Results of Parabolic Cylinder Functions

From testwiki
Jump to navigation Jump to search
DLMF Formula Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
12.2.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}-\left(\tfrac{1}{4}z^{2}+a\right)w = 0} diff(w, [z$(2)])-((1)/(4)*(z)^(2)+ a)* w = 0 D[w, {z, 2}]-(Divide[1,4]*(z)^(2)+ a)* w == 0 Failure Failure
Failed [300 / 300]
300/300]: [[1.299038106+.4999999999*I <- {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
1.299038106+1.000000000*I <- {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[1.2990381056766582, 0.4999999999999999] <- {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[1.299038105676658, 0.9999999999999999] <- {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.2.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}+\left(\tfrac{1}{4}z^{2}-a\right)w = 0} diff(w, [z$(2)])+((1)/(4)*(z)^(2)- a)* w = 0 D[w, {z, 2}]+(Divide[1,4]*(z)^(2)- a)* w == 0 Failure Failure
Failed [300 / 300]
300/300]: [[1.299038106+1.000000000*I <- {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
1.299038106+.4999999999*I <- {a = -3/2, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[1.299038105676658, 0.9999999999999999] <- {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[1.2990381056766582, 0.4999999999999999] <- {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.2.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}+\left(\nu+\tfrac{1}{2}-\tfrac{1}{4}z^{2}\right)w = 0} diff(w, [z$(2)])+(nu +(1)/(2)-(1)/(4)*(z)^(2))* w = 0 D[w, {z, 2}]+(\[Nu]+Divide[1,2]-Divide[1,4]*(z)^(2))* w == 0 Failure Failure
Failed [300 / 300]
300/300]: [[.9330127024+.8660254039*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
.9330127024+1.366025404*I <- {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Failed [296 / 300]
{Complex[0.9330127018922196, 0.8660254037844386] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.4330127018922191, 0.5000000000000001] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.2.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerparaD{\nu}@{z} = \paraU@{-\tfrac{1}{2}-\nu}{z}} CylinderD(nu, z) = CylinderU(-(1)/(2)- nu, z) ParabolicCylinderD[\[Nu], z] == ParabolicCylinderD[- 1/2 -(-Divide[1,2]- \[Nu]), z] Successful Successful - Successful [Tested: 70]
12.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{0} = \frac{\sqrt{\pi}}{2^{\frac{1}{2}a+\frac{1}{4}}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}} CylinderU(a, 0) = (sqrt(Pi))/((2)^((1)/(2)*a +(1)/(4))* GAMMA((3)/(4)+(1)/(2)*a)) ParabolicCylinderD[- 1/2 -(a), 0] == Divide[Sqrt[Pi],(2)^(Divide[1,2]*a +Divide[1,4])* Gamma[Divide[3,4]+Divide[1,2]*a]] Successful Successful - Successful [Tested: 4]
12.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU'@{a}{0} = -\frac{\sqrt{\pi}}{2^{\frac{1}{2}a-\frac{1}{4}}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}} subs( temp=0, diff( CylinderU(a, temp), temp$(1) ) ) = -(sqrt(Pi))/((2)^((1)/(2)*a -(1)/(4))* GAMMA((1)/(4)+(1)/(2)*a)) (D[ParabolicCylinderD[- 1/2 -(a), temp], {temp, 1}]/.temp-> 0) == -Divide[Sqrt[Pi],(2)^(Divide[1,2]*a -Divide[1,4])* Gamma[Divide[1,4]+Divide[1,2]*a]] Successful Successful - Successful [Tested: 3]
12.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{1}{4}}}{\left(\EulerGamma@{\frac{3}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}} CylinderV(a, 0) = (Pi*(2)^((1)/(2)*a +(1)/(4)))/((GAMMA((3)/(4)-(1)/(2)*a))^(2)* GAMMA((1)/(4)+(1)/(2)*a)) Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, 0] + ParabolicCylinderD[-(a) - 1/2, -(0)]) == Divide[Pi*(2)^(Divide[1,2]*a +Divide[1,4]),(Gamma[Divide[3,4]-Divide[1,2]*a])^(2)* Gamma[Divide[1,4]+Divide[1,2]*a]] Successful Failure -
Failed [1 / 1]
{Plus[-0.7978845608028653, Times[0.7978845608028655, GAMMA[1.0]]] <- {Rule[a, 0.5]}
12.2.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV'@{a}{0} = \frac{\pi 2^{\frac{1}{2}a+\frac{3}{4}}}{\left(\EulerGamma@{\frac{1}{4}-\frac{1}{2}a}\right)^{2}\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}} subs( temp=0, diff( CylinderV(a, temp), temp$(1) ) ) = (Pi*(2)^((1)/(2)*a +(3)/(4)))/((GAMMA((1)/(4)-(1)/(2)*a))^(2)* GAMMA((3)/(4)+(1)/(2)*a)) (D[Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, temp] + ParabolicCylinderD[-(a) - 1/2, -(temp)]), {temp, 1}]/.temp-> 0) == Divide[Pi*(2)^(Divide[1,2]*a +Divide[3,4]),(Gamma[Divide[1,4]-Divide[1,2]*a])^(2)* Gamma[Divide[3,4]+Divide[1,2]*a]] Successful Failure -
Failed [1 / 1]
{-0.7978845608028653 <- {Rule[a, -0.5]}
12.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\paraU@{a}{z},\paraV@{a}{z}} = \sqrt{2/\pi}} (CylinderU(a, z))*diff(CylinderV(a, z), z)-diff(CylinderU(a, z), z)*(CylinderV(a, z)) = sqrt(2/ Pi) Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])}, z] == Sqrt[2/ Pi] Failure Failure
Failed [14 / 42]
14/42]: [[.708254234e-1-.722805450e-2*I <- {a = 3/2, z = 1/2*3^(1/2)+1/2*I}
.4257865765+.241883787*I <- {a = 3/2, z = -1/2+1/2*I*3^(1/2)}
Failed [42 / 42]
{Plus[-0.7978845608028654, Times[Complex[-3.533949646070574*^-17, -3.533949646070574*^-17], GAMMA[-1.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[-0.7978845608028654, Times[Complex[0.0, -2.1203697876423444*^-16], GAMMA[-1.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.2.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\paraU@{a}{z},\paraU@{a}{-z}} = \frac{\sqrt{2\pi}}{\EulerGamma@{\frac{1}{2}+a}}} (CylinderU(a, z))*diff(CylinderU(a, - z), z)-diff(CylinderU(a, z), z)*(CylinderU(a, - z)) = (sqrt(2*Pi))/(GAMMA((1)/(2)+ a)) Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(a), - z]}, z] == Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]] Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\paraU@{a}{z},\paraU@{-a}{+ iz}} = - ie^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}} (CylinderU(a, z))*diff(CylinderU(- a, + I*z), z)-diff(CylinderU(a, z), z)*(CylinderU(- a, + I*z)) = - I*exp(+ I*Pi*((1)/(2)*a +(1)/(4))) Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(- a), + I*z]}, z] == - I*Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])] Failure Failure Successful [Tested: 42] Successful [Tested: 42]
12.2.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\paraU@{a}{z},\paraU@{-a}{- iz}} = + ie^{- i\pi(\frac{1}{2}a+\frac{1}{4})}} (CylinderU(a, z))*diff(CylinderU(- a, - I*z), z)-diff(CylinderU(a, z), z)*(CylinderU(- a, - I*z)) = + I*exp(- I*Pi*((1)/(2)*a +(1)/(4))) Wronskian[{ParabolicCylinderD[- 1/2 -(a), z], ParabolicCylinderD[- 1/2 -(- a), - I*z]}, z] == + I*Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])] Failure Failure Successful [Tested: 42] Successful [Tested: 42]
12.2.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{-n-\tfrac{1}{2}}{-z} = (-1)^{n}\paraU@{-n-\tfrac{1}{2}}{z}} CylinderU(- n -(1)/(2), - z) = (- 1)^(n)* CylinderU(- n -(1)/(2), z) ParabolicCylinderD[- 1/2 -(- n -Divide[1,2]), - z] == (- 1)^(n)* ParabolicCylinderD[- 1/2 -(- n -Divide[1,2]), z] Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{n+\tfrac{1}{2}}{-z} = (-1)^{n}\paraV@{n+\tfrac{1}{2}}{z}} CylinderV(n +(1)/(2), - z) = (- 1)^(n)* CylinderV(n +(1)/(2), z) Divide[GAMMA[1/2 + n +Divide[1,2]], Pi]*(Sin[Pi*(n +Divide[1,2])] * ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, - z] + ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, -(- z)]) == (- 1)^(n)* Divide[GAMMA[1/2 + n +Divide[1,2]], Pi]*(Sin[Pi*(n +Divide[1,2])] * ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, z] + ParabolicCylinderD[-(n +Divide[1,2]) - 1/2, -(z)]) Successful Failure - Successful [Tested: 21]
12.2.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{-z} = -\sin@{\pi a}\paraU@{a}{z}+\frac{\pi}{\EulerGamma@{\frac{1}{2}+a}}\paraV@{a}{z}} CylinderU(a, - z) = - sin(Pi*a)*CylinderU(a, z)+(Pi)/(GAMMA((1)/(2)+ a))*CylinderV(a, z) ParabolicCylinderD[- 1/2 -(a), - z] == - Sin[Pi*a]*ParabolicCylinderD[- 1/2 -(a), z]+Divide[Pi,Gamma[Divide[1,2]+ a]]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) Successful Failure -
Failed [21 / 21]
{Plus[Complex[2.097331412545913, 1.9154557103012664], Times[Complex[-2.097331412545913, -1.9154557103012664], GAMMA[2.0]]] <- {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[-0.668689589092481, 2.108602350101492], Times[Complex[0.668689589092481, -2.108602350101492], GAMMA[2.0]]] <- {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.2.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{-z} = \frac{\cos@{\pi a}}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sin@{\pi a}\paraV@{a}{z}} CylinderV(a, - z) = (cos(Pi*a))/(GAMMA((1)/(2)- a))*CylinderU(a, z)+ sin(Pi*a)*CylinderV(a, z) Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, - z] + ParabolicCylinderD[-(a) - 1/2, -(- z)]) == Divide[Cos[Pi*a],Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+ Sin[Pi*a]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) Failure Failure Successful [Tested: 21]
Failed [7 / 21]
