{2}\pi z^{2}}} Fresnelf(z) = ((1)/(2)- FresnelS(z))* cos((1)/(2)*Pi*(z)^(2))-((1)/(2)- FresnelC(z))* sin((1)/(2)*Pi*(z)^(2)) FresnelF[z] == (Divide[1,2]- FresnelS[z])* Cos[Divide[1,2]*Pi*(z)^(2)]-(Divide[1,2]- FresnelC[z])* Sin[Divide[1,2]*Pi*(z)^(2)] Successful Successful - Successful [Tested: 7]
7.2.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z} = \left(\tfrac{1}{2}-\Fresnelcosint@{z}\right)\cos@{\tfrac{1}{2}\pi z^{2}}+\left(\tfrac{1}{2}-\Fresnelsinint@{z}\right)\sin@{\tfrac{1}{2}\pi z^{2}}} Fresnelg(z) = ((1)/(2)- FresnelC(z))* cos((1)/(2)*Pi*(z)^(2))+((1)/(2)- FresnelS(z))* sin((1)/(2)*Pi*(z)^(2)) FresnelG[z] == (Divide[1,2]- FresnelC[z])* Cos[Divide[1,2]*Pi*(z)^(2)]+(Divide[1,2]- FresnelS[z])* Sin[Divide[1,2]*Pi*(z)^(2)] Successful Successful - Successful [Tested: 7]
7.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@{-z} = -\erf@{z}} erf(- z) = - erf(z) Erf[- z] == - Erf[z] Successful Successful - Successful [Tested: 7]
7.4.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@{-z} = 2-\erfc@{z}} erfc(- z) = 2 - erfc(z) Erfc[- z] == 2 - Erfc[z] Successful Successful - Successful [Tested: 7]
7.4.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \DawsonsintF@{-z} = -\DawsonsintF@{z}} dawson(- z) = - dawson(z) DawsonF[- z] == - DawsonF[z] Successful Successful - Successful [Tested: 7]
7.4#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{-z} = -\Fresnelcosint@{z}} FresnelC(- z) = - FresnelC(z) FresnelC[- z] == - FresnelC[z] Successful Successful - Successful [Tested: 7]
7.4#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{-z} = -\Fresnelsinint@{z}} FresnelS(- z) = - FresnelS(z) FresnelS[- z] == - FresnelS[z] Successful Successful - Successful [Tested: 7]
7.4#Ex3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{iz} = i\Fresnelcosint@{z}} FresnelC(I*z) = I*FresnelC(z) FresnelC[I*z] == I*FresnelC[z] Successful Successful - Successful [Tested: 7]
7.4#Ex4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{iz} = -i\Fresnelsinint@{z}} FresnelS(I*z) = - I*FresnelS(z) FresnelS[I*z] == - I*FresnelS[z] Successful Successful - Successful [Tested: 7]
7.4#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelf@{iz} = (1/\sqrt{2})e^{\frac{1}{4}\pi i-\frac{1}{2}\pi iz^{2}}-i\auxFresnelf@{z}} Fresnelf(I*z) = (1/(sqrt(2)))* exp((1)/(4)*Pi*I -(1)/(2)*Pi*I*(z)^(2))- I*Fresnelf(z) FresnelF[I*z] == (1/(Sqrt[2]))* Exp[Divide[1,4]*Pi*I -Divide[1,2]*Pi*I*(z)^(2)]- I*FresnelF[z] Failure Failure Successful [Tested: 7] Successful [Tested: 7]
7.4#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{iz} = (1/\sqrt{2})e^{-\frac{1}{4}\pi i-\frac{1}{2}\pi iz^{2}}+i\auxFresnelg@{z}} Fresnelg(I*z) = (1/(sqrt(2)))* exp(-(1)/(4)*Pi*I -(1)/(2)*Pi*I*(z)^(2))+ I*Fresnelg(z) FresnelG[I*z] == (1/(Sqrt[2]))* Exp[-Divide[1,4]*Pi*I -Divide[1,2]*Pi*I*(z)^(2)]+ I*FresnelG[z] Failure Failure Successful [Tested: 7] Successful [Tested: 7]
7.4#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelf@{-z} = \sqrt{2}\cos@{\tfrac{1}{4}\pi+\tfrac{1}{2}\pi z^{2}}-\auxFresnelf@{z}} Fresnelf(- z) = sqrt(2)*cos((1)/(4)*Pi +(1)/(2)*Pi*(z)^(2))- Fresnelf(z) FresnelF[- z] == Sqrt[2]*Cos[Divide[1,4]*Pi +Divide[1,2]*Pi*(z)^(2)]- FresnelF[z] Successful Successful - Successful [Tested: 7]
7.4#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{-z} = \sqrt{2}\sin@{\tfrac{1}{4}\pi+\tfrac{1}{2}\pi z^{2}}-\auxFresnelg@{z}} Fresnelg(- z) = sqrt(2)*sin((1)/(4)*Pi +(1)/(2)*Pi*(z)^(2))- Fresnelg(z) FresnelG[- z] == Sqrt[2]*Sin[Divide[1,4]*Pi +Divide[1,2]*Pi*(z)^(2)]- FresnelG[z] Successful Failure - Successful [Tested: 7]
7.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z}+i\Fresnelsinint@{z} = \tfrac{1}{2}(1+i)-\FresnelintF@{z}} Error FresnelC[z]+ I*FresnelS[z] == Divide[1,2]*(1 + I)- (1+I)/2-FresnelC[z]-I*FresnelS[z] Missing Macro Error Failure -
Failed [7 / 7]
{Complex[1.0249430142401041, 0.8677085978643018] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.5229723981935741, 3.2881446840443265] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = \tfrac{1}{2}+\auxFresnelf@{z}\sin@{\tfrac{1}{2}\pi z^{2}}-\auxFresnelg@{z}\cos@{\tfrac{1}{2}\pi z^{2}}} FresnelC(z) = (1)/(2)+ Fresnelf(z)*sin((1)/(2)*Pi*(z)^(2))- Fresnelg(z)*cos((1)/(2)*Pi*(z)^(2)) FresnelC[z] == Divide[1,2]+ FresnelF[z]*Sin[Divide[1,2]*Pi*(z)^(2)]- FresnelG[z]*Cos[Divide[1,2]*Pi*(z)^(2)] Successful Failure - Successful [Tested: 7]
7.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = \tfrac{1}{2}-\auxFresnelf@{z}\cos@{\tfrac{1}{2}\pi z^{2}}-\auxFresnelg@{z}\sin@{\tfrac{1}{2}\pi z^{2}}} FresnelS(z) = (1)/(2)- Fresnelf(z)*cos((1)/(2)*Pi*(z)^(2))- Fresnelg(z)*sin((1)/(2)*Pi*(z)^(2)) FresnelS[z] == Divide[1,2]- FresnelF[z]*Cos[Divide[1,2]*Pi*(z)^(2)]- FresnelG[z]*Sin[Divide[1,2]*Pi*(z)^(2)] Successful Failure - Successful [Tested: 7]
7.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\frac{1}{2}\pi iz^{2}}\FresnelintF@{z} = \auxFresnelg@{z}+i\auxFresnelf@{z}} Error Exp[-Divide[1,2]*Pi*I*(z)^(2)]*(1+I)/2-FresnelC[z]-I*FresnelS[z] == FresnelG[z]+ I*FresnelF[z] Missing Macro Error Failure -
Failed [6 / 7]
{Complex[2.0955908860316255, -0.6505223669676224] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.08422623998042833, -1.3932392044453867] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{+\frac{1}{2}\pi iz^{2}}(\auxFresnelg@{z}+ i\auxFresnelf@{z}) = \tfrac{1}{2}(1+ i)-(\Fresnelcosint@{z}+ i\Fresnelsinint@{z})} exp(+(1)/(2)*Pi*I*(z)^(2))*(Fresnelg(z)+ I*Fresnelf(z)) = (1)/(2)*(1 + I)-(FresnelC(z)+ I*FresnelS(z)) Exp[+Divide[1,2]*Pi*I*(z)^(2)]*(FresnelG[z]+ I*FresnelF[z]) == Divide[1,2]*(1 + I)-(FresnelC[z]+ I*FresnelS[z]) Successful Failure - Successful [Tested: 7]
7.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\frac{1}{2}\pi iz^{2}}(\auxFresnelg@{z}- i\auxFresnelf@{z}) = \tfrac{1}{2}(1- i)-(\Fresnelcosint@{z}- i\Fresnelsinint@{z})} exp(-(1)/(2)*Pi*I*(z)^(2))*(Fresnelg(z)- I*Fresnelf(z)) = (1)/(2)*(1 - I)-(FresnelC(z)- I*FresnelS(z)) Exp[-Divide[1,2]*Pi*I*(z)^(2)]*(FresnelG[z]- I*FresnelF[z]) == Divide[1,2]*(1 - I)-(FresnelC[z]- I*FresnelS[z]) Successful Failure - Successful [Tested: 7]
7.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z}+ i\Fresnelsinint@{z} = \tfrac{1}{2}(1+ i)\erf@@{\zeta}} FresnelC(z)+ I*FresnelS(z) = (1)/(2)*(1 + I)* erf(zeta) FresnelC[z]+ I*FresnelS[z] == Divide[1,2]*(1 + I)* Erf[\[Zeta]] Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
7.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z}- i\Fresnelsinint@{z} = \tfrac{1}{2}(1- i)\erf@@{\zeta}} FresnelC(z)- I*FresnelS(z) = (1)/(2)*(1 - I)* erf(zeta) FresnelC[z]- I*FresnelS[z] == Divide[1,2]*(1 - I)* Erf[\[Zeta]] Failure Failure