{Plus[Complex[-0.3494376482945125, -0.44804866867585064], Times[Complex[0.1478618109503913, 0.18958829384201614], GAMMA[-1.5]]] <- {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[1.1936070900897449, -0.06991225535058408], Times[Complex[-0.5050655153080368, 0.029582824673347826], GAMMA[-1.5]]] <- {Rule[a, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.2.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2\pi}\paraU@{-a}{+ iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)} sqrt(2*Pi)*CylinderU(- a, + I*z) = GAMMA((1)/(2)+ a)*(exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, z)+ exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, - z)) Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(- a), + I*z] == Gamma[Divide[1,2]+ a]*(Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), z]+ Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), - z]) Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2\pi}\paraU@{-a}{- iz} = \EulerGamma@{\tfrac{1}{2}+a}\left(e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{z}+e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{a}{-z}\right)} sqrt(2*Pi)*CylinderU(- a, - I*z) = GAMMA((1)/(2)+ a)*(exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, z)+ exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(a, - z)) Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(- a), - I*z] == Gamma[Divide[1,2]+ a]*(Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), z]+ Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(a), - z]) Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}+e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}\right)} sqrt(2*Pi)*CylinderU(a, z) = GAMMA((1)/(2)- a)*(exp(- I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, + I*z)+ exp(+ I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, - I*z)) Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(a), z] == Gamma[Divide[1,2]- a]*(Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]+ Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]) Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sqrt{2\pi}\paraU@{a}{z} = \EulerGamma@{\tfrac{1}{2}-a}\left(e^{+ i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{- iz}+e^{- i\pi(\frac{1}{2}a+\frac{1}{4})}\paraU@{-a}{+ iz}\right)} sqrt(2*Pi)*CylinderU(a, z) = GAMMA((1)/(2)- a)*(exp(+ I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, - I*z)+ exp(- I*Pi*((1)/(2)*a +(1)/(4)))*CylinderU(- a, + I*z)) Sqrt[2*Pi]*ParabolicCylinderD[- 1/2 -(a), z] == Gamma[Divide[1,2]- a]*(Exp[+ I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z]+ Exp[- I*Pi*(Divide[1,2]*a +Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z]) Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = + ie^{+ i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}} CylinderU(a, z) = + I*exp(+ I*Pi*a)*CylinderU(a, - z)+(sqrt(2*Pi))/(GAMMA((1)/(2)+ a))*exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, + I*z) ParabolicCylinderD[- 1/2 -(a), z] == + I*Exp[+ I*Pi*a]*ParabolicCylinderD[- 1/2 -(a), - z]+Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]*Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z] Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = - ie^{- i\pi a}\paraU@{a}{-z}+\frac{\sqrt{2\pi}}{\EulerGamma@{\tfrac{1}{2}+a}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}} CylinderU(a, z) = - I*exp(- I*Pi*a)*CylinderU(a, - z)+(sqrt(2*Pi))/(GAMMA((1)/(2)+ a))*exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, - I*z) ParabolicCylinderD[- 1/2 -(a), z] == - I*Exp[- I*Pi*a]*ParabolicCylinderD[- 1/2 -(a), - z]+Divide[Sqrt[2*Pi],Gamma[Divide[1,2]+ a]]*Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z] Failure Failure Successful [Tested: 21] Successful [Tested: 21]
12.2.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{z} = \frac{- i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{- i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{+ iz}} CylinderV(a, z) = (- I)/(GAMMA((1)/(2)- a))*CylinderU(a, z)+sqrt((2)/(Pi))*exp(- I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, + I*z) Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) == Divide[- I,Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+Sqrt[Divide[2,Pi]]*Exp[- I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), + I*z] Failure Failure Successful [Tested: 21]
Failed [21 / 21]
{Plus[Complex[0.4621744673825597, -0.43960813814518984], Times[Complex[3.533949646070574*^-17, 0.0], GAMMA[-1.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[1.0415095884926804, 0.5968092652227893], Times[Complex[1.0601848938211722*^-16, 3.533949646070574*^-17], GAMMA[-1.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.2.E20 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{z} = \frac{+ i}{\EulerGamma@{\frac{1}{2}-a}}\paraU@{a}{z}+\sqrt{\frac{2}{\pi}}e^{+ i\pi(\frac{1}{2}a-\frac{1}{4})}\paraU@{-a}{- iz}} CylinderV(a, z) = (+ I)/(GAMMA((1)/(2)- a))*CylinderU(a, z)+sqrt((2)/(Pi))*exp(+ I*Pi*((1)/(2)*a -(1)/(4)))*CylinderU(- a, - I*z) Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) == Divide[+ I,Gamma[Divide[1,2]- a]]*ParabolicCylinderD[- 1/2 -(a), z]+Sqrt[Divide[2,Pi]]*Exp[+ I*Pi*(Divide[1,2]*a -Divide[1,4])]*ParabolicCylinderD[- 1/2 -(- a), - I*z] Failure Failure Successful [Tested: 21]
Failed [21 / 21]
{Plus[Complex[0.4621744673825599, -0.4396081381451897], Times[Complex[3.533949646070574*^-17, 0.0], GAMMA[-1.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[1.0415095884926797, 0.5968092652227891], Times[Complex[1.0601848938211722*^-16, 3.533949646070574*^-17], GAMMA[-1.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.4.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \paraU@{a}{0}u_{1}(a,z)+\paraU'@{a}{0}u_{2}(a,z)} CylinderU(a, z) = CylinderU(a, 0)*u[1]*(a , z)+ subs( temp=0, diff( CylinderU(a, temp), temp$(1) ) )*u[2]*(a , z) ParabolicCylinderD[- 1/2 -(a), z] == ParabolicCylinderD[- 1/2 -(a), 0]*Subscript[u, 1]*(a , z)+ (D[ParabolicCylinderD[- 1/2 -(a), temp], {temp, 1}]/.temp-> 0)*Subscript[u, 2]*(a , z) Error Failure -
Failed [42 / 42]
{Plus[Complex[0.8412106300093095, 0.2667685495532514], Times[Complex[-0.8618940502981999, 0.18957697416081104], Plus[Complex[0.8660254037844387, 0.49999999999999994], …]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[-0.7641562690755331, 0.8367141764786244], Times[Complex[-1.1066938670748312, -0.24342165324123666], Plus[Complex[-0.4999999999999998, 0.8660254037844387], …]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.4.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{z} = \paraV@{a}{0}u_{1}(a,z)+\paraV'@{a}{0}u_{2}(a,z)} CylinderV(a, z) = CylinderV(a, 0)*u[1]*(a , z)+ subs( temp=0, diff( CylinderV(a, temp), temp$(1) ) )*u[2]*(a , z) Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) == Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, 0] + ParabolicCylinderD[-(a) - 1/2, -(0)])*Subscript[u, 1]*(a , z)+ (D[Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, temp] + ParabolicCylinderD[-(a) - 1/2, -(temp)]), {temp, 1}]/.temp-> 0)*Subscript[u, 2]*(a , z) Error Failure -
Failed [40 / 42]
{Plus[0.0, Times[Complex[3.533949646070574*^-17, 0.0], GAMMA[-1.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[0.0, Times[Complex[1.0601848938211722*^-16, 3.533949646070574*^-17], GAMMA[-1.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.5.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{e^{-\frac{1}{4}z^{2}}}{\EulerGamma@{\frac{1}{2}+a}}\int_{0}^{\infty}t^{a-\frac{1}{2}}e^{-\frac{1}{2}t^{2}-zt}\diff{t}} CylinderU(a, z) = (exp(-(1)/(4)*(z)^(2)))/(GAMMA((1)/(2)+ a))*int((t)^(a -(1)/(2))* exp(-(1)/(2)*(t)^(2)- z*t), t = 0..infinity) ParabolicCylinderD[- 1/2 -(a), z] == Divide[Exp[-Divide[1,4]*(z)^(2)],Gamma[Divide[1,2]+ a]]*Integrate[(t)^(a -Divide[1,2])* Exp[-Divide[1,2]*(t)^(2)- z*t], {t, 0, Infinity}, GenerateConditions->None] Successful Successful - Successful [Tested: 21]
12.5.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{ze^{-\frac{1}{4}z^{2}}}{\EulerGamma@{\frac{1}{4}+\frac{1}{2}a}}\*\int_{0}^{\infty}t^{\frac{1}{2}a-\frac{3}{4}}e^{-t}\left(z^{2}+2t\right)^{-\frac{1}{2}a-\frac{3}{4}}\diff{t}} CylinderU(a, z) = (z*exp(-(1)/(4)*(z)^(2)))/(GAMMA((1)/(4)+(1)/(2)*a))* int((t)^((1)/(2)*a -(3)/(4))* exp(- t)*((z)^(2)+ 2*t)^(-(1)/(2)*a -(3)/(4)), t = 0..infinity) ParabolicCylinderD[- 1/2 -(a), z] == Divide[z*Exp[-Divide[1,4]*(z)^(2)],Gamma[Divide[1,4]+Divide[1,2]*a]]* Integrate[(t)^(Divide[1,2]*a -Divide[3,4])* Exp[- t]*((z)^(2)+ 2*t)^(-Divide[1,2]*a -Divide[3,4]), {t, 0, Infinity}, GenerateConditions->None] Failure Successful
Failed [2 / 15]
2/15]: [[Float(infinity)+Float(infinity)*I <- {a = 2, z = 1/2*3^(1/2)+1/2*I}
Float(infinity)+Float(infinity)*I <- {a = 2, z = 1/2-1/2*I*3^(1/2)}
Successful [Tested: 15]
12.5.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{e^{-\frac{1}{4}z^{2}}}{\EulerGamma@{\frac{3}{4}+\frac{1}{2}a}}\*\int_{0}^{\infty}t^{\frac{1}{2}a-\frac{1}{4}}e^{-t}\left(z^{2}+2t\right)^{-\frac{1}{2}a-\frac{1}{4}}\diff{t}} CylinderU(a, z) = (exp(-(1)/(4)*(z)^(2)))/(GAMMA((3)/(4)+(1)/(2)*a))* int((t)^((1)/(2)*a -(1)/(4))* exp(- t)*((z)^(2)+ 2*t)^(-(1)/(2)*a -(1)/(4)), t = 0..infinity) ParabolicCylinderD[- 1/2 -(a), z] == Divide[Exp[-Divide[1,4]*(z)^(2)],Gamma[Divide[3,4]+Divide[1,2]*a]]* Integrate[(t)^(Divide[1,2]*a -Divide[1,4])* Exp[- t]*((z)^(2)+ 2*t)^(-Divide[1,2]*a -Divide[1,4]), {t, 0, Infinity}, GenerateConditions->None] Failure Successful
Failed [2 / 20]
2/20]: [[Float(infinity)+Float(infinity)*I <- {a = 3/2, z = 1/2*3^(1/2)+1/2*I}
Float(infinity)+Float(infinity)*I <- {a = 3/2, z = 1/2-1/2*I*3^(1/2)}
Failed [5 / 20]
{Indeterminate <- {Rule[a, -0.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Indeterminate <- {Rule[a, -0.5], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
12.5.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \sqrt{\frac{2}{\pi}}e^{\frac{1}{4}z^{2}}\*\int_{0}^{\infty}t^{-a-\frac{1}{2}}e^{-\frac{1}{2}t^{2}}\cos@{zt+\left(\tfrac{1}{2}a+\tfrac{1}{4}\right)\pi}\diff{t}} CylinderU(a, z) = sqrt((2)/(Pi))*exp((1)/(4)*(z)^(2))* int((t)^(- a -(1)/(2))* exp(-(1)/(2)*(t)^(2))*cos(z*t +((1)/(2)*a +(1)/(4))* Pi), t = 0..infinity) ParabolicCylinderD[- 1/2 -(a), z] == Sqrt[Divide[2,Pi]]*Exp[Divide[1,4]*(z)^(2)]* Integrate[(t)^(- a -Divide[1,2])* Exp[-Divide[1,2]*(t)^(2)]*Cos[z*t +(Divide[1,2]*a +Divide[1,4])* Pi], {t, 0, Infinity}, GenerateConditions->None] Successful Failure - Successful [Tested: 7]
12.5.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{\EulerGamma@{\frac{1}{2}-a}}{2\pi i}e^{-\frac{1}{4}z^{2}}\int_{-\infty}^{(0+)}e^{zt-\frac{1}{2}t^{2}}t^{a-\frac{1}{2}}\diff{t}} CylinderU(a, z) = (GAMMA((1)/(2)- a))/(2*Pi*I)*exp(-(1)/(4)*(z)^(2))*int(exp(z*t -(1)/(2)*(t)^(2))*(t)^(a -(1)/(2)), t = - infinity..(0 +)) ParabolicCylinderD[- 1/2 -(a), z] == Divide[Gamma[Divide[1,2]- a],2*Pi*I]*Exp[-Divide[1,4]*(z)^(2)]*Integrate[Exp[z*t -Divide[1,2]*(t)^(2)]*(t)^(a -Divide[1,2]), {t, - Infinity, (0 +)}, GenerateConditions->None] Error Failure - Error
12.5.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{e^{\frac{1}{4}z^{2}}}{i\sqrt{2\pi}}\int_{c-i\infty}^{c+i\infty}e^{-zt+\frac{1}{2}t^{2}}t^{-a-\frac{1}{2}}\diff{t}} CylinderU(a, z) = (exp((1)/(4)*(z)^(2)))/(I*sqrt(2*Pi))*int(exp(- z*t +(1)/(2)*(t)^(2))*(t)^(- a -(1)/(2)), t = c - I*infinity..c + I*infinity) ParabolicCylinderD[- 1/2 -(a), z] == Divide[Exp[Divide[1,4]*(z)^(2)],I*Sqrt[2*Pi]]*Integrate[Exp[- z*t +Divide[1,2]*(t)^(2)]*(t)^(- a -Divide[1,2]), {t, c - I*Infinity, c + I*Infinity}, GenerateConditions->None] Failure Aborted
Failed [126 / 126]
126/126]: [[.8412106295+.2667685493*I <- {a = -3/2, c = 3/2, z = 1/2*3^(1/2)+1/2*I}
-.7641562685+.8367141760*I <- {a = -3/2, c = 3/2, z = -1/2+1/2*I*3^(1/2)}
Skipped - Because timed out
12.5.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = \frac{e^{-\frac{1}{4}z^{2}}z^{-a-\frac{1}{2}}}{2\pi i\EulerGamma@{\frac{1}{2}+a}}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}+a-2t}2^{t}z^{2t}\diff{t}} CylinderU(a, z) = (exp(-(1)/(4)*(z)^(2))*(z)^(- a -(1)/(2)))/(2*Pi*I*GAMMA((1)/(2)+ a))* int(GAMMA(t)*GAMMA((1)/(2)+ a - 2*t)*(2)^(t)* (z)^(2*t), t = - I*infinity..I*infinity) ParabolicCylinderD[- 1/2 -(a), z] == Divide[Exp[-Divide[1,4]*(z)^(2)]*(z)^(- a -Divide[1,2]),2*Pi*I*Gamma[Divide[1,2]+ a]]* Integrate[Gamma[t]*Gamma[Divide[1,2]+ a - 2*t]*(2)^(t)* (z)^(2*t), {t, - I*Infinity, I*Infinity}, GenerateConditions->None] Failure Aborted Skipped - Because timed out Skipped - Because timed out
12.5.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{z} = \sqrt{\frac{2}{\pi}}\frac{e^{\frac{1}{4}z^{2}}z^{a-\frac{1}{2}}}{2\pi i\EulerGamma@{\frac{1}{2}-a}}\*\int_{-i\infty}^{i\infty}\EulerGamma@{t}\EulerGamma@{\tfrac{1}{2}-a-2t}2^{t}z^{2t}\cos@{\pi t}\diff{t}} CylinderV(a, z) = sqrt((2)/(Pi))*(exp((1)/(4)*(z)^(2))*(z)^(a -(1)/(2)))/(2*Pi*I*GAMMA((1)/(2)- a))* int(GAMMA(t)*GAMMA((1)/(2)- a - 2*t)*(2)^(t)* (z)^(2*t)* cos(Pi*t), t = - I*infinity..I*infinity) Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]) == Sqrt[Divide[2,Pi]]*Divide[Exp[Divide[1,4]*(z)^(2)]*(z)^(a -Divide[1,2]),2*Pi*I*Gamma[Divide[1,2]- a]]* Integrate[Gamma[t]*Gamma[Divide[1,2]- a - 2*t]*(2)^(t)* (z)^(2*t)* Cos[Pi*t], {t, - I*Infinity, I*Infinity}, GenerateConditions->None] Failure Aborted Skipped - Because timed out Skipped - Because timed out
12.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{-\tfrac{1}{2}}{z} = \WhittakerparaD{0}@{z}} CylinderU(-(1)/(2), z) = CylinderD(0, z) ParabolicCylinderD[- 1/2 -(-Divide[1,2]), z] == ParabolicCylinderD[0, z] Successful Successful - Successful [Tested: 7]
12.7.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerparaD{0}@{z} = e^{-\frac{1}{4}z^{2}}} CylinderD(0, z) = exp(-(1)/(4)*(z)^(2)) ParabolicCylinderD[0, z] == Exp[-Divide[1,4]*(z)^(2)] Successful Successful - Successful [Tested: 7]
12.7.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{-n-\tfrac{1}{2}}{z} = \WhittakerparaD{n}@{z}} CylinderU(- n -(1)/(2), z) = CylinderD(n, z) ParabolicCylinderD[- 1/2 -(- n -Divide[1,2]), z] == ParabolicCylinderD[n, z] Successful Successful - Successful [Tested: 7]
12.7.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{-\tfrac{1}{2}}{z} = (\ifrac{2}{\sqrt{\pi}}\,)e^{\frac{1}{4}z^{2}}\DawsonsintF@{z/\sqrt{2}}} CylinderV(-(1)/(2), z) = ((2)/(sqrt(Pi)))* exp((1)/(4)*(z)^(2))*dawson(z/(sqrt(2))) Divide[GAMMA[1/2 + -Divide[1,2]], Pi]*(Sin[Pi*(-Divide[1,2])] * ParabolicCylinderD[-(-Divide[1,2]) - 1/2, z] + ParabolicCylinderD[-(-Divide[1,2]) - 1/2, -(z)]) == (Divide[2,Sqrt[Pi]])* Exp[Divide[1,4]*(z)^(2)]*DawsonF[z/(Sqrt[2])] Successful Failure -
Failed [7 / 7]
{Complex[-0.6813729414422256, -0.33849358809725466] <- {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[0.4709386394349885, -0.6804499612300876] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.7.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{\tfrac{1}{2}}{z} = \WhittakerparaD{-1}@{z}} CylinderU((1)/(2), z) = CylinderD(- 1, z) ParabolicCylinderD[- 1/2 -(Divide[1,2]), z] == ParabolicCylinderD[- 1, z] Successful Successful - Successful [Tested: 7]
12.7.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerparaD{-1}@{z} = \sqrt{\tfrac{1}{2}\pi}\,e^{\frac{1}{4}z^{2}}\erfc@{z/\sqrt{2}}} CylinderD(- 1, z) = sqrt((1)/(2)*Pi)*exp((1)/(4)*(z)^(2))*erfc(z/(sqrt(2))) ParabolicCylinderD[- 1, z] == Sqrt[Divide[1,2]*Pi]*Exp[Divide[1,4]*(z)^(2)]*Erfc[z/(Sqrt[2])] Successful Successful - Successful [Tested: 7]
12.7.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{n+\tfrac{1}{2}}{z} = \WhittakerparaD{-n-1}@{z}} CylinderU(n +(1)/(2), z) = CylinderD(- n - 1, z) ParabolicCylinderD[- 1/2 -(n +Divide[1,2]), z] == ParabolicCylinderD[- n - 1, z] Successful Successful Manual Skip! Successful [Tested: 7]
12.7.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \WhittakerparaD{-n-1}@{z} = \sqrt{\frac{\pi}{2}}\frac{(-1)^{n}}{n!}e^{-\frac{1}{4}z^{2}}\deriv[n]{\left(e^{\frac{1}{2}z^{2}}\erfc@{z/\sqrt{2}}\right)}{z}} CylinderD(- n - 1, z) = sqrt((Pi)/(2))*((- 1)^(n))/(factorial(n))*exp(-(1)/(4)*(z)^(2))*diff(exp((1)/(2)*(z)^(2))*erfc(z/(sqrt(2))), [z$(n)]) ParabolicCylinderD[- n - 1, z] == Sqrt[Divide[Pi,2]]*Divide[(- 1)^(n),(n)!]*Exp[-Divide[1,4]*(z)^(2)]*D[Exp[Divide[1,2]*(z)^(2)]*Erfc[z/(Sqrt[2])], {z, n}] Failure Failure Manual Skip!
Failed [2 / 7]
{Plus[0.017848622575954935, Times[0.7141168694348256, DifferenceRoot[Function[{, } <- {Equal[Plus[Times[-1, []], Times[-1, 1.5, [Plus[1, ]]], Times[Plus[2, ], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 2], Power[1.5, 2]]], Erfc[Times[Power[2, Rational[-1, 2]], 1.5]]]], Equal[[1], Plus[Times[-1, Power[Times[2, Power[Pi, -1]], Rational[1, 2]]], Times[Power[E, Times[Rational[1, 2], Power[1.5, 2]]], 1.5, Erfc[Times[Power[2, Rational[-1, 2]], 1.5]]]]]}]][3.0]]], {Rule[n, 3], Rule[z, 1.5]}
Plus[0.1293114227985036, Times[1.1773796724029832, DifferenceRoot[Function[{, } <- {Equal[Plus[Times[-1, []], Times[-1, 0.5, [Plus[1, ]]], Times[Plus[2, ], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 2], Power[0.5, 2]]], Erfc[Times[Power[2, Rational[-1, 2]], 0.5]]]], Equal[[1], Plus[Times[-1, Power[Times[2, Power[Pi, -1]], Rational[1, 2]]], Times[Power[E, Times[Rational[1, 2], Power[0.5, 2]]], 0.5, Erfc[Times[Power[2, Ration
12.7.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{-2}{z} = \frac{z^{5/2}}{4\sqrt{2\pi}}\left(2\modBesselK{\frac{1}{4}}@{\tfrac{1}{4}z^{2}}+3\modBesselK{\frac{3}{4}}@{\tfrac{1}{4}z^{2}}-\modBesselK{\frac{5}{4}}@{\tfrac{1}{4}z^{2}}\right)} CylinderU(- 2, z) = ((z)^(5/ 2))/(4*sqrt(2*Pi))*(2*BesselK((1)/(4), (1)/(4)*(z)^(2))+ 3*BesselK((3)/(4), (1)/(4)*(z)^(2))- BesselK((5)/(4), (1)/(4)*(z)^(2))) ParabolicCylinderD[- 1/2 -(- 2), z] == Divide[(z)^(5/ 2),4*Sqrt[2*Pi]]*(2*BesselK[Divide[1,4], Divide[1,4]*(z)^(2)]+ 3*BesselK[Divide[3,4], Divide[1,4]*(z)^(2)]- BesselK[Divide[5,4], Divide[1,4]*(z)^(2)]) Failure Failure
Failed [2 / 7]
2/7]: [[-2.928712959+.1903824416*I <- {z = -1/2+1/2*I*3^(1/2)}
-1.578570932+.7263102924*I <- {z = -1/2*3^(1/2)-1/2*I}
Failed [2 / 7]
{Complex[-2.928712959362369, 0.19038244130086163] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[-1.5785709321816723, 0.7263102922437361] <- {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
12.7.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{-1}{z} = \frac{z^{3/2}}{2\sqrt{2\pi}}\left(\modBesselK{\frac{1}{4}}@{\tfrac{1}{4}z^{2}}+\modBesselK{\frac{3}{4}}@{\tfrac{1}{4}z^{2}}\right)} CylinderU(- 1, z) = ((z)^(3/ 2))/(2*sqrt(2*Pi))*(BesselK((1)/(4), (1)/(4)*(z)^(2))+ BesselK((3)/(4), (1)/(4)*(z)^(2))) ParabolicCylinderD[- 1/2 -(- 1), z] == Divide[(z)^(3/ 2),2*Sqrt[2*Pi]]*(BesselK[Divide[1,4], Divide[1,4]*(z)^(2)]+ BesselK[Divide[3,4], Divide[1,4]*(z)^(2)]) Failure Failure
Failed [2 / 7]
2/7]: [[.5254625443+1.913964596*I <- {z = -1/2+1/2*I*3^(1/2)}
-.1061142274-1.367750447*I <- {z = -1/2*3^(1/2)-1/2*I}
Failed [2 / 7]
{Complex[0.5254625445137794, 1.9139645960722755] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[-0.10611422720224939, -1.3677504477251] <- {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