Failed [7 / 7]
7/7]: [[1.210218044+.7739577054*I <- {z = 1/2*3^(1/2)+1/2*I}
-2.077926642+.2509853077*I <- {z = -1/2+1/2*I*3^(1/2)}
Failed [7 / 7]
{Complex[1.210218043090013, 0.7739577062168396] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-2.0779266409543133, 0.2509853080232649] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.5.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z}+ i\auxFresnelf@{z} = \tfrac{1}{2}(1+ i)e^{\zeta^{2}}\erfc@@{\zeta}} Fresnelg(z)+ I*Fresnelf(z) = (1)/(2)*(1 + I)* exp((zeta)^(2))*erfc(zeta) FresnelG[z]+ I*FresnelF[z] == Divide[1,2]*(1 + I)* Exp[\[Zeta]^(2)]*Erfc[\[Zeta]] Successful Failure Skip - symbolical successful subtest Successful [Tested: 7]
7.5.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z}- i\auxFresnelf@{z} = \tfrac{1}{2}(1- i)e^{\zeta^{2}}\erfc@@{\zeta}} Fresnelg(z)- I*Fresnelf(z) = (1)/(2)*(1 - I)* exp((zeta)^(2))*erfc(zeta) FresnelG[z]- I*FresnelF[z] == Divide[1,2]*(1 - I)* Exp[\[Zeta]^(2)]*Erfc[\[Zeta]] Failure Failure
Failed [7 / 7]
7/7]: [[-.2860780540-.1977870141*I <- {z = 1/2*3^(1/2)+1/2*I}
-.1472580850-5.018337775*I <- {z = -1/2+1/2*I*3^(1/2)}
Failed [7 / 7]
{Complex[-0.2860780524436176, -0.19778701442673574] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.14725808362732817, -5.018337771876615] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.5.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\FresnelintF@{x}|^{2} = \auxFresnelf^{2}@{x}+\auxFresnelg^{2}@{x}} Error (Abs[(1+I)/2-FresnelC[x]-I*FresnelS[x]])^(2) == (FresnelF[x])^(2)+ (FresnelG[x])^(2) Missing Macro Error Failure - Successful [Tested: 3]
7.5.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle |\FresnelintF@{x}|^{2} = 2+\auxFresnelf^{2}@{-x}+\auxFresnelg^{2}@{-x}-2\sqrt{2}\cos@{\tfrac{1}{4}\pi+\tfrac{1}{2}\pi x^{2}}\auxFresnelf@{-x}-2\sqrt{2}\cos@{\tfrac{1}{4}\pi-\tfrac{1}{2}\pi x^{2}}\auxFresnelg@{-x}} Error (Abs[(1+I)/2-FresnelC[x]-I*FresnelS[x]])^(2) == 2 + (FresnelF[- x])^(2)+ (FresnelG[- x])^(2)- 2*Sqrt[2]*Cos[Divide[1,4]*Pi +Divide[1,2]*Pi*(x)^(2)]*FresnelF[- x]- 2*Sqrt[2]*Cos[Divide[1,4]*Pi -Divide[1,2]*Pi*(x)^(2)]*FresnelG[- x] Missing Macro Error Failure - Skip - No test values generated
7.6.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{2}{\sqrt{\pi}}\sum_{n=0}^{\infty}\frac{(-1)^{n}z^{2n+1}}{n!(2n+1)}} erf(z) = (2)/(sqrt(Pi))*sum(((- 1)^(n)* (z)^(2*n + 1))/(factorial(n)*(2*n + 1)), n = 0..infinity) Erf[z] == Divide[2,Sqrt[Pi]]*Sum[Divide[(- 1)^(n)* (z)^(2*n + 1),(n)!*(2*n + 1)], {n, 0, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 7]
7.6.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{2}{\sqrt{\pi}}e^{-z^{2}}\sum_{n=0}^{\infty}\frac{2^{n}z^{2n+1}}{1\cdot 3\cdots(2n+1)}} erf(z) = (2)/(sqrt(Pi))*exp(- (z)^(2))*sum(((2)^(n)* (z)^(2*n + 1))/(1 * 3*(2*n + 1)), n = 0..infinity) Erf[z] == Divide[2,Sqrt[Pi]]*Exp[- (z)^(2)]*Sum[Divide[(2)^(n)* (z)^(2*n + 1),1 * 3*(2*n + 1)], {n, 0, Infinity}, GenerateConditions->None] Failure Failure
Failed [7 / 7]
7/7]: [[.7078919422+.2093474075*I <- {z = 1/2*3^(1/2)+1/2*I}
-.5779386350+.6643773058*I <- {z = -1/2+1/2*I*3^(1/2)}
Failed [7 / 7]
{Complex[0.7078919419896831, 0.20934740753145048] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.5779386346997313, 0.6643773053985802] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.6.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{2n}}{(2n)!(4n+1)}z^{4n+1}} FresnelC(z) = sum(((- 1)^(n)*((1)/(2)*Pi)^(2*n))/(factorial(2*n)*(4*n + 1))*(z)^(4*n + 1), n = 0..infinity) FresnelC[z] == Sum[Divide[(- 1)^(n)*(Divide[1,2]*Pi)^(2*n),(2*n)!*(4*n + 1)]*(z)^(4*n + 1), {n, 0, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 7]
7.6.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = \cos@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n}}{1\cdot 3\cdots(4n+1)}z^{4n+1}+\sin@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n+1}}{1\cdot 3\cdots(4n+3)}z^{4n+3}} FresnelC(z) = cos((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n))/(1 * 3*(4*n + 1))*(z)^(4*n + 1), n = 0..infinity)+ sin((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n + 1))/(1 * 3*(4*n + 3))*(z)^(4*n + 3), n = 0..infinity) FresnelC[z] == Cos[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n),1 * 3*(4*n + 1)]*(z)^(4*n + 1), {n, 0, Infinity}, GenerateConditions->None]+ Sin[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n + 1),1 * 3*(4*n + 3)]*(z)^(4*n + 3), {n, 0, Infinity}, GenerateConditions->None] Failure Failure
Failed [7 / 7]
7/7]: [[.6549946728+.3747413995*I <- {z = 1/2*3^(1/2)+1/2*I}
-.3747413995+.6549946728*I <- {z = -1/2+1/2*I*3^(1/2)}
Failed [7 / 7]
{Complex[0.6549946726974499, 0.37474139987534255] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.37474139987534216, 0.6549946726974494] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.6.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = \sum_{n=0}^{\infty}\frac{(-1)^{n}(\frac{1}{2}\pi)^{2n+1}}{(2n+1)!(4n+3)}z^{4n+3}} FresnelS(z) = sum(((- 1)^(n)*((1)/(2)*Pi)^(2*n + 1))/(factorial(2*n + 1)*(4*n + 3))*(z)^(4*n + 3), n = 0..infinity) FresnelS[z] == Sum[Divide[(- 1)^(n)*(Divide[1,2]*Pi)^(2*n + 1),(2*n + 1)!*(4*n + 3)]*(z)^(4*n + 3), {n, 0, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 7]
7.6.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = -\cos@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n+1}}{1\cdot 3\cdots(4n+3)}z^{4n+3}+\sin@{\tfrac{1}{2}\pi z^{2}}\sum_{n=0}^{\infty}\frac{(-1)^{n}\pi^{2n}}{1\cdot 3\cdots(4n+1)}z^{4n+1}} FresnelS(z) = - cos((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n + 1))/(1 * 3*(4*n + 3))*(z)^(4*n + 3), n = 0..infinity)+ sin((1)/(2)*Pi*(z)^(2))*sum(((- 1)^(n)* (Pi)^(2*n))/(1 * 3*(4*n + 1))*(z)^(4*n + 1), n = 0..infinity) FresnelS[z] == - Cos[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n + 1),1 * 3*(4*n + 3)]*(z)^(4*n + 3), {n, 0, Infinity}, GenerateConditions->None]+ Sin[Divide[1,2]*Pi*(z)^(2)]*Sum[Divide[(- 1)^(n)* (Pi)^(2*n),1 * 3*(4*n + 1)]*(z)^(4*n + 1), {n, 0, Infinity}, GenerateConditions->None] Failure Failure
Failed [7 / 7]
7/7]: [[.306970168e-1+.2085514294*I <- {z = 1/2*3^(1/2)+1/2*I}
.2085514294-.306970168e-1*I <- {z = -1/2+1/2*I*3^(1/2)}
Failed [7 / 7]