12.7.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{0}{z} = \sqrt{\frac{z}{2\pi}}\modBesselK{\frac{1}{4}}@{\tfrac{1}{4}z^{2}}} CylinderU(0, z) = sqrt((z)/(2*Pi))*BesselK((1)/(4), (1)/(4)*(z)^(2)) ParabolicCylinderD[- 1/2 -(0), z] == Sqrt[Divide[z,2*Pi]]*BesselK[Divide[1,4], Divide[1,4]*(z)^(2)] Failure Failure
Failed [2 / 7]
2/7]: [[2.016879450-1.384601654*I <- {z = -1/2+1/2*I*3^(1/2)}
1.973186649+1.022506910*I <- {z = -1/2*3^(1/2)-1/2*I}
Failed [2 / 7]
{Complex[2.0168794499257325, -1.3846016541017099] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[1.9731866495584476, 1.0225069102497304] <- {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
12.7.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{1}{z} = \frac{z^{3/2}}{\sqrt{2\pi}}\left(\modBesselK{\frac{3}{4}}@{\tfrac{1}{4}z^{2}}-\modBesselK{\frac{1}{4}}@{\tfrac{1}{4}z^{2}}\right)} CylinderU(1, z) = ((z)^(3/ 2))/(sqrt(2*Pi))*(BesselK((3)/(4), (1)/(4)*(z)^(2))- BesselK((1)/(4), (1)/(4)*(z)^(2))) ParabolicCylinderD[- 1/2 -(1), z] == Divide[(z)^(3/ 2),Sqrt[2*Pi]]*(BesselK[Divide[3,4], Divide[1,4]*(z)^(2)]- BesselK[Divide[1,4], Divide[1,4]*(z)^(2)]) Failure Failure
Failed [2 / 7]
2/7]: [[.6696041257-1.050010143*I <- {z = -1/2+1/2*I*3^(1/2)}
2.182924166+1.008719675*I <- {z = -1/2*3^(1/2)-1/2*I}
Failed [2 / 7]
{Complex[0.6696041258052213, -1.050010141970097] <- {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[2.1829241651976083, 1.0087196737510498] <- {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
12.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{z} = 2^{-\frac{1}{4}-\frac{1}{2}a}e^{-\frac{1}{4}z^{2}}\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}}} CylinderU(a, z) = (2)^(-(1)/(4)-(1)/(2)*a)* exp(-(1)/(4)*(z)^(2))*KummerU((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2)) ParabolicCylinderD[- 1/2 -(a), z] == (2)^(-Divide[1,4]-Divide[1,2]*a)* Exp[-Divide[1,4]*(z)^(2)]*HypergeometricU[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)] Failure Failure
Failed [10 / 42]
10/42]: [[-1.528312538+1.673428352*I <- {a = -3/2, z = -1/2+1/2*I*3^(1/2)}
-1.682421259-.5335370987*I <- {a = -3/2, z = -1/2*3^(1/2)-1/2*I}
Failed [10 / 42]
{Complex[-1.5283125381510665, 1.6734283529572487] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[-1.6824212600186188, -0.5335370991065028] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
12.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2^{-\frac{1}{4}-\frac{1}{2}a}e^{-\frac{1}{4}z^{2}}\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{1}{4}}{\tfrac{1}{2}}{\tfrac{1}{2}z^{2}} = 2^{-\frac{3}{4}-\frac{1}{2}a}ze^{-\frac{1}{4}z^{2}}\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}}} (2)^(-(1)/(4)-(1)/(2)*a)* exp(-(1)/(4)*(z)^(2))*KummerU((1)/(2)*a +(1)/(4), (1)/(2), (1)/(2)*(z)^(2)) = (2)^(-(3)/(4)-(1)/(2)*a)* z*exp(-(1)/(4)*(z)^(2))*KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2)) (2)^(-Divide[1,4]-Divide[1,2]*a)* Exp[-Divide[1,4]*(z)^(2)]*HypergeometricU[Divide[1,2]*a +Divide[1,4], Divide[1,2], Divide[1,2]*(z)^(2)] == (2)^(-Divide[3,4]-Divide[1,2]*a)* z*Exp[-Divide[1,4]*(z)^(2)]*HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)] Failure Failure
Failed [12 / 42]
12/42]: [[1.528312538-1.673428353*I <- {a = -3/2, z = -1/2+1/2*I*3^(1/2)}
1.682421260+.5335370988*I <- {a = -3/2, z = -1/2*3^(1/2)-1/2*I}
Failed [12 / 42]
{Complex[1.5283125381510665, -1.673428352957249] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[1.6824212600186188, 0.5335370991065027] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
12.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2^{-\frac{3}{4}-\frac{1}{2}a}ze^{-\frac{1}{4}z^{2}}\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = 2^{-\frac{1}{2}a}z^{-\frac{1}{2}}\WhittakerconfhyperW{-\frac{1}{2}a}{+\frac{1}{4}}@{\tfrac{1}{2}z^{2}}} (2)^(-(3)/(4)-(1)/(2)*a)* z*exp(-(1)/(4)*(z)^(2))*KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2)) = (2)^(-(1)/(2)*a)* (z)^(-(1)/(2))* WhittakerW(-(1)/(2)*a, +(1)/(4), (1)/(2)*(z)^(2)) (2)^(-Divide[3,4]-Divide[1,2]*a)* z*Exp[-Divide[1,4]*(z)^(2)]*HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)] == (2)^(-Divide[1,2]*a)* (z)^(-Divide[1,2])* WhittakerW[-Divide[1,2]*a, +Divide[1,4], Divide[1,2]*(z)^(2)] Failure Failure
Failed [12 / 42]
12/42]: [[.725579081e-1+1.600870446*I <- {a = -3/2, z = -1/2+1/2*I*3^(1/2)}
-.5744420805-1.107979180*I <- {a = -3/2, z = -1/2*3^(1/2)-1/2*I}
Failed [12 / 42]
{Complex[0.0725579074030912, 1.600870445554158] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[-0.574442080456058, -1.1079791795625606] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
12.7.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2^{-\frac{3}{4}-\frac{1}{2}a}ze^{-\frac{1}{4}z^{2}}\KummerconfhyperU@{\tfrac{1}{2}a+\tfrac{3}{4}}{\tfrac{3}{2}}{\tfrac{1}{2}z^{2}} = 2^{-\frac{1}{2}a}z^{-\frac{1}{2}}\WhittakerconfhyperW{-\frac{1}{2}a}{-\frac{1}{4}}@{\tfrac{1}{2}z^{2}}} (2)^(-(3)/(4)-(1)/(2)*a)* z*exp(-(1)/(4)*(z)^(2))*KummerU((1)/(2)*a +(3)/(4), (3)/(2), (1)/(2)*(z)^(2)) = (2)^(-(1)/(2)*a)* (z)^(-(1)/(2))* WhittakerW(-(1)/(2)*a, -(1)/(4), (1)/(2)*(z)^(2)) (2)^(-Divide[3,4]-Divide[1,2]*a)* z*Exp[-Divide[1,4]*(z)^(2)]*HypergeometricU[Divide[1,2]*a +Divide[3,4], Divide[3,2], Divide[1,2]*(z)^(2)] == (2)^(-Divide[1,2]*a)* (z)^(-Divide[1,2])* WhittakerW[-Divide[1,2]*a, -Divide[1,4], Divide[1,2]*(z)^(2)] Failure Failure
Failed [12 / 42]
12/42]: [[.725579081e-1+1.600870446*I <- {a = -3/2, z = -1/2+1/2*I*3^(1/2)}
-.5744420804-1.107979180*I <- {a = -3/2, z = -1/2*3^(1/2)-1/2*I}
Failed [12 / 42]
{Complex[0.0725579074030912, 1.600870445554158] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Complex[-0.5744420804560579, -1.1079791795625609] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
12.8.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z\paraU@{a}{z}-\paraU@{a-1}{z}+(a+\tfrac{1}{2})\paraU@{a+1}{z} = 0} z*CylinderU(a, z)- CylinderU(a - 1, z)+(a +(1)/(2))* CylinderU(a + 1, z) = 0 z*ParabolicCylinderD[- 1/2 -(a), z]- ParabolicCylinderD[- 1/2 -(a - 1), z]+(a +Divide[1,2])* ParabolicCylinderD[- 1/2 -(a + 1), z] == 0 Successful Successful - Successful [Tested: 42]
12.8.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU'@{a}{z}+\tfrac{1}{2}z\paraU@{a}{z}+(a+\tfrac{1}{2})\paraU@{a+1}{z} = 0} diff( CylinderU(a, z), z$(1) )+(1)/(2)*z*CylinderU(a, z)+(a +(1)/(2))* CylinderU(a + 1, z) = 0 D[ParabolicCylinderD[- 1/2 -(a), z], {z, 1}]+Divide[1,2]*z*ParabolicCylinderD[- 1/2 -(a), z]+(a +Divide[1,2])* ParabolicCylinderD[- 1/2 -(a + 1), z] == 0 Successful Successful - Successful [Tested: 42]
12.8.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU'@{a}{z}-\tfrac{1}{2}z\paraU@{a}{z}+\paraU@{a-1}{z} = 0} diff( CylinderU(a, z), z$(1) )-(1)/(2)*z*CylinderU(a, z)+ CylinderU(a - 1, z) = 0 D[ParabolicCylinderD[- 1/2 -(a), z], {z, 1}]-Divide[1,2]*z*ParabolicCylinderD[- 1/2 -(a), z]+ ParabolicCylinderD[- 1/2 -(a - 1), z] == 0 Successful Successful - Successful [Tested: 42]
12.8.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\paraU'@{a}{z}+\paraU@{a-1}{z}+(a+\tfrac{1}{2})\paraU@{a+1}{z} = 0} 2*diff( CylinderU(a, z), z$(1) )+ CylinderU(a - 1, z)+(a +(1)/(2))* CylinderU(a + 1, z) = 0 2*D[ParabolicCylinderD[- 1/2 -(a), z], {z, 1}]+ ParabolicCylinderD[- 1/2 -(a - 1), z]+(a +Divide[1,2])* ParabolicCylinderD[- 1/2 -(a + 1), z] == 0 Successful Successful - Successful [Tested: 42]
12.8.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle z\paraV@{a}{z}-\paraV@{a+1}{z}+(a-\tfrac{1}{2})\paraV@{a-1}{z} = 0} z*CylinderV(a, z)- CylinderV(a + 1, z)+(a -(1)/(2))* CylinderV(a - 1, z) = 0 z*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])- Divide[GAMMA[1/2 + a + 1], Pi]*(Sin[Pi*(a + 1)] * ParabolicCylinderD[-(a + 1) - 1/2, z] + ParabolicCylinderD[-(a + 1) - 1/2, -(z)])+(a -Divide[1,2])* Divide[GAMMA[1/2 + a - 1], Pi]*(Sin[Pi*(a - 1)] * ParabolicCylinderD[-(a - 1) - 1/2, z] + ParabolicCylinderD[-(a - 1) - 1/2, -(z)]) == 0 Successful Failure -
Failed [42 / 42]
{Plus[Times[Complex[7.067899292141149*^-17, 0.0], GAMMA[-2.0]], Times[Complex[3.060490169192143*^-17, 1.7669748230352868*^-17], GAMMA[-1.0]], Times[Complex[0.0, -8.834874115176436*^-18], GAMMA[0.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Times[Complex[1.4135798584282297*^-16, 0.0], GAMMA[-2.0]], Times[Complex[-8.361414638298002*^-17, 7.414495684541142*^-17], GAMMA[-1.0]], Times[Complex[-7.067899292141149*^-17, -8.834874115176436*^-18], GAMMA[0.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.8.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV'@{a}{z}-\tfrac{1}{2}z\paraV@{a}{z}-(a-\tfrac{1}{2})\paraV@{a-1}{z} = 0} diff( CylinderV(a, z), z$(1) )-(1)/(2)*z*CylinderV(a, z)-(a -(1)/(2))* CylinderV(a - 1, z) = 0 D[Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]), {z, 1}]-Divide[1,2]*z*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])-(a -Divide[1,2])* Divide[GAMMA[1/2 + a - 1], Pi]*(Sin[Pi*(a - 1)] * ParabolicCylinderD[-(a - 1) - 1/2, z] + ParabolicCylinderD[-(a - 1) - 1/2, -(z)]) == 0 Successful Failure -
Failed [39 / 42]
{Plus[Complex[0.0, 0.0], Times[Complex[-7.067899292141149*^-17, 0.0], GAMMA[-2.0]], Times[Complex[-1.5302450845960716*^-17, -8.834874115176434*^-18], GAMMA[-1.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Times[Complex[-1.4135798584282297*^-16, 0.0], GAMMA[-2.0]], Times[Complex[-9.955091265133296*^-17, -1.7329819619999673*^-18], GAMMA[-1.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.8.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV'@{a}{z}+\tfrac{1}{2}z\paraV@{a}{z}-\paraV@{a+1}{z} = 0} diff( CylinderV(a, z), z$(1) )+(1)/(2)*z*CylinderV(a, z)- CylinderV(a + 1, z) = 0 D[Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]), {z, 1}]+Divide[1,2]*z*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)])- Divide[GAMMA[1/2 + a + 1], Pi]*(Sin[Pi*(a + 1)] * ParabolicCylinderD[-(a + 1) - 1/2, z] + ParabolicCylinderD[-(a + 1) - 1/2, -(z)]) == 0 Successful Failure -
Failed [42 / 42]
{Plus[Complex[0.0, 0.0], Times[Complex[1.5302450845960716*^-17, 8.834874115176434*^-18], GAMMA[-1.0]], Times[Complex[0.0, -8.834874115176436*^-18], GAMMA[0.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Times[Complex[-1.83165059034313*^-16, 7.241197488341145*^-17], GAMMA[-1.0]], Times[Complex[-7.067899292141149*^-17, -8.834874115176436*^-18], GAMMA[0.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.8.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 2\paraV'@{a}{z}-\paraV@{a+1}{z}-(a-\tfrac{1}{2})\paraV@{a-1}{z} = 0} 2*diff( CylinderV(a, z), z$(1) )- CylinderV(a + 1, z)-(a -(1)/(2))* CylinderV(a - 1, z) = 0 2*D[Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]), {z, 1}]- Divide[GAMMA[1/2 + a + 1], Pi]*(Sin[Pi*(a + 1)] * ParabolicCylinderD[-(a + 1) - 1/2, z] + ParabolicCylinderD[-(a + 1) - 1/2, -(z)])-(a -Divide[1,2])* Divide[GAMMA[1/2 + a - 1], Pi]*(Sin[Pi*(a - 1)] * ParabolicCylinderD[-(a - 1) - 1/2, z] + ParabolicCylinderD[-(a - 1) - 1/2, -(z)]) == 0 Successful Failure -
Failed [42 / 42]
{Plus[Complex[0.0, 0.0], Times[Complex[-7.067899292141149*^-17, 0.0], GAMMA[-2.0]], Times[Complex[0.0, -8.834874115176436*^-18], GAMMA[0.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Times[Complex[-1.4135798584282297*^-16, 0.0], GAMMA[-2.0]], Times[Complex[-2.8271597168564594*^-16, 7.067899292141149*^-17], GAMMA[-1.0]], Times[Complex[-7.067899292141149*^-17, -8.834874115176436*^-18], GAMMA[0.0]]] <- {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.8.E9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[m]{}{z}\left(e^{\frac{1}{4}z^{2}}\paraU@{a}{z}\right) = (-1)^{m}\Pochhammersym{\tfrac{1}{2}+a}{m}e^{\frac{1}{4}z^{2}}\paraU@{a+m}{z}} diff(exp((1)/(4)*(z)^(2))*CylinderU(a, z), [z$(m)]) = (- 1)^(m)* pochhammer((1)/(2)+ a, m)*exp((1)/(4)*(z)^(2))*CylinderU(a + m, z) D[Exp[Divide[1,4]*(z)^(2)]*ParabolicCylinderD[- 1/2 -(a), z], {z, m}] == (- 1)^(m)* Pochhammer[Divide[1,2]+ a, m]*Exp[Divide[1,4]*(z)^(2)]*ParabolicCylinderD[- 1/2 -(a + m), z] Failure Failure Error
Failed [96 / 126]
{Plus[Complex[-1.0, 0.0], DifferenceRoot[Function[{, } <- {Equal[Plus[Times[Plus[-1, Times[-2, ], Times[-2, -1.5]], []], Times[-2, Plus[1, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 4], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], ParabolicCylinderD[Plus[Rational[-1, 2], Times[-1, -1.5]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[Power[E, Times[Rational[1, 4], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], Plus[Times[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], ParabolicCylinderD[Plus[Rational[-1, 2], Times[-1, -1.5]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], Times[-1, ParabolicCylinderD[Plus[Rational[1, 2], Times[-1, -1.5]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]]}]][1.0]], {Rule[a, -1.5], Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}<br
12.8.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[m]{}{z}\left(e^{-\frac{1}{4}z^{2}}\paraU@{a}{z}\right) = (-1)^{m}e^{-\frac{1}{4}z^{2}}\paraU@{a-m}{z}} diff(exp(-(1)/(4)*(z)^(2))*CylinderU(a, z), [z$(m)]) = (- 1)^(m)* exp(-(1)/(4)*(z)^(2))*CylinderU(a - m, z) D[Exp[-Divide[1,4]*(z)^(2)]*ParabolicCylinderD[- 1/2 -(a), z], {z, m}] == (- 1)^(m)* Exp[-Divide[1,4]*(z)^(2)]*ParabolicCylinderD[- 1/2 -(a - m), z] Failure Failure Error
Failed [96 / 126]
{Plus[Complex[-0.07045205979755337, 0.7756076114781977], DifferenceRoot[Function[{, } <- {Equal[Plus[Times[Plus[1, Times[2, ], Times[-2, -1.5]], []], Times[2, Plus[1, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[-1, 4], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], ParabolicCylinderD[Plus[Rational[-1, 2], Times[-1, -1.5]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], Equal[[1], Times[-1, Power[E, Times[Rational[-1, 4], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], ParabolicCylinderD[Plus[Rational[1, 2], Times[-1, -1.5]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]}]][1.0]], {Rule[a, -1.5], Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Plus[Complex[2.000032302229117, -0.49556574541480647], Times[2.0, DifferenceRoot[Function[{, } <- {Equal[Plus[Times[Plus[1, Times[2, ], Ti
12.8.E11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[m]{}{z}\left(e^{\frac{1}{4}z^{2}}\paraV@{a}{z}\right) = e^{\frac{1}{4}z^{2}}\paraV@{a+m}{z}} diff(exp((1)/(4)*(z)^(2))*CylinderV(a, z), [z$(m)]) = exp((1)/(4)*(z)^(2))*CylinderV(a + m, z) D[Exp[Divide[1,4]*(z)^(2)]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]), {z, m}] == Exp[Divide[1,4]*(z)^(2)]*Divide[GAMMA[1/2 + a + m], Pi]*(Sin[Pi*(a + m)] * ParabolicCylinderD[-(a + m) - 1/2, z] + ParabolicCylinderD[-(a + m) - 1/2, -(z)]) Failure Failure Error
Failed [126 / 126]
{Plus[Times[Complex[2.150599663294456*^-18, -9.777500999643939*^-18], GAMMA[0.0]], Times[0.3183098861837907, GAMMA[-1.0], Plus[DifferenceRoot[Function[{, } <- {Equal[Plus[Times[Plus[-1, Times[-2, ], Times[-2, -1.5]], []], Times[-2, Plus[1, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[1, 4], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], ParabolicCylinderD[Plus[Rational[-1, 2], Times[-1, -1.5]], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[1], Times[Power[E, Times[Rational[1, 4], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], Plus[Times[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], ParabolicCylinderD[Plus[Rational[-1, 2], Times[-1, -1.5]], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]], ParabolicCylinderD[Plus[Rational[1, 2], Times[-1, -1.5]], Times[-1, Power[E, Times[Complex[0, Rational[
12.8.E12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[m]{}{z}\left(e^{-\frac{1}{4}z^{2}}\paraV@{a}{z}\right) = (-1)^{m}\Pochhammersym{\tfrac{1}{2}-a}{m}e^{-\frac{1}{4}z^{2}}\paraV@{a-m}{z}} diff(exp(-(1)/(4)*(z)^(2))*CylinderV(a, z), [z$(m)]) = (- 1)^(m)* pochhammer((1)/(2)- a, m)*exp(-(1)/(4)*(z)^(2))*CylinderV(a - m, z) D[Exp[-Divide[1,4]*(z)^(2)]*Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, z] + ParabolicCylinderD[-(a) - 1/2, -(z)]), {z, m}] == (- 1)^(m)* Pochhammer[Divide[1,2]- a, m]*Exp[-Divide[1,4]*(z)^(2)]*Divide[GAMMA[1/2 + a - m], Pi]*(Sin[Pi*(a - m)] * ParabolicCylinderD[-(a - m) - 1/2, z] + ParabolicCylinderD[-(a - m) - 1/2, -(z)]) Failure Failure Error
Failed [126 / 126]
{Plus[Times[Complex[-6.091780348003315*^-17, 1.3399109614774574*^-17], GAMMA[-2.0]], Times[0.3183098861837907, GAMMA[-1.0], Plus[DifferenceRoot[Function[{, } <- {Equal[Plus[Times[Plus[1, Times[2, ], Times[-2, -1.5]], []], Times[2, Plus[1, ], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], [Plus[1, ]]], Times[2, Plus[1, ], Plus[2, ], [Plus[2, ]]]], 0], Equal[[0], Times[Power[E, Times[Rational[-1, 4], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], ParabolicCylinderD[Plus[Rational[-1, 2], Times[-1, -1.5]], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]], Equal[[1], Times[Power[E, Times[Rational[-1, 4], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], 2]]], ParabolicCylinderD[Plus[Rational[1, 2], Times[-1, -1.5]], Times[-1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]]}]][1.0], Times[1.0, DifferenceRoot[Function[{, }, {Equal[Plus[Times[Plus[1, Times[2, ], Times[-2, -1.5]], []], Times[2, Plus[1, ], Power[E, Times[Complex[0,
12.10#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle a = +\tfrac{1}{2}\mu^{2}} a = +(1)/(2)*(mu)^(2) a == +Divide[1,2]*\[Mu]^(2) Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle x = \mu t\sqrt{2}} x = mu*t*sqrt(2) x == \[Mu]*t*Sqrt[2] Skipped - no semantic math Skipped - no semantic math - -
12.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{t} = \mu^{4}(t^{2}+ 1)w} diff(w, [t$(2)]) = (mu)^(4)*((t)^(2)+ 1)* w D[w, {t, 2}] == \[Mu]^(4)*((t)^(2)+ 1)* w Failure Failure
Failed [300 / 300]
300/300]: [[2.814582564-1.625000003*I <- {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = 1/2*3^(1/2)+1/2*I}
1.625000003+2.814582564*I <- {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[2.814582562299425, -1.6250000000000009] <- {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[2.814582562299425, -1.6250000000000009] <- {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.10.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{t} = \mu^{4}(t^{2}- 1)w} diff(w, [t$(2)]) = (mu)^(4)*((t)^(2)- 1)* w D[w, {t, 2}] == \[Mu]^(4)*((t)^(2)- 1)* w Failure Failure
Failed [300 / 300]
300/300]: [[1.082531755-.6250000011*I <- {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = 1/2*3^(1/2)+1/2*I}