{Complex[0.030697016764588636, 0.2085514288007122] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.2085514288007118, -0.030697016764589136] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.6.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{2z}{\sqrt{\pi}}\sum_{n=0}^{\infty}(-1)^{n}\left(\modsphBesseli{1}{2n}@{z^{2}}-\modsphBesseli{1}{2n+1}@{z^{2}}\right)} Error Erf[z] == Divide[2*z,Sqrt[Pi]]*Sum[(- 1)^(n)*(Sqrt[Divide[Pi, (z)^(2)]/2] BesselI[(-1)^(1-1)*(2*n + 1/2), 2*n]- Sqrt[Divide[Pi, (z)^(2)]/2] BesselI[(-1)^(1-1)*(2*n + 1 + 1/2), 2*n + 1]), {n, 0, Infinity}, GenerateConditions->None] Missing Macro Error Failure -
Failed [7 / 7]
{Plus[Complex[0.90211411820456, 0.25316491871645536], Times[Complex[-0.9772050238058398, -0.5641895835477562], NSum[Times[Power[-1, n], Plus[Times[Power[Power[E, Times[Complex[0, Rational[-1, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[2, n]], Times[2, n]]], Times[-1, Power[Power[E, Times[Complex[0, Rational[-1, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[3, 2], Times[2, n]], Plus[1, Times[2, n]]]]]] <- {n, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[-0.9777263798592635, 0.8570608779788039], Times[Complex[0.5641895835477561, -0.9772050238058398], NSum[Times[Power[-1, n], Plus[Times[Power[Power[E, Times[Complex[0, Rational[2, 3]], Pi]], Rational[1, 2]], Power[Times[Rational[1, 2], Pi], Rational[1, 2]], BesselI[Plus[Rational[1, 2], Times[2, n]], Times[2, n]
7.6.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@{az} = \frac{2z}{\sqrt{\pi}}e^{(\frac{1}{2}-a^{2})z^{2}}\sum_{n=0}^{\infty}\ChebyshevpolyT{2n+1}@{a}\modsphBesseli{1}{n}@{\tfrac{1}{2}z^{2}}} Error Erf[a*z] == Divide[2*z,Sqrt[Pi]]*Exp[(Divide[1,2]- (a)^(2))* (z)^(2)]*Sum[ChebyshevT[2*n + 1, a]*Sqrt[Divide[Pi, Divide[1,2]*(z)^(2)]/2] BesselI[(-1)^(1-1)*(n + 1/2), n], {n, 0, Infinity}, GenerateConditions->None] Missing Macro Error Aborted - Skipped - Because timed out
7.6.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = z\sum_{n=0}^{\infty}\sphBesselJ{2n}@{\tfrac{1}{2}\pi z^{2}}} Error FresnelC[z] == z*Sum[SphericalBesselJ[2*n, Divide[1,2]*Pi*(z)^(2)], {n, 0, Infinity}, GenerateConditions->None] Missing Macro Error Failure - Skipped - Because timed out
7.6.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = z\sum_{n=0}^{\infty}\sphBesselJ{2n+1}@{\tfrac{1}{2}\pi z^{2}}} Error FresnelS[z] == z*Sum[SphericalBesselJ[2*n + 1, Divide[1,2]*Pi*(z)^(2)], {n, 0, Infinity}, GenerateConditions->None] Missing Macro Error Failure - Skipped - Because timed out
7.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@@{z} = \frac{2}{\pi}e^{-z^{2}}\int_{0}^{\infty}\frac{e^{-z^{2}t^{2}}}{t^{2}+1}\diff{t}} erfc(z) = (2)/(Pi)*exp(- (z)^(2))*int((exp(- (z)^(2)* (t)^(2)))/((t)^(2)+ 1), t = 0..infinity) Erfc[z] == Divide[2,Pi]*Exp[- (z)^(2)]*Integrate[Divide[Exp[- (z)^(2)* (t)^(2)],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 4]
7.7.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\pi i}\int_{-\infty}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t-z} = \frac{2z}{\pi i}\int_{0}^{\infty}\frac{e^{-t^{2}}\diff{t}}{t^{2}-z^{2}}} (1)/(Pi*I)*int((exp(- (t)^(2)))/(t - z), t = - infinity..infinity) = (2*z)/(Pi*I)*int((exp(- (t)^(2)))/((t)^(2)- (z)^(2)), t = 0..infinity) Divide[1,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],t - z], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[2*z,Pi*I]*Integrate[Divide[Exp[- (t)^(2)],(t)^(2)- (z)^(2)], {t, 0, Infinity}, GenerateConditions->None] Failure Failure
Failed [7 / 7]
7/7]: [[.2137917882+.3702982391*I <- {z = 1/2*3^(1/2)+1/2*I, z = I}
.572853371e-1-.2137917880*I <- {z = -1/2+1/2*I*3^(1/2), z = I}
Successful [Tested: 1]
7.7.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at^{2}+2izt}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{-z^{2}/a}+\frac{i}{\sqrt{a}}\DawsonsintF@{\frac{z}{\sqrt{a}}}} int(exp(- a*(t)^(2)+ 2*I*z*t), t = 0..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(- (z)^(2)/ a)+(I)/(sqrt(a))*dawson((z)/(sqrt(a))) Integrate[Exp[- a*(t)^(2)+ 2*I*z*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[- (z)^(2)/ a]+Divide[I,Sqrt[a]]*DawsonF[Divide[z,Sqrt[a]]] Failure Successful Successful [Tested: 21] Successful [Tested: 21]
7.7.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}\frac{e^{-at}}{\sqrt{t+z^{2}}}\diff{t} = \sqrt{\frac{\pi}{a}}e^{az^{2}}\erfc@{\sqrt{a}z}} int((exp(- a*t))/(sqrt(t + (z)^(2))), t = 0..infinity) = sqrt((Pi)/(a))*exp(a*(z)^(2))*erfc(sqrt(a)*z) Integrate[Divide[Exp[- a*t],Sqrt[t + (z)^(2)]], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,a]]*Exp[a*(z)^(2)]*Erfc[Sqrt[a]*z] Successful Successful - Successful [Tested: 15]
7.7.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{1}\frac{e^{-at^{2}}}{t^{2}+1}\diff{t} = \frac{\pi}{4}e^{a}\left(1-(\erf@@{\sqrt{a}})^{2}\right)} int((exp(- a*(t)^(2)))/((t)^(2)+ 1), t = 0..1) = (Pi)/(4)*exp(a)*(1 -(erf(sqrt(a)))^(2)) Integrate[Divide[Exp[- a*(t)^(2)],(t)^(2)+ 1], {t, 0, 1}, GenerateConditions->None] == Divide[Pi,4]*Exp[a]*(1 -(Erf[Sqrt[a]])^(2)) Failure Failure Successful [Tested: 3] Successful [Tested: 3]
7.7.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}e^{-(at^{2}+2bt+c)}\diff{t} = \frac{1}{2}\sqrt{\frac{\pi}{a}}e^{(b^{2}-ac)/a}\erfc@{\sqrt{a}x+\frac{b}{\sqrt{a}}}} int(exp(-(a*(t)^(2)+ 2*b*t + c)), t = x..infinity) = (1)/(2)*sqrt((Pi)/(a))*exp(((b)^(2)- a*c)/ a)*erfc(sqrt(a)*x +(b)/(sqrt(a))) Integrate[Exp[-(a*(t)^(2)+ 2*b*t + c)], {t, x, Infinity}, GenerateConditions->None] == Divide[1,2]*Sqrt[Divide[Pi,a]]*Exp[((b)^(2)- a*c)/ a]*Erfc[Sqrt[a]*x +Divide[b,Sqrt[a]]] Failure Successful Successful [Tested: 300] Successful [Tested: 300]
7.7.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{x}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{4a}\left(e^{2ab}\erfc@{ax+(b/x)}+e^{-2ab}\erfc@{ax-(b/x)}\right)} int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/ (t)^(2))), t = x..infinity) = (sqrt(Pi))/(4*a)*(exp(2*a*b)*erfc(a*x +(b/ x))+ exp(- 2*a*b)*erfc(a*x -(b/ x))) Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/ (t)^(2))], {t, x, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],4*a]*(Exp[2*a*b]*Erfc[a*x +(b/ x)]+ Exp[- 2*a*b]*Erfc[a*x -(b/ x)]) Failure Aborted Successful [Tested: 54] Skipped - Because timed out
7.7.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-a^{2}t^{2}-(b^{2}/t^{2})}\diff{t} = \frac{\sqrt{\pi}}{2a}e^{-2ab}} int(exp(- (a)^(2)* (t)^(2)-((b)^(2)/ (t)^(2))), t = 0..infinity) = (sqrt(Pi))/(2*a)*exp(- 2*a*b) Integrate[Exp[- (a)^(2)* (t)^(2)-((b)^(2)/ (t)^(2))], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi],2*a]*Exp[- 2*a*b] Successful Successful - Successful [Tested: 9]