.6250000011+1.082531755*I <- {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[1.0825317547305482, -0.6250000000000002] <- {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[1.0825317547305482, -0.6250000000000002] <- {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.10.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle v_{s}(t) = u_{s}(t)+\tfrac{1}{2}tu_{s-1}(t)-r_{s-2}(t)} v[s]*(t) = u[s]*(t)+(1)/(2)*t*u[s - 1]*(t)- r[s - 2]*(t) Subscript[v, s]*(t) == Subscript[u, s]*(t)+Divide[1,2]*t*Subscript[u, s - 1]*(t)- Subscript[r, s - 2]*(t) Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex9 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \gamma_{0} = 1} gamma[0] = 1 Subscript[\[Gamma], 0] == 1 Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \gamma_{1} = -\tfrac{1}{24}} gamma[1] = -(1)/(24) Subscript[\[Gamma], 1] == -Divide[1,24] Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex11 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \gamma_{2} = \tfrac{1}{1152}} gamma[2] = (1)/(1152) Subscript[\[Gamma], 2] == Divide[1,1152] Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex12 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \gamma_{3} = \tfrac{1003}{4\;14720}} gamma[3] = (1003)/(414720) Subscript[\[Gamma], 3] == Divide[1003,414720] Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \gamma_{4} = -\tfrac{4027}{398\;13120}} gamma[4] = -(4027)/(39813120) Subscript[\[Gamma], 4] == -Divide[4027,39813120] Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mathsf{A}_{1}(\tau) = -\tfrac{1}{12}\tau(20\tau^{2}+30\tau+9)} A[1]*(tau) = -(1)/(12)*tau*(20*(tau)^(2)+ 30*tau + 9) Subscript[A, 1]*(\[Tau]) == -Divide[1,12]*\[Tau]*(20*\[Tau]^(2)+ 30*\[Tau]+ 9) Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex19 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \mathsf{A}_{2}(\tau) = \tfrac{1}{288}\tau^{2}(6160\tau^{4}+18480\tau^{3}+19404\tau^{2}+8028\tau+945)} A[2]*(tau) = (1)/(288)*(tau)^(2)*(6160*(tau)^(4)+ 18480*(tau)^(3)+ 19404*(tau)^(2)+ 8028*tau + 945) Subscript[A, 2]*(\[Tau]) == Divide[1,288]*\[Tau]^(2)*(6160*\[Tau]^(4)+ 18480*\[Tau]^(3)+ 19404*\[Tau]^(2)+ 8028*\[Tau]+ 945) Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle A_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\beta_{m}(\phi(\zeta))^{6(2s-m)}u_{2s-m}(t)} A[s]*(zeta) = (zeta)^(- 3*s)* sum(beta[m]*(phi*(zeta))^(6*(2*s - m))* u[2*s - m]*(t), m = 0..2*s) Subscript[A, s]*(\[Zeta]) == \[Zeta]^(- 3*s)* Sum[Subscript[\[Beta], m]*(\[Phi]*(\[Zeta]))^(6*(2*s - m))* Subscript[u, 2*s - m]*(t), {m, 0, 2*s}, GenerateConditions->None] Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex23 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta^{2}B_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\alpha_{m}(\phi(\zeta))^{6(2s-m+1)}u_{2s-m+1}(t)} (zeta)^(2)* B[s]*(zeta) = - (zeta)^(- 3*s)* sum(alpha[m]*(phi*(zeta))^(6*(2*s - m + 1))* u[2*s - m + 1]*(t), m = 0..2*s + 1) \[Zeta]^(2)* Subscript[B, s]*(\[Zeta]) == - \[Zeta]^(- 3*s)* Sum[Subscript[\[Alpha], m]*(\[Phi]*(\[Zeta]))^(6*(2*s - m + 1))* Subscript[u, 2*s - m + 1]*(t), {m, 0, 2*s + 1}, GenerateConditions->None] Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex28 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \zeta C_{s}(\zeta) = -\zeta^{-3s}\sum_{m=0}^{2s+1}\beta_{m}(\phi(\zeta))^{6(2s-m+1)}v_{2s-m+1}(t)} zeta*C[s]*(zeta) = - (zeta)^(- 3*s)* sum(beta[m]*(phi*(zeta))^(6*(2*s - m + 1))* v[2*s - m + 1]*(t), m = 0..2*s + 1) \[Zeta]*Subscript[C, s]*(\[Zeta]) == - \[Zeta]^(- 3*s)* Sum[Subscript[\[Beta], m]*(\[Phi]*(\[Zeta]))^(6*(2*s - m + 1))* Subscript[v, 2*s - m + 1]*(t), {m, 0, 2*s + 1}, GenerateConditions->None] Skipped - no semantic math Skipped - no semantic math - -
12.10#Ex29 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle D_{s}(\zeta) = \zeta^{-3s}\sum_{m=0}^{2s}\alpha_{m}(\phi(\zeta))^{6(2s-m)}v_{2s-m}(t)} D[s]*(zeta) = (zeta)^(- 3*s)* sum(alpha[m]*(phi*(zeta))^(6*(2*s - m))* v[2*s - m]*(t), m = 0..2*s) Subscript[D, s]*(\[Zeta]) == \[Zeta]^(- 3*s)* Sum[Subscript[\[Alpha], m]*(\[Phi]*(\[Zeta]))^(6*(2*s - m))* Subscript[v, 2*s - m]*(t), {m, 0, 2*s}, GenerateConditions->None] Skipped - no semantic math Skipped - no semantic math - -
12.11.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{0}(\zeta) = t(\zeta)} p[0]*(zeta) = t*(zeta) Subscript[p, 0]*(\[Zeta]) == t*(\[Zeta]) Skipped - no semantic math Skipped - no semantic math - -
12.11.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle p_{1}(\zeta) = \frac{t^{3}-6t}{24(t^{2}-1)^{2}}+\frac{5}{48((t^{2}-1)\zeta^{3})^{\frac{1}{2}}}} p[1]*(zeta) = ((t)^(3)- 6*t)/(24*((t)^(2)- 1)^(2))+(5)/(48*(((t)^(2)- 1)*(zeta)^(3))^((1)/(2))) Subscript[p, 1]*(\[Zeta]) == Divide[(t)^(3)- 6*t,24*((t)^(2)- 1)^(2)]+Divide[5,48*(((t)^(2)- 1)*\[Zeta]^(3))^(Divide[1,2])] Skipped - no semantic math Skipped - no semantic math - -
12.11.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle q_{0}(\zeta) = t(\zeta)} q[0]*(zeta) = t*(zeta) Subscript[q, 0]*(\[Zeta]) == t*(\[Zeta]) Skipped - no semantic math Skipped - no semantic math - -
12.12.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-\frac{1}{4}t^{2}}t^{\mu-1}\paraU@{a}{t}\diff{t} = \frac{\sqrt{\pi}2^{-\frac{1}{2}(\mu+a+\frac{1}{2})}\EulerGamma@{\mu}}{\EulerGamma@{\frac{1}{2}(\mu+a+\frac{3}{2})}}} int(exp(-(1)/(4)*(t)^(2))*(t)^(mu - 1)* CylinderU(a, t), t = 0..infinity) = (sqrt(Pi)*(2)^(-(1)/(2)*(mu + a +(1)/(2)))* GAMMA(mu))/(GAMMA((1)/(2)*(mu + a +(3)/(2)))) Integrate[Exp[-Divide[1,4]*(t)^(2)]*(t)^(\[Mu]- 1)* ParabolicCylinderD[- 1/2 -(a), t], {t, 0, Infinity}, GenerateConditions->None] == Divide[Sqrt[Pi]*(2)^(-Divide[1,2]*(\[Mu]+ a +Divide[1,2]))* Gamma[\[Mu]],Gamma[Divide[1,2]*(\[Mu]+ a +Divide[3,2])]] Successful Aborted - Skipped - Because timed out
12.12.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-\frac{3}{4}t^{2}}t^{-a-\frac{3}{2}}\paraU@{a}{t}\diff{t} = 2^{\frac{1}{4}+\frac{1}{2}a}\EulerGamma@{-a-\tfrac{1}{2}}\cos@{(\tfrac{1}{4}a+\tfrac{1}{8})\pi}} int(exp(-(3)/(4)*(t)^(2))*(t)^(- a -(3)/(2))* CylinderU(a, t), t = 0..infinity) = (2)^((1)/(4)+(1)/(2)*a)* GAMMA(- a -(1)/(2))*cos(((1)/(4)*a +(1)/(8))* Pi) Integrate[Exp[-Divide[3,4]*(t)^(2)]*(t)^(- a -Divide[3,2])* ParabolicCylinderD[- 1/2 -(a), t], {t, 0, Infinity}, GenerateConditions->None] == (2)^(Divide[1,4]+Divide[1,2]*a)* Gamma[- a -Divide[1,2]]*Cos[(Divide[1,4]*a +Divide[1,8])* Pi] Failure Failure Skipped - Because timed out Successful [Tested: 2]
12.12.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}e^{-\frac{1}{4}t^{2}}t^{-a-\frac{1}{2}}(x^{2}+t^{2})^{-1}\paraU@{a}{t}\diff{t} = \sqrt{\pi/2}\EulerGamma@{\tfrac{1}{2}-a}x^{-a-\frac{3}{2}}e^{\frac{1}{4}x^{2}}\paraU@{-a}{x}} int(exp(-(1)/(4)*(t)^(2))*(t)^(- a -(1)/(2))*((x)^(2)+ (t)^(2))^(- 1)* CylinderU(a, t), t = 0..infinity) = sqrt(Pi/ 2)*GAMMA((1)/(2)- a)*(x)^(- a -(3)/(2))* exp((1)/(4)*(x)^(2))*CylinderU(- a, x) Integrate[Exp[-Divide[1,4]*(t)^(2)]*(t)^(- a -Divide[1,2])*((x)^(2)+ (t)^(2))^(- 1)* ParabolicCylinderD[- 1/2 -(a), t], {t, 0, Infinity}, GenerateConditions->None] == Sqrt[Pi/ 2]*Gamma[Divide[1,2]- a]*(x)^(- a -Divide[3,2])* Exp[Divide[1,4]*(x)^(2)]*ParabolicCylinderD[- 1/2 -(- a), x] Failure Aborted Skipped - Because timed out Skipped - Because timed out
12.13.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{x+y} = e^{\frac{1}{2}xy+\frac{1}{4}y^{2}}\sum_{m=0}^{\infty}\frac{(-y)^{m}}{m!}\paraU@{a-m}{x}} CylinderU(a, x + y) = exp((1)/(2)*x*y +(1)/(4)*(y)^(2))*sum(((- y)^(m))/(factorial(m))*CylinderU(a - m, x), m = 0..infinity) ParabolicCylinderD[- 1/2 -(a), x + y] == Exp[Divide[1,2]*x*y +Divide[1,4]*(y)^(2)]*Sum[Divide[(- y)^(m),(m)!]*ParabolicCylinderD[- 1/2 -(a - m), x], {m, 0, Infinity}, GenerateConditions->None] Failure Failure Skipped - Because timed out Skipped - Because timed out
12.13.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{x+y} = e^{-\frac{1}{2}xy-\frac{1}{4}y^{2}}\sum_{m=0}^{\infty}\binom{-a-\tfrac{1}{2}}{m}y^{m}\paraU@{a+m}{x}} CylinderU(a, x + y) = exp(-(1)/(2)*x*y -(1)/(4)*(y)^(2))*sum(binomial(- a -(1)/(2),m)*(y)^(m)* CylinderU(a + m, x), m = 0..infinity) ParabolicCylinderD[- 1/2 -(a), x + y] == Exp[-Divide[1,2]*x*y -Divide[1,4]*(y)^(2)]*Sum[Binomial[- a -Divide[1,2],m]*(y)^(m)* ParabolicCylinderD[- 1/2 -(a + m), x], {m, 0, Infinity}, GenerateConditions->None] Failure Failure Skipped - Because timed out Skipped - Because timed out
12.13.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{x+y} = e^{\frac{1}{2}xy+\frac{1}{4}y^{2}}\sum_{m=0}^{\infty}\binom{a-\tfrac{1}{2}}{m}y^{m}\paraV@{a-m}{x}} CylinderV(a, x + y) = exp((1)/(2)*x*y +(1)/(4)*(y)^(2))*sum(binomial(a -(1)/(2),m)*(y)^(m)* CylinderV(a - m, x), m = 0..infinity) Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, x + y] + ParabolicCylinderD[-(a) - 1/2, -(x + y)]) == Exp[Divide[1,2]*x*y +Divide[1,4]*(y)^(2)]*Sum[Binomial[a -Divide[1,2],m]*(y)^(m)* Divide[GAMMA[1/2 + a - m], Pi]*(Sin[Pi*(a - m)] * ParabolicCylinderD[-(a - m) - 1/2, x] + ParabolicCylinderD[-(a - m) - 1/2, -(x)]), {m, 0, Infinity}, GenerateConditions->None] Failure Failure Skipped - Because timed out Skipped - Because timed out
12.13.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraV@{a}{x+y} = e^{-\frac{1}{2}xy-\frac{1}{4}y^{2}}\sum_{m=0}^{\infty}\frac{y^{m}}{m!}\paraV@{a+m}{x}} CylinderV(a, x + y) = exp(-(1)/(2)*x*y -(1)/(4)*(y)^(2))*sum(((y)^(m))/(factorial(m))*CylinderV(a + m, x), m = 0..infinity) Divide[GAMMA[1/2 + a], Pi]*(Sin[Pi*(a)] * ParabolicCylinderD[-(a) - 1/2, x + y] + ParabolicCylinderD[-(a) - 1/2, -(x + y)]) == Exp[-Divide[1,2]*x*y -Divide[1,4]*(y)^(2)]*Sum[Divide[(y)^(m),(m)!]*Divide[GAMMA[1/2 + a + m], Pi]*(Sin[Pi*(a + m)] * ParabolicCylinderD[-(a + m) - 1/2, x] + ParabolicCylinderD[-(a + m) - 1/2, -(x)]), {m, 0, Infinity}, GenerateConditions->None] Failure Failure Skipped - Because timed out Skipped - Because timed out
12.13.E5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraU@{a}{x\cos@@{t}+y\sin@@{t}}\\ = e^{\frac{1}{4}(x\sin@@{t}-y\cos@@{t})^{2}}\*\sum_{m=0}^{\infty}\binom{-a-\tfrac{1}{2}}{m}(\tan@@{t})^{m}\paraU@{m+a}{x}\paraU@{-m-\tfrac{1}{2}}{y}} CylinderU(a, x*cos(t)+ y*sin(t)) = exp((1)/(4)*(x*sin(t)- y*cos(t))^(2))* sum(binomial(- a -(1)/(2),m)*(tan(t))^(m)* CylinderU(m + a, x)*CylinderU(- m -(1)/(2), y), m = 0..infinity) ParabolicCylinderD[- 1/2 -(a), x*Cos[t]+ y*Sin[t]] == Exp[Divide[1,4]*(x*Sin[t]- y*Cos[t])^(2)]* Sum[Binomial[- a -Divide[1,2],m]*(Tan[t])^(m)* ParabolicCylinderD[- 1/2 -(m + a), x]*ParabolicCylinderD[- 1/2 -(- m -Divide[1,2]), y], {m, 0, Infinity}, GenerateConditions->None] Failure Failure Skipped - Because timed out Skip - No test values generated
12.14.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraW@{a}{0} = 2^{-\frac{3}{4}}\left|\frac{\EulerGamma@{\tfrac{1}{4}+\tfrac{1}{2}ia}}{\EulerGamma@{\tfrac{3}{4}+\tfrac{1}{2}ia}}\right|^{\frac{1}{2}}} Error Sqrt[(Sqrt[1+Exp[2*Pi*(a)]]-Exp[Pi*(a)])/2] * Exp[Divide[Pi*(a),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 - I*(a), 0 * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 + I*(a), 0 * Exp[Divide[Pi*I,4]]] ) == (2)^(-Divide[3,4])*(Abs[Divide[Gamma[Divide[1,4]+Divide[1,2]*I*a],Gamma[Divide[3,4]+Divide[1,2]*I*a]]])^(Divide[1,2]) Missing Macro Error Failure -
Failed [6 / 6]
{Plus[-0.6502446611528931, Times[0.2167171091323973, Plus[Times[Complex[2.1101734540747557, 0.09157129889910319], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, -1.5]]]]]]]], Times[Complex[2.1101734540747557, -0.09157129889910319], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, -1.5]]]]]]]]]]] <- {Rule[a, -1.5]}
Plus[-0.6502446611528931, Times[0.15393043293932354, Plus[Times[Complex[2.1101734540747557, -0.09157129889910319], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, 1.5]]]]]]]], Times[Complex[2.1101734540747557, 0.09157129889910319], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, 1.5]]]]]]]]]]] <- {Rule[a, 1.5]}
12.14.E2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraW'@{a}{0} = -2^{-\frac{1}{4}}\left|\frac{\EulerGamma@{\tfrac{3}{4}+\tfrac{1}{2}ia}}{\EulerGamma@{\tfrac{1}{4}+\tfrac{1}{2}ia}}\right|^{\frac{1}{2}}} Error (D[Sqrt[(Sqrt[1+Exp[2*Pi*(a)]]-Exp[Pi*(a)])/2] * Exp[Divide[Pi*(a),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 - I*(a), temp * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 + I*(a), temp * Exp[Divide[Pi*I,4]]] ), {temp, 1}]/.temp-> 0) == - (2)^(-Divide[1,4])*(Abs[Divide[Gamma[Divide[3,4]+Divide[1,2]*I*a],Gamma[Divide[1,4]+Divide[1,2]*I*a]]])^(Divide[1,2]) Missing Macro Error Failure -
Failed [6 / 6]
{Plus[0.7689413383471582, Times[0.2167171091323973, Plus[Times[Complex[-1.704391150531108, -1.8258251253417301], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, -1.5]]]]]]]]], Times[Complex[-1.704391150531108, 1.8258251253417301], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, -1.5]]]]]]]]]]]] <- {Rule[a, -1.5]}
Plus[0.7689413383471582, Times[0.15393043293932354, Plus[Times[Complex[-1.704391150531108, 1.8258251253417301], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, 1.5]]]]]]]]], Times[Complex[-1.704391150531108, -1.8258251253417301], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5,
12.14.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \Wronskian@{\paraW@{a}{x},\paraW@{a}{-x}} = 1} Error Wronskian[{Sqrt[(Sqrt[1+Exp[2*Pi*(a)]]-Exp[Pi*(a)])/2] * Exp[Divide[Pi*(a),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 - I*(a), x * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 + I*(a), x * Exp[Divide[Pi*I,4]]] ), Sqrt[(Sqrt[1+Exp[2*Pi*(a)]]-Exp[Pi*(a)])/2] * Exp[Divide[Pi*(a),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 - I*(a), - x * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 + I*(a), - x * Exp[Divide[Pi*I,4]]] )}, x] == 1 Missing Macro Error Aborted -
Failed [18 / 18]
{Plus[-1.0, Times[0.49552852896181854, Power[2.718281828459045, Plus[-2.356194490192345, Times[Complex[0.0, -1.0], Arg[GAMMA[Complex[0.5, -1.5]]]]]], Plus[Complex[6.858735565841029, 8.017762045530217], Times[Complex[-3.325234230733274, 7.771974729433958], Power[2.718281828459045, Times[Complex[0.0, 1.0], Arg[GAMMA[Complex[0.5, -1.5]]]]]], Times[Complex[-0.5683445061301408, 1.832896863544324], Power[2.718281828459045, Times[Complex[0.0, 1.0], Arg[GAMMA[Complex[0.5, -1.5]]]]], Plus[Complex[-3.829019967249232, -1.729594934825754], Times[Complex[-1.3099191255337557, -0.33304402326481836], Power[2.718281828459045, Times[Complex[0.0, 1.0], Arg[GAMMA[Complex[0.5, -1.5]]]]]]]], Times[Complex[-0.6925599504260578, -1.7781797223294367], Power[2.718281828459045, Times[Complex[0.0, 1.0], Arg[GAMMA[Complex[0.5, -1.5]]]]], Plus[Complex[1.1964059764236668, -0.5640566230504777], Times[Complex[1.7883988364886165, 3.791736125757196], Power[2.718281828459045, Times[Complex[0.0, 1.0], Arg[GAMMA[Compl
12.14.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraW@{a}{x} = \sqrt{k/2}\,e^{\frac{1}{4}\pi a}\left(e^{i\rho}\paraU@{ia}{xe^{-\pi i/4}}+e^{-i\rho}\paraU@{-ia}{xe^{\pi i/4}}\right)} Error Sqrt[(Sqrt[1+Exp[2*Pi*(a)]]-Exp[Pi*(a)])/2] * Exp[Divide[Pi*(a),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 - I*(a), x * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 + I*(a), x * Exp[Divide[Pi*I,4]]] ) == Sqrt[k/ 2]*Exp[Divide[1,4]*Pi*a]*(Exp[I*\[Rho]]*ParabolicCylinderD[- 1/2 -(I*a), x*Exp[- Pi*I/ 4]]+ Exp[- I*\[Rho]]*ParabolicCylinderD[- 1/2 -(- I*a), x*Exp[Pi*I/ 4]]) Missing Macro Error Failure -
Failed [18 / 18]
{Plus[Complex[0.7504500073451766, 0.0], Times[0.2167171091323973, Plus[Times[Complex[-0.5683445061301404, -1.832896863544323], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, -1.5]]]]]]]], Times[Complex[-0.5683445061301404, 1.832896863544323], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, -1.5]]]]]]]]]]] <- {Rule[a, -1.5], Rule[x, 1.5]}
Plus[Complex[-0.17071363418721158, 0.0], Times[0.2167171091323973, Plus[Times[Complex[1.764482879031172, -1.0958018333501351], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, -1.5]]]]]]]], Times[Complex[1.764482879031172, 1.0958018333501351], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[Complex[0.5, -1.5]]]]]]]]]]] <- {Rule[a, -1.5], Rule[x, 0.5]}
12.14.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraW@{a}{x} = \paraW@{a}{0}w_{1}(a,x)+\paraW'@{a}{0}w_{2}(a,x)} Error Sqrt[(Sqrt[1+Exp[2*Pi*(a)]]-Exp[Pi*(a)])/2] * Exp[Divide[Pi*(a),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 - I*(a), x * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 + I*(a), x * Exp[Divide[Pi*I,4]]] ) == Sqrt[(Sqrt[1+Exp[2*Pi*(a)]]-Exp[Pi*(a)])/2] * Exp[Divide[Pi*(a),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 - I*(a), 0 * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 + I*(a), 0 * Exp[Divide[Pi*I,4]]] )*Subscript[w, 1]*(a , x)+ (D[Sqrt[(Sqrt[1+Exp[2*Pi*(a)]]-Exp[Pi*(a)])/2] * Exp[Divide[Pi*(a),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 - I*(a), temp * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 + I*(a), temp * Exp[Divide[Pi*I,4]]] ), {temp, 1}]/.temp-> 0)*Subscript[w, 2]*(a , x) Missing Macro Error Aborted - Skipped - Because timed out
12.14#Ex5 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha_{0}(a) = 1} alpha[0]*(a) = 1 Subscript[\[Alpha], 0]*(a) == 1 Skipped - no semantic math Skipped - no semantic math - -
12.14#Ex6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \alpha_{1}(a) = a} alpha[1]*(a) = a Subscript[\[Alpha], 1]*(a) == a Skipped - no semantic math Skipped - no semantic math - -
12.14#Ex7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \beta_{0}(a) = 1} beta[0]*(a) = 1 Subscript[\[Beta], 0]*(a) == 1 Skipped - no semantic math Skipped - no semantic math - -
12.14#Ex8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \beta_{1}(a) = a} beta[1]*(a) = a Subscript[\[Beta], 1]*(a) == a Skipped - no semantic math Skipped - no semantic math - -
12.14.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraW@{0}{+ x} = 2^{-\frac{5}{4}}\sqrt{\pi x}\left(\BesselJ{-\frac{1}{4}}@{\tfrac{1}{4}x^{2}}-\BesselJ{\frac{1}{4}}@{\tfrac{1}{4}x^{2}}\right)} Error Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), + x * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), + x * Exp[Divide[Pi*I,4]]] ) == (2)^(-Divide[5,4])*Sqrt[Pi*x]*(BesselJ[-Divide[1,4], Divide[1,4]*(x)^(2)]- BesselJ[Divide[1,4], Divide[1,4]*(x)^(2)]) Missing Macro Error Failure -
Failed [3 / 3]
{Plus[-0.22960009916312846, Times[0.4550898605622274, Plus[Times[Complex[0.5125789656744846, -0.578293218532047], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[0.5125789656744846, 0.578293218532047], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]] <- {Rule[x, 1.5]}