7.7.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}\erf@@{t}\diff{t} = x\erf@@{x}+\frac{1}{\sqrt{\pi}}\left(e^{-x^{2}}-1\right)} int(erf(t), t = 0..x) = x*erf(x)+(1)/(sqrt(Pi))*(exp(- (x)^(2))- 1) Integrate[Erf[t], {t, 0, x}, GenerateConditions->None] == x*Erf[x]+Divide[1,Sqrt[Pi]]*(Exp[- (x)^(2)]- 1) Successful Successful - Successful [Tested: 3]
7.7.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelf@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{e^{-\pi z^{2}t/2}}{\sqrt{t}(t^{2}+1)}\diff{t}} Fresnelf(z) = (1)/(Pi*sqrt(2))*int((exp(- Pi*(z)^(2)* t/ 2))/(sqrt(t)*((t)^(2)+ 1)), t = 0..infinity) FresnelF[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Exp[- Pi*(z)^(2)* t/ 2],Sqrt[t]*((t)^(2)+ 1)], {t, 0, Infinity}, GenerateConditions->None] Failure Successful Successful [Tested: 4] Successful [Tested: 4]
7.7.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z} = \frac{1}{\pi\sqrt{2}}\int_{0}^{\infty}\frac{\sqrt{t}e^{-\pi z^{2}t/2}}{t^{2}+1}\diff{t}} Fresnelg(z) = (1)/(Pi*sqrt(2))*int((sqrt(t)*exp(- Pi*(z)^(2)* t/ 2))/((t)^(2)+ 1), t = 0..infinity) FresnelG[z] == Divide[1,Pi*Sqrt[2]]*Integrate[Divide[Sqrt[t]*Exp[- Pi*(z)^(2)* t/ 2],(t)^(2)+ 1], {t, 0, Infinity}, GenerateConditions->None] Failure Successful Successful [Tested: 4] Successful [Tested: 4]
7.7.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z}+i\auxFresnelf@{z} = e^{-\pi iz^{2}/2}\int_{z}^{\infty}e^{\pi it^{2}/2}\diff{t}} Fresnelg(z)+ I*Fresnelf(z) = exp(- Pi*I*(z)^(2)/ 2)*int(exp(Pi*I*(t)^(2)/ 2), t = z..infinity) FresnelG[z]+ I*FresnelF[z] == Exp[- Pi*I*(z)^(2)/ 2]*Integrate[Exp[Pi*I*(t)^(2)/ 2], {t, z, Infinity}, GenerateConditions->None] Successful Failure -
Failed [2 / 7]
{Complex[0.1740270274183789, -0.23657015577401255] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[-0.17402702741837872, 0.2365701557740125] <- {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
7.7.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelf@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{3}{4}}\EulerGamma@{\tfrac{1}{4}-s}\diff{s}} Fresnelf(z) = ((2*Pi)^(- 3/ 2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(3)/(4))*GAMMA((1)/(4)- s), s = c - I*infinity..c + I*infinity) FresnelF[z] == Divide[(2*Pi)^(- 3/ 2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[3,4]]*Gamma[Divide[1,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] Failure Aborted
Failed [300 / 300]
300/300]: [[.2811902531-.108667706*I <- {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}
.2811902531-.108667706*I <- {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}
Skipped - Because timed out
7.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \auxFresnelg@{z} = \frac{(2\pi)^{-3/2}}{2\pi i}\int_{c-i\infty}^{c+i\infty}\zeta^{-s}\EulerGamma@{s}\EulerGamma@{s+\tfrac{1}{2}}\*\EulerGamma@{s+\tfrac{1}{4}}\EulerGamma@{\tfrac{3}{4}-s}\diff{s}} Fresnelg(z) = ((2*Pi)^(- 3/ 2))/(2*Pi*I)*int((zeta)^(- s)* GAMMA(s)*GAMMA(s +(1)/(2))* GAMMA(s +(1)/(4))*GAMMA((3)/(4)- s), s = c - I*infinity..c + I*infinity) FresnelG[z] == Divide[(2*Pi)^(- 3/ 2),2*Pi*I]*Integrate[\[Zeta]^(- s)* Gamma[s]*Gamma[s +Divide[1,2]]* Gamma[s +Divide[1,4]]*Gamma[Divide[3,4]- s], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] Failure Aborted
Failed [300 / 300]
300/300]: [[.39257720e-1-.645221857e-1*I <- {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I}
.39257720e-1-.645221857e-1*I <- {c = -1.5, z = 1/2*3^(1/2)+1/2*I, zeta = -1/2+1/2*I*3^(1/2)}
Skipped - Because timed out
7.7.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\cos@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelf@{\frac{a}{\sqrt{2\pi}}}} int(exp(- a*t)*cos((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelf((a)/(sqrt(2*Pi))) Integrate[Exp[- a*t]*Cos[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelF[Divide[a,Sqrt[2*Pi]]] Successful Aborted - Successful [Tested: 3]
7.7.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\sin@{t^{2}}\diff{t} = \sqrt{\frac{\pi}{2}}\auxFresnelg@{\frac{a}{\sqrt{2\pi}}}} int(exp(- a*t)*sin((t)^(2)), t = 0..infinity) = sqrt((Pi)/(2))*Fresnelg((a)/(sqrt(2*Pi))) Integrate[Exp[- a*t]*Sin[(t)^(2)], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Divide[Pi,2]]*FresnelG[Divide[a,Sqrt[2*Pi]]] Successful Aborted - Successful [Tested: 3]
7.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \MillsM@{x} = \frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}}} Error Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] == Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None],Exp[- (x)^(2)]] Missing Macro Error Failure -
Failed [3 / 3]
{Plus[-0.2849976548947546, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}
Plus[-0.545641360765047, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}
7.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}} = e^{x^{2}}\int_{x}^{\infty}e^{-t^{2}}\diff{t}} (int(exp(- (t)^(2)), t = x..infinity))/(exp(- (x)^(2))) = exp((x)^(2))*int(exp(- (t)^(2)), t = x..infinity) Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None],Exp[- (x)^(2)]] == Exp[(x)^(2)]*Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 3]
7.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{x+\sqrt{x^{2}+2}} < \MillsM@{x}} Error Divide[1,x +Sqrt[(x)^(2)+ 2]] < Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] Missing Macro Error Failure -
Failed [3 / 3]
{Less[0.28077640640441515, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}
Less[0.5, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}
7.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \MillsM@{x} \leq \frac{1}{x+\sqrt{x^{2}+(4/\pi)}}} Error Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] <= Divide[1,x +Sqrt[(x)^(2)+(4/ Pi)]] Missing Macro Error Failure -
Failed [3 / 3]
{LessEqual[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 1.5, DirectedInfinity[1]}]], 0.2961182351849971], {Rule[x, 1.5]}
LessEqual[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 0.5, DirectedInfinity[1]}]], 0.5766361194388748], {Rule[x, 0.5]}
7.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{\sqrt{\pi}}{2\sqrt{\pi}x+2} \leq \MillsM@{x}} Error Divide[Sqrt[Pi],2*Sqrt[Pi]*x + 2] <= Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] Missing Macro Error Failure -
Failed [3 / 3]
{LessEqual[0.24222581297045487, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}
LessEqual[0.46984109573138116, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}
7.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \MillsM@{x} < \frac{1}{x+1}} Error Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[1,x + 1] Missing Macro Error Failure -
Failed [3 / 3]
{Less[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 1.5, DirectedInfinity[1]}]], 0.4], {Rule[x, 1.5]}
Less[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 0.5, DirectedInfinity[1]}]], 0.6666666666666666], {Rule[x, 0.5]}
7.8.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \MillsM@{x} < \frac{2}{3x+\sqrt{x^{2}+4}}} Error Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[2,3*x +Sqrt[(x)^(2)+ 4]] Missing Macro Error Failure -
Failed [3 / 3]
{Less[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 1.5, DirectedInfinity[1]}]], 0.2857142857142857], {Rule[x, 1.5]}
Less[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 0.5, DirectedInfinity[1]}]], 0.5615528128088303], {Rule[x, 0.5]}
7.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{x^{2}}{2x^{2}+1} \leq \frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3}} ((x)^(2))/(2*(x)^(2)+ 1) <= ((x)^(2)*(2*(x)^(2)+ 5))/(4*(x)^(4)+ 12*(x)^(2)+ 3) Divide[(x)^(2),2*(x)^(2)+ 1] <= Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
7.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3} \leq x\MillsM@{x}} Error Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3] <= x*Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] Missing Macro Error Failure Skip - symbolical successful subtest
Failed [3 / 3]
{LessEqual[0.4253731343283582, Times[14.23160375453779, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}
LessEqual[0.22, Times[0.6420127083438707, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}
7.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x\MillsM@{x} < \frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15}} Error x*Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15] Missing Macro Error Failure Skip - symbolical successful subtest
Failed [3 / 3]
{Less[Times[14.23160375453779, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 1.5, DirectedInfinity[1]}]], 0.42834890965732086], {Rule[x, 1.5]}
Less[Times[0.6420127083438707, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]] <- {t, 0.5, DirectedInfinity[1]}]], 0.31481481481481477], {Rule[x, 0.5]}
7.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15} < \frac{x^{2}+1}{2x^{2}+3}} (2*(x)^(4)+ 9*(x)^(2)+ 4)/(4*(x)^(4)+ 20*(x)^(2)+ 15) < ((x)^(2)+ 1)/(2*(x)^(2)+ 3) Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15] < Divide[(x)^(2)+ 1,2*(x)^(2)+ 3] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
7.8.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{at^{2}}\diff{t} < \frac{1}{3ax}\left(2e^{ax^{2}}+ax^{2}-2\right)} int(exp(a*(t)^(2)), t = 0..x) < (1)/(3*a*x)*(2*exp(a*(x)^(2))+ a*(x)^(2)- 2) Integrate[Exp[a*(t)^(2)], {t, 0, x}, GenerateConditions->None] < Divide[1,3*a*x]*(2*Exp[a*(x)^(2)]+ a*(x)^(2)- 2) Error Failure - Successful [Tested: 9]
7.8.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{x}e^{t^{2}}\diff{t} < \frac{e^{x^{2}}-1}{x}} int(exp((t)^(2)), t = 0..x) < (exp((x)^(2))- 1)/(x) Integrate[Exp[(t)^(2)], {t, 0, x}, GenerateConditions->None] < Divide[Exp[(x)^(2)]- 1,x] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
7.8.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{x} < \sqrt{1-\expe^{-4x^{2}/\cpi}}} erf(x) < sqrt(1 - exp(- 4*(x)^(2)/ Pi)) Erf[x] < Sqrt[1 - Exp[- 4*(x)^(2)/ Pi]] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
7.10.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n+1]{\erf@@{z}}{z} = (-1)^{n}\frac{2}{\sqrt{\pi}}\HermitepolyH{n}@{z}e^{-z^{2}}} diff(erf(z), [z$(n + 1)]) = (- 1)^(n)*(2)/(sqrt(Pi))*HermiteH(n, z)*exp(- (z)^(2)) D[Erf[z], {z, n + 1}] == (- 1)^(n)*Divide[2,Sqrt[Pi]]*HermiteH[n, z]*Exp[- (z)^(2)] Failure Failure Manual Skip!
Failed [7 / 7]
{Plus[Complex[-3.565180358777125, 6.304771054937664], D[Complex[0.90211411820456, 0.25316491871645536] <- {Complex[0.8660254037844387, 0.49999999999999994], 4.0}]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[31.601340663516154, 7.3148164199817], D[Complex[-0.9777263798592635, 0.8570608779788039] <- {Complex[-0.4999999999999998, 0.8660254037844387], 4.0}]], {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.10#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{\auxFresnelf@{z}}{z} = -\pi z\auxFresnelg@{z}} diff(Fresnelf(z), z) = - Pi*z*Fresnelg(z) D[FresnelF[z], z] == - Pi*z*FresnelG[z] Successful Successful - Successful [Tested: 7]
7.10#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{\auxFresnelg@{z}}{z} = \pi z\auxFresnelf@{z}-1} diff(Fresnelg(z), z) = Pi*z*Fresnelf(z)- 1 D[FresnelG[z], z] == Pi*z*FresnelF[z]- 1 Successful Successful - Successful [Tested: 7]
7.11.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{1}{\sqrt{\pi}}\incgamma@{\tfrac{1}{2}}{z^{2}}} erf(z) = (1)/(sqrt(Pi))*GAMMA((1)/(2))-GAMMA((1)/(2), (z)^(2)) Erf[z] == Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], 0, (z)^(2)] Failure Failure
Failed [7 / 7]
7/7]: [[.756123263e-1-.1955582163*I <- {z = 1/2*3^(1/2)+1/2*I}
-1.938247417+2.376161732*I <- {z = -1/2+1/2*I*3^(1/2)}
Failed [2 / 7]
{Complex[-1.955452759718527, 1.7141217559576072] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[-1.8042282364091204, -0.5063298374329108] <- {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
7.11.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@@{z} = \frac{1}{\sqrt{\pi}}\incGamma@{\tfrac{1}{2}}{z^{2}}} erfc(z) = (1)/(sqrt(Pi))*GAMMA((1)/(2), (z)^(2)) Erfc[z] == Divide[1,Sqrt[Pi]]*Gamma[Divide[1,2], (z)^(2)] Failure Failure
Failed [2 / 7]
2/7]: [[1.955452760-1.714121756*I <- {z = -1/2+1/2*I*3^(1/2)}
1.804228236+.5063298372*I <- {z = -1/2*3^(1/2)-1/2*I}
Failed [2 / 7]
{Complex[1.9554527597185267, -1.7141217559576072] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[1.8042282364091202, 0.5063298374329108] <- {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
7.11.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@@{z} = \frac{z}{\sqrt{\pi}}\genexpintE{\frac{1}{2}}@{z^{2}}} erfc(z) = (z)/(sqrt(Pi))*Ei((1)/(2), (z)^(2)) Erfc[z] == Divide[z,Sqrt[Pi]]*ExpIntegralE[Divide[1,2], (z)^(2)] Failure Failure
Failed [2 / 7]
2/7]: [[2.000000000+.1e-9*I <- {z = -1/2+1/2*I*3^(1/2)}
2.000000000+.1e-9*I <- {z = -1/2*3^(1/2)-1/2*I}
Failed [2 / 7]
{Complex[2.0000000000000004, -7.771561172376096*^-16] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[1.9999999999999998, -5.551115123125783*^-17] <- {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
7.11.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erf@@{z} = \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}}} erf(z) = (2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2)) Erf[z] == Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)] Successful Successful - Successful [Tested: 7]
7.11.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{2z}{\sqrt{\pi}}\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{-z^{2}} = \frac{2z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperM@{1}{\tfrac{3}{2}}{z^{2}}} (2*z)/(sqrt(Pi))*KummerM((1)/(2), (3)/(2), - (z)^(2)) = (2*z)/(sqrt(Pi))*exp(- (z)^(2))*KummerM(1, (3)/(2), (z)^(2)) Divide[2*z,Sqrt[Pi]]*Hypergeometric1F1[Divide[1,2], Divide[3,2], - (z)^(2)] == Divide[2*z,Sqrt[Pi]]*Exp[- (z)^(2)]*Hypergeometric1F1[1, Divide[3,2], (z)^(2)] Successful Successful - Successful [Tested: 7]
7.11.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \erfc@@{z} = \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}} erfc(z) = (1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2)) Erfc[z] == Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)] Failure Failure
Failed [2 / 7]
2/7]: [[1.955452760-1.714121756*I <- {z = -1/2+1/2*I*3^(1/2)}
1.804228236+.5063298372*I <- {z = -1/2*3^(1/2)-1/2*I}
Failed [2 / 7]
{Complex[1.9554527597185267, -1.7141217559576072] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[1.8042282364091202, 0.5063298374329108] <- {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
7.11.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} = \frac{z}{\sqrt{\pi}}e^{-z^{2}}\KummerconfhyperU@{1}{\tfrac{3}{2}}{z^{2}}} (1)/(sqrt(Pi))*exp(- (z)^(2))*KummerU((1)/(2), (1)/(2), (z)^(2)) = (z)/(sqrt(Pi))*exp(- (z)^(2))*KummerU(1, (3)/(2), (z)^(2)) Divide[1,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[Divide[1,2], Divide[1,2], (z)^(2)] == Divide[z,Sqrt[Pi]]*Exp[- (z)^(2)]*HypergeometricU[1, Divide[3,2], (z)^(2)] Failure Failure
Failed [2 / 7]
2/7]: [[.4454723945e-1+1.714121756*I <- {z = -1/2+1/2*I*3^(1/2)}
.1957717634-.5063298372*I <- {z = -1/2*3^(1/2)-1/2*I}
Failed [2 / 7]
{Complex[0.04454724028147337, 1.7141217559576065] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[0.19577176359087947, -0.5063298374329108] <- {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
7.11.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z}+i\Fresnelsinint@{z} = z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}}} FresnelC(z)+ I*FresnelS(z) = z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2)) FresnelC[z]+ I*FresnelS[z] == z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)] Failure Successful Successful [Tested: 7] Successful [Tested: 7]
7.11.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z\KummerconfhyperM@{\tfrac{1}{2}}{\tfrac{3}{2}}{\tfrac{1}{2}\pi iz^{2}} = ze^{\pi iz^{2}/2}\KummerconfhyperM@{1}{\tfrac{3}{2}}{-\tfrac{1}{2}\pi iz^{2}}} z*KummerM((1)/(2), (3)/(2), (1)/(2)*Pi*I*(z)^(2)) = z*exp(Pi*I*(z)^(2)/ 2)*KummerM(1, (3)/(2), -(1)/(2)*Pi*I*(z)^(2)) z*Hypergeometric1F1[Divide[1,2], Divide[3,2], Divide[1,2]*Pi*I*(z)^(2)] == z*Exp[Pi*I*(z)^(2)/ 2]*Hypergeometric1F1[1, Divide[3,2], -Divide[1,2]*Pi*I*(z)^(2)] Successful Successful Skip - symbolical successful subtest Successful [Tested: 7]
7.11.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelcosint@{z} = z\genhyperF{1}{2}@{\tfrac{1}{4}}{\tfrac{5}{4},\tfrac{1}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}} FresnelC(z) = z*hypergeom([(1)/(4)], [(5)/(4),(1)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4)) FresnelC[z] == z*HypergeometricPFQ[{Divide[1,4]}, {Divide[5,4],Divide[1,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)] Successful Successful - Successful [Tested: 7]
7.11.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Fresnelsinint@{z} = \tfrac{1}{6}\pi z^{3}\genhyperF{1}{2}@{\tfrac{3}{4}}{\tfrac{7}{4},\tfrac{3}{2}}{-\tfrac{1}{16}\pi^{2}z^{4}}} FresnelS(z) = (1)/(6)*Pi*(z)^(3)* hypergeom([(3)/(4)], [(7)/(4),(3)/(2)], -(1)/(16)*(Pi)^(2)* (z)^(4)) FresnelS[z] == Divide[1,6]*Pi*(z)^(3)* HypergeometricPFQ[{Divide[3,4]}, {Divide[7,4],Divide[3,2]}, -Divide[1,16]*(Pi)^(2)* (z)^(4)] Successful Successful - Successful [Tested: 7]
7.13#Ex13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lambda = 2\sqrt{n}} lambda = 2*sqrt(n) \[Lambda] == 2*Sqrt[n] Skipped - no semantic math Skipped - no semantic math - -
7.13#Ex14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha = (2/\pi)\ln@{\pi\lambda}} alpha = (2/ Pi)* ln(Pi*lambda) \[Alpha] == (2/ Pi)* Log[Pi*\[Lambda]] Failure Failure
Failed [9 / 9]
9/9]: [[.421543168 <- {alpha = 1.5, n = 1}
.151839883 <- {alpha = 1.5, n = 2}
Failed [9 / 9]
{0.4215431680821278 <- {Rule[n, 1], Rule[α, 1.5]}
0.15183988257850767 <- {Rule[n, 2], Rule[α, 1.5]}
7.14.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{2iat}\erfc@{bt}\diff{t} = {\frac{1}{a\sqrt{\pi}}\DawsonsintF@{\frac{a}{b}}+\frac{i}{2a}\left(1-e^{-(a/b)^{2}}\right)}} int(exp(2*I*a*t)*erfc(b*t), t = 0..infinity) = (1)/(a*sqrt(Pi))*dawson((a)/(b))+(I)/(2*a)*(1 - exp(-(a/ b)^(2))) Integrate[Exp[2*I*a*t]*Erfc[b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,a*Sqrt[Pi]]*DawsonF[Divide[a,b]]+Divide[I,2*a]*(1 - Exp[-(a/ b)^(2)]) Failure Aborted Successful [Tested: 18] Successful [Tested: 3]
7.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\erf@{bt}\diff{t} = \frac{1}{a}e^{a^{2}/(4b^{2})}\erfc@{\frac{a}{2b}}} int(exp(- a*t)*erf(b*t), t = 0..infinity) = (1)/(a)*exp((a)^(2)/(4*(b)^(2)))*erfc((a)/(2*b)) Integrate[Exp[- a*t]*Erf[b*t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,a]*Exp[(a)^(2)/(4*(b)^(2))]*Erfc[Divide[a,2*b]] Successful Aborted - Skipped - Because timed out
7.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\erf@@{\sqrt{bt}}\diff{t} = \frac{1}{a}\sqrt{\frac{b}{a+b}}} int(exp(- a*t)*erf(sqrt(b*t)), t = 0..infinity) = (1)/(a)*sqrt((b)/(a + b)) Integrate[Exp[- a*t]*Erf[Sqrt[b*t]], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,a]*Sqrt[Divide[b,a + b]] Failure Aborted Successful [Tested: 9] Skipped - Because timed out
7.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{(a-b)t}\erfc@{\sqrt{at}+\sqrt{\frac{c}{t}}}\diff{t} = \frac{e^{-2(\sqrt{ac}+\sqrt{bc})}}{\sqrt{b}(\sqrt{a}+\sqrt{b})}} int(exp((a - b)* t)*erfc(sqrt(a*t)+sqrt((c)/(t))), t = 0..infinity) = (exp(- 2*(sqrt(a*c)+sqrt(b*c))))/(sqrt(b)*(sqrt(a)+sqrt(b))) Integrate[Exp[(a - b)* t]*Erfc[Sqrt[a*t]+Sqrt[Divide[c,t]]], {t, 0, Infinity}, GenerateConditions->None] == Divide[Exp[- 2*(Sqrt[a*c]+Sqrt[b*c])],Sqrt[b]*(Sqrt[a]+Sqrt[b])] Failure Aborted Skipped - Because timed out Skipped - Because timed out
7.14.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\Fresnelcosint@{t}\diff{t} = \frac{1}{a}\auxFresnelf@{\frac{a}{\pi}}} int(exp(- a*t)*FresnelC(t), t = 0..infinity) = (1)/(a)*Fresnelf((a)/(Pi)) Integrate[Exp[- a*t]*FresnelC[t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,a]*FresnelF[Divide[a,Pi]] Failure Successful Successful [Tested: 3] Successful [Tested: 3]
7.14.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\Fresnelsinint@{t}\diff{t} = \frac{1}{a}\auxFresnelg@{\frac{a}{\pi}}} int(exp(- a*t)*FresnelS(t), t = 0..infinity) = (1)/(a)*Fresnelg((a)/(Pi)) Integrate[Exp[- a*t]*FresnelS[t], {t, 0, Infinity}, GenerateConditions->None] == Divide[1,a]*FresnelG[Divide[a,Pi]] Failure Successful Successful [Tested: 3] Successful [Tested: 3]
7.14.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\Fresnelcosint@{\sqrt{\frac{2t}{\pi}}}\diff{t} = \frac{(\sqrt{a^{2}+1}+a)^{\frac{1}{2}}}{2a\sqrt{a^{2}+1}}} int(exp(- a*t)*FresnelC(sqrt((2*t)/(Pi))), t = 0..infinity) = ((sqrt((a)^(2)+ 1)+ a)^((1)/(2)))/(2*a*sqrt((a)^(2)+ 1)) Integrate[Exp[- a*t]*FresnelC[Sqrt[Divide[2*t,Pi]]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Sqrt[(a)^(2)+ 1]+ a)^(Divide[1,2]),2*a*Sqrt[(a)^(2)+ 1]] Successful Failure - Successful [Tested: 3]
7.14.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-at}\Fresnelsinint@{\sqrt{\frac{2t}{\pi}}}\diff{t} = \frac{(\sqrt{a^{2}+1}-a)^{\frac{1}{2}}}{2a\sqrt{a^{2}+1}}} int(exp(- a*t)*FresnelS(sqrt((2*t)/(Pi))), t = 0..infinity) = ((sqrt((a)^(2)+ 1)- a)^((1)/(2)))/(2*a*sqrt((a)^(2)+ 1)) Integrate[Exp[- a*t]*FresnelS[Sqrt[Divide[2*t,Pi]]], {t, 0, Infinity}, GenerateConditions->None] == Divide[(Sqrt[(a)^(2)+ 1]- a)^(Divide[1,2]),2*a*Sqrt[(a)^(2)+ 1]] Failure Failure Successful [Tested: 3] Successful [Tested: 3]
7.17#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle y = \inverf@@{x}} Error y == InverseErf[x] Missing Macro Error Failure -
Failed [6 / 18]
{-1.9769362762044698 <- {Rule[x, 0.5], Rule[y, -1.5]}
1.0230637237955302 <- {Rule[x, 0.5], Rule[y, 1.5]}
7.17#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle y = \inverfc@@{x}} Error y == InverseErfc[x] Missing Macro Error Failure -
Failed [18 / 18]
{-1.02306372379553 <- {Rule[x, 1.5], Rule[y, -1.5]}
1.97693627620447 <- {Rule[x, 1.5], Rule[y, 1.5]}
7.18#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{-1}@{z} = \frac{2}{\sqrt{\pi}}e^{-z^{2}}} erfc(- 1, z) = (2)/(sqrt(Pi))*exp(- (z)^(2)) I^(- 1)*Erfc[z] == Divide[2,Sqrt[Pi]]*Exp[- (z)^(2)] Successful Failure -
Failed [7 / 7]
{Complex[-0.6965576261018753, 0.4234600295072003] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-2.0623272173358496, -3.394891496894652] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.18#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{0}@{z} = \erfc@@{z}} erfc(0, z) = erfc(z) I^(0)*Erfc[z] == Erfc[z] Successful Successful - Successful [Tested: 7]
7.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = \int_{z}^{\infty}\repinterfc{n-1}@{t}\diff{t}} erfc(n, z) = int(erfc(n - 1, t), t = z..infinity) I^(n)*Erfc[z] == Integrate[I^(n - 1)*Erfc[t], {t, z, Infinity}, GenerateConditions->None] Failure Failure
Failed [12 / 21]
12/21]: [[Float(undefined)-.9036864554e-1*I <- {z = 1/2*3^(1/2)+1/2*I, n = 1}
Float(undefined)-.2674601677e-1*I <- {z = 1/2*3^(1/2)+1/2*I, n = 2}
Failed [21 / 21]
{Complex[0.24282268468866475, 0.18825452738900728] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.18825452738900728, 0.24282268468866475] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
7.18.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{z}^{\infty}\repinterfc{n-1}@{t}\diff{t} = \frac{2}{\sqrt{\pi}}\int_{z}^{\infty}\frac{(t-z)^{n}}{n!}e^{-t^{2}}\diff{t}} int(erfc(n - 1, t), t = z..infinity) = (2)/(sqrt(Pi))*int(((t - z)^(n))/(factorial(n))*exp(- (t)^(2)), t = z..infinity) Integrate[I^(n - 1)*Erfc[t], {t, z, Infinity}, GenerateConditions->None] == Divide[2,Sqrt[Pi]]*Integrate[Divide[(t - z)^(n),(n)!]*Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None] Failure Failure
Failed [12 / 21]
12/21]: [[Float(undefined) <- {z = 1/2*3^(1/2)+1/2*I, n = 1}
Float(undefined) <- {z = 1/2*3^(1/2)+1/2*I, n = 2}
Failed [13 / 21]
{Complex[0.09296765524307439, 0.0370882508190411] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.008358539694265255, 0.09727600825382138] <- {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
7.18.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{z}\repinterfc{n}@{z} = -\repinterfc{n-1}@{z}} diff(erfc(n, z), z) = - erfc(n - 1, z) D[I^(n)*Erfc[z], z] == - I^(n - 1)*Erfc[z] Successful Failure -
Failed [7 / 7]
{Complex[0.4234600295072003, 0.6965576261018753] <- {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-3.394891496894652, 2.0623272173358496] <- {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.18.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[n]{}{z}\left(e^{z^{2}}\erfc@@{z}\right) = (-1)^{n}2^{n}n!e^{z^{2}}\repinterfc{n}@{z}} diff(exp((z)^(2))*erfc(z), [z$(n)]) = (- 1)^(n)* (2)^(n)* factorial(n)*exp((z)^(2))*erfc(n, z) D[Exp[(z)^(2)]*Erfc[z], {z, n}] == (- 1)^(n)* (2)^(n)* (n)!*Exp[(z)^(2)]*I^(n)*Erfc[z] Failure Failure Skipped - Because timed out
Failed [7 / 7]
{Complex[-7.3936292130611685, -19.806900214215183] <- {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-48.524741574815884, -12.92653708276189] <- {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.18.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{W}{z}+2z\deriv{W}{z}-2nW = 0} diff(W, [z$(2)])+ 2*z*diff(W, z)- 2*n*W = 0 D[W, {z, 2}]+ 2*z*D[W, z]- 2*n*W == 0 Failure Failure
Failed [210 / 210]
210/210]: [[-1.732050808-1.000000000*I <- {W = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}
-3.464101616-2.*I <- {W = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}
Failed [210 / 210]
{Complex[-1.7320508075688774, -0.9999999999999999] <- {Rule[n, 1], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-3.464101615137755, -1.9999999999999998] <- {Rule[n, 2], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
7.18.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = \sum_{k=0}^{\infty}\frac{(-1)^{k}z^{k}}{2^{n-k}k!\EulerGamma@{1+\frac{1}{2}(n-k)}}} erfc(n, z) = sum(((- 1)^(k)* (z)^(k))/((2)^(n - k)* factorial(k)*GAMMA(1 +(1)/(2)*(n - k))), k = 0..infinity) I^(n)*Erfc[z] == Sum[Divide[(- 1)^(k)* (z)^(k),(2)^(n - k)* (k)!*Gamma[1 +Divide[1,2]*(n - k)]], {k, 0, Infinity}, GenerateConditions->None] Failure Failure
Failed [21 / 21]
21/21]: [[-.8660254034-.4999999991*I <- {z = 1/2*3^(1/2)+1/2*I, n = 1}
.4999999999+.4330127014*I <- {z = 1/2*3^(1/2)+1/2*I, n = 2}
Failed [21 / 21]
{Complex[0.2428226846886648, 0.18825452738900733] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.09528687214593286, 0.27991093550770596] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
7.18.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = -\frac{z}{n}\repinterfc{n-1}@{z}+\frac{1}{2n}\repinterfc{n-2}@{z}} erfc(n, z) = -(z)/(n)*erfc(n - 1, z)+(1)/(2*n)*erfc(n - 2, z) I^(n)*Erfc[z] == -Divide[z,n]*I^(n - 1)*Erfc[z]+Divide[1,2*n]*I^(n - 2)*Erfc[z] Successful Failure -
Failed [7 / 7]
{Complex[-0.36581044505750443, -0.05743209207542904] <- {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.9176954586385406, -3.02111135172986] <- {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.18.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle (-1)^{n}\repinterfc{n}@{z}+\repinterfc{n}@{-z} = \frac{i^{-n}}{2^{n-1}n!}\HermitepolyH{n}@{iz}} (- 1)^(n)* erfc(n, z)+ erfc(n, - z) = ((I)^(- n))/((2)^(n - 1)* factorial(n))*HermiteH(n, I*z) (- 1)^(n)* I^(n)*Erfc[z]+ I^(n)*Erfc[- z] == Divide[(I)^(- n),(2)^(n - 1)* (n)!]*HermiteH[n, I*z] Failure Failure Successful [Tested: 21]
Failed [21 / 21]
{Complex[-2.2383806450017882, 0.8042282364091201] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-3.0, -0.8660254037844386] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
7.18.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = e^{-z^{2}}\left(\frac{1}{2^{n}\EulerGamma@{\tfrac{1}{2}n+1}}\KummerconfhyperM@{\tfrac{1}{2}n+\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}-\frac{z}{2^{n-1}\EulerGamma@{\tfrac{1}{2}n+\tfrac{1}{2}}}\KummerconfhyperM@{\tfrac{1}{2}n+1}{\tfrac{3}{2}}{z^{2}}\right)} erfc(n, z) = exp(- (z)^(2))*((1)/((2)^(n)* GAMMA((1)/(2)*n + 1))*KummerM((1)/(2)*n +(1)/(2), (1)/(2), (z)^(2))-(z)/((2)^(n - 1)* GAMMA((1)/(2)*n +(1)/(2)))*KummerM((1)/(2)*n + 1, (3)/(2), (z)^(2))) I^(n)*Erfc[z] == Exp[- (z)^(2)]*(Divide[1,(2)^(n)* Gamma[Divide[1,2]*n + 1]]*Hypergeometric1F1[Divide[1,2]*n +Divide[1,2], Divide[1,2], (z)^(2)]-Divide[z,(2)^(n - 1)* Gamma[Divide[1,2]*n +Divide[1,2]]]*Hypergeometric1F1[Divide[1,2]*n + 1, Divide[3,2], (z)^(2)]) Failure Failure Successful [Tested: 21]
Failed [21 / 21]
{Complex[0.24282268468866477, 0.18825452738900755] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.09528687214593284, 0.27991093550770596] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
7.18.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = \frac{e^{-z^{2}}}{2^{n}\sqrt{\pi}}\KummerconfhyperU@{\tfrac{1}{2}n+\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}} erfc(n, z) = (exp(- (z)^(2)))/((2)^(n)*sqrt(Pi))*KummerU((1)/(2)*n +(1)/(2), (1)/(2), (z)^(2)) I^(n)*Erfc[z] == Divide[Exp[- (z)^(2)],(2)^(n)*Sqrt[Pi]]*HypergeometricU[Divide[1,2]*n +Divide[1,2], Divide[1,2], (z)^(2)] Failure Failure
Failed [6 / 21]
6/21]: [[1.000000000-1.732050808*I <- {z = -1/2+1/2*I*3^(1/2), n = 1}
.1727305880-1.014340238*I <- {z = -1/2+1/2*I*3^(1/2), n = 2}
Failed [21 / 21]
{Complex[0.24282268468866502, 0.1882545273890069] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.09528687214593298, 0.2799109355077059] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
7.18.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \repinterfc{n}@{z} = \frac{e^{-z^{2}/2}}{\sqrt{2^{n-1}\pi}}\paraU@{n+\tfrac{1}{2}}{z\sqrt{2}}} erfc(n, z) = (exp(- (z)^(2)/ 2))/(sqrt((2)^(n - 1)* Pi))*CylinderU(n +(1)/(2), z*sqrt(2)) I^(n)*Erfc[z] == Divide[Exp[- (z)^(2)/ 2],Sqrt[(2)^(n - 1)* Pi]]*ParabolicCylinderD[- 1/2 -(n +Divide[1,2]), z*Sqrt[2]] Failure Failure Successful [Tested: 21]
Failed [21 / 21]
{Complex[0.24282268468866486, 0.1882545273890072] <- {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.09528687214593298, 0.2799109355077059] <- {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
7.20.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x}e^{-(t-m)^{2}/(2\sigma^{2})}\diff{t} = \frac{1}{2}\erfc@{\frac{m-x}{\sigma\sqrt{2}}}} (1)/(sigma*sqrt(2*Pi))*int(exp(-(t - m)^(2)/(2*(sigma)^(2))), t = - infinity..x) = (1)/(2)*erfc((m - x)/(sigma*sqrt(2))) Divide[1,\[Sigma]*Sqrt[2*Pi]]*Integrate[Exp[-(t - m)^(2)/(2*\[Sigma]^(2))], {t, - Infinity, x}, GenerateConditions->None] == Divide[1,2]*Erfc[Divide[m - x,\[Sigma]*Sqrt[2]]] Failure Failure
Failed [54 / 90]
54/90]: [[Float(undefined)+Float(undefined)*I <- {sigma = -1/2+1/2*I*3^(1/2), x = 1.5, m = 1}
Float(undefined)+Float(undefined)*I <- {sigma = -1/2+1/2*I*3^(1/2), x = 1.5, m = 2}
Failed [45 / 90]
{Complex[-1.0, -1.942890293094024*^-16] <- {Rule[m, 1], Rule[x, 1.5], Rule[σ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[-1.0, -1.6653345369377348*^-16] <- {Rule[m, 2], Rule[x, 1.5], Rule[σ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
7.20.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{2}\erfc@{\frac{m-x}{\sigma\sqrt{2}}} = Q\left(\frac{m-x}{\sigma}\right)} (1)/(2)*erfc((m - x)/(sigma*sqrt(2))) = Q*((m - x)/(sigma)) Divide[1,2]*Erfc[Divide[m - x,\[Sigma]*Sqrt[2]]] == Q*(Divide[m - x,\[Sigma]]) Failure Failure
Failed [300 / 300]
300/300]: [[1.172485186-.9158452425e-1*I <- {Q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 1}
-.1724851867+.9158452425e-1*I <- {Q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 2}
Failed [300 / 300]
{Complex[1.1724851867610806, -0.09158452430796671] <- {Rule[m, 1], Rule[Q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[σ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.1724851867610806, 0.09158452430796671] <- {Rule[m, 2], Rule[Q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[σ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
7.20.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle Q\left(\frac{m-x}{\sigma}\right) = P\left(\frac{x-m}{\sigma}\right)} Q*((m - x)/(sigma)) = P*((x - m)/(sigma)) Q*(Divide[m - x,\[Sigma]]) == P*(Divide[x - m,\[Sigma]]) Failure Failure
Failed [240 / 300]
240/300]: [[-1.0 <- {P = 1/2*3^(1/2)+1/2*I, Q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 1}
1.0 <- {P = 1/2*3^(1/2)+1/2*I, Q = 1/2*3^(1/2)+1/2*I, sigma = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 2}
Failed [240 / 300]
{Complex[-1.0, 0.0] <- {Rule[m, 1], Rule[P, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[σ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[1.0, 0.0] <- {Rule[m, 2], Rule[P, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Q, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[σ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}