Plus[-0.7771899742615831, Times[0.4550898605622274, Plus[Times[Complex[1.0093127652068992, -0.20538419268274744], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[1.0093127652068992, 0.20538419268274744], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]] <- {Rule[x, 0.5]}
12.14.E13 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraW@{0}{- x} = 2^{-\frac{5}{4}}\sqrt{\pi x}\left(\BesselJ{-\frac{1}{4}}@{\tfrac{1}{4}x^{2}}+\BesselJ{\frac{1}{4}}@{\tfrac{1}{4}x^{2}}\right)} Error Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), - x * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), - x * Exp[Divide[Pi*I,4]]] ) == (2)^(-Divide[5,4])*Sqrt[Pi*x]*(BesselJ[-Divide[1,4], Divide[1,4]*(x)^(2)]+ BesselJ[Divide[1,4], Divide[1,4]*(x)^(2)]) Missing Macro Error Failure -
Failed [3 / 3]
{Plus[-1.6050209192353964, Times[0.4550898605622274, Plus[Times[Complex[1.669165402738578, 0.5782932185320475], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[1.669165402738578, -0.5782932185320475], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]] <- {Rule[x, 1.5]}
Plus[-1.2656786607564097, Times[0.4550898605622274, Plus[Times[Complex[1.4200811505723943, 0.2053841926827476], Power[2.718281828459045, Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]], Times[Complex[1.4200811505723943, -0.2053841926827476], Power[2.718281828459045, Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]] <- {Rule[x, 0.5]}
12.14.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{x}\paraW@{0}{+ x} = -2^{-\frac{9}{4}}x\sqrt{\pi x}\left(\BesselJ{\frac{3}{4}}@{\tfrac{1}{4}x^{2}}+\BesselJ{-\frac{3}{4}}@{\tfrac{1}{4}x^{2}}\right)} Error D[Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), + x * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), + x * Exp[Divide[Pi*I,4]]] ), x] == - (2)^(-Divide[9,4])* x*Sqrt[Pi*x]*(BesselJ[Divide[3,4], Divide[1,4]*(x)^(2)]+ BesselJ[-Divide[3,4], Divide[1,4]*(x)^(2)]) Missing Macro Error Aborted -
Failed [3 / 3]
{Plus[0.6138624292597322, Times[0.4550898605622274, Plus[Times[Complex[-0.6342811205261311, 0.23110891742402956], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.6342811205261311, -0.23110891742402956], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]] <- {Rule[x, 1.5]}
Plus[0.497609493984496, Times[0.4550898605622274, Plus[Times[Complex[-0.5880519854532475, 0.008953751453165265], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[-0.5880519854532475, -0.008953751453165265], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]] <- {Rule[x,
12.14.E14 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv{}{x}\paraW@{0}{- x} = -2^{-\frac{9}{4}}x\sqrt{\pi x}\left(\BesselJ{\frac{3}{4}}@{\tfrac{1}{4}x^{2}}-\BesselJ{-\frac{3}{4}}@{\tfrac{1}{4}x^{2}}\right)} Error D[Sqrt[(Sqrt[1+Exp[2*Pi*(0)]]-Exp[Pi*(0)])/2] * Exp[Divide[Pi*(0),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 - I*(0), - x * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(0)]]/2)] * ParabolicCylinderD[- 1/2 + I*(0), - x * Exp[Divide[Pi*I,4]]] ), x] == - (2)^(-Divide[9,4])* x*Sqrt[Pi*x]*(BesselJ[Divide[3,4], Divide[1,4]*(x)^(2)]- BesselJ[-Divide[3,4], Divide[1,4]*(x)^(2)]) Missing Macro Error Aborted -
Failed [3 / 3]
{Plus[-0.06418969137726768, Times[0.4550898605622274, Plus[Times[Complex[0.17206328567807166, 0.23110891742402973], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[0.17206328567807166, -0.23110891742402973], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]] <- {Rule[x, 1.5]}
Plus[-0.4763137641163559, Times[0.4550898605622274, Plus[Times[Complex[0.5701444825469169, 0.008953751453165182], Power[2.718281828459045, Plus[Complex[0.0, 0.7853981633974483], Times[Complex[0.0, -1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]], Times[Complex[0.5701444825469169, -0.008953751453165182], Power[2.718281828459045, Plus[Complex[0.0, -0.7853981633974483], Times[Complex[0.0, 1.0], Plus[0.39269908169872414, Times[0.5, Arg[GAMMA[0.5]]]]]]]]]]] <- {Rule[x
12.14.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w_{1}(a,x) = e^{-\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{1}{4}-\tfrac{1}{2}ia}{\tfrac{1}{2}}{\tfrac{1}{2}ix^{2}}} w[1]*(a , x) = exp(-(1)/(4)*I*(x)^(2))*KummerM((1)/(4)-(1)/(2)*I*a, (1)/(2), (1)/(2)*I*(x)^(2)) Subscript[w, 1]*(a , x) == Exp[-Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[1,4]-Divide[1,2]*I*a, Divide[1,2], Divide[1,2]*I*(x)^(2)] Failure Failure Skipped - Because timed out Skipped - Because timed out
12.14.E15 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle e^{-\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{1}{4}-\tfrac{1}{2}ia}{\tfrac{1}{2}}{\tfrac{1}{2}ix^{2}} = e^{\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{1}{4}+\tfrac{1}{2}ia}{\tfrac{1}{2}}{-\tfrac{1}{2}ix^{2}}} exp(-(1)/(4)*I*(x)^(2))*KummerM((1)/(4)-(1)/(2)*I*a, (1)/(2), (1)/(2)*I*(x)^(2)) = exp((1)/(4)*I*(x)^(2))*KummerM((1)/(4)+(1)/(2)*I*a, (1)/(2), -(1)/(2)*I*(x)^(2)) Exp[-Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[1,4]-Divide[1,2]*I*a, Divide[1,2], Divide[1,2]*I*(x)^(2)] == Exp[Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[1,4]+Divide[1,2]*I*a, Divide[1,2], -Divide[1,2]*I*(x)^(2)] Failure Successful Successful [Tested: 18] Successful [Tested: 18]
12.14.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle w_{2}(a,x) = xe^{-\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{3}{4}-\tfrac{1}{2}ia}{\tfrac{3}{2}}{\tfrac{1}{2}ix^{2}}} w[2]*(a , x) = x*exp(-(1)/(4)*I*(x)^(2))*KummerM((3)/(4)-(1)/(2)*I*a, (3)/(2), (1)/(2)*I*(x)^(2)) Subscript[w, 2]*(a , x) == x*Exp[-Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[3,4]-Divide[1,2]*I*a, Divide[3,2], Divide[1,2]*I*(x)^(2)] Failure Failure Skipped - Because timed out Skipped - Because timed out
12.14.E16 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle xe^{-\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{3}{4}-\tfrac{1}{2}ia}{\tfrac{3}{2}}{\tfrac{1}{2}ix^{2}} = xe^{\frac{1}{4}ix^{2}}\KummerconfhyperM@{\tfrac{3}{4}+\tfrac{1}{2}ia}{\tfrac{3}{2}}{-\tfrac{1}{2}ix^{2}}} x*exp(-(1)/(4)*I*(x)^(2))*KummerM((3)/(4)-(1)/(2)*I*a, (3)/(2), (1)/(2)*I*(x)^(2)) = x*exp((1)/(4)*I*(x)^(2))*KummerM((3)/(4)+(1)/(2)*I*a, (3)/(2), -(1)/(2)*I*(x)^(2)) x*Exp[-Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[3,4]-Divide[1,2]*I*a, Divide[3,2], Divide[1,2]*I*(x)^(2)] == x*Exp[Divide[1,4]*I*(x)^(2)]*Hypergeometric1F1[Divide[3,4]+Divide[1,2]*I*a, Divide[3,2], -Divide[1,2]*I*(x)^(2)] Failure Successful Successful [Tested: 18] Successful [Tested: 18]
12.14.E17 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraW@{a}{x} = \sqrt{\frac{2k}{x}}\left(s_{1}(a,x)\cos@@{\omega}-s_{2}(a,x)\sin@@{\omega}\right)} Error Sqrt[(Sqrt[1+Exp[2*Pi*(a)]]-Exp[Pi*(a)])/2] * Exp[Divide[Pi*(a),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 - I*(a), x * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 + I*(a), x * Exp[Divide[Pi*I,4]]] ) == Sqrt[Divide[2*k,x]]*(Subscript[s, 1]*(a , x)*Cos[\[Omega]]- Subscript[s, 2]*(a , x)*Sin[\[Omega]]) Missing Macro Error Failure - Error
12.14.E18 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \paraW@{a}{-x} = \sqrt{\frac{2}{kx}}\left(s_{1}(a,x)\sin@@{\omega}+s_{2}(a,x)\cos@@{\omega}\right)} Error Sqrt[(Sqrt[1+Exp[2*Pi*(a)]]-Exp[Pi*(a)])/2] * Exp[Divide[Pi*(a),4]] * ( Exp[I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 - I*(a), - x * Exp[-Divide[Pi*I,4]]] + Exp[-I*(Pi/8 + Arg[GAMMA[1/2 + I*(a)]]/2)] * ParabolicCylinderD[- 1/2 + I*(a), - x * Exp[Divide[Pi*I,4]]] ) == Sqrt[Divide[2,k*x]]*(Subscript[s, 1]*(a , x)*Sin[\[Omega]]+ Subscript[s, 2]*(a , x)*Cos[\[Omega]]) Missing Macro Error Failure - Error
12.14.E24 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{t} = \mu^{4}(1-t^{2})w} diff(w, [t$(2)]) = (mu)^(4)*(1 - (t)^(2))* w D[w, {t, 2}] == \[Mu]^(4)*(1 - (t)^(2))* w Failure Failure
Failed [300 / 300]
300/300]: [[-1.082531755+.6250000011*I <- {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = 1/2*3^(1/2)+1/2*I}
-.6250000011-1.082531755*I <- {mu = 1/2*3^(1/2)+1/2*I, t = -3/2, w = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[-1.0825317547305482, 0.6250000000000002] <- {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-1.0825317547305482, 0.6250000000000002] <- {Rule[t, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[μ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.15.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \deriv[2]{w}{z}+\left(\nu+\lambda^{-1}-\lambda^{-2}z^{\lambda}\right)w = 0} diff(w, [z$(2)])+(nu + (lambda)^(- 1)- (lambda)^(- 2)* (z)^(lambda))* w = 0 D[w, {z, 2}]+(\[Nu]+ \[Lambda]^(- 1)- \[Lambda]^(- 2)* (z)^\[Lambda])* w == 0 Failure Failure
Failed [300 / 300]
300/300]: [[.7322275248+.9199723429*I <- {lambda = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
1.402820433+.5288298490*I <- {lambda = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
Failed [300 / 300]
{Complex[0.7322275239543282, 0.91997234266967] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[-0.6337978798301105, 0.5539469388852316] <- {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[λ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
12.17.E4 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{1}{\xi^{2}+\eta^{2}}\left(\pderiv[2]{w}{\xi}+\pderiv[2]{w}{\eta}\right)+\pderiv[2]{w}{\zeta}+k^{2}w = 0} (1)/((xi)^(2)+ (eta)^(2))*(diff(w, [xi$(2)])+ diff(w, [eta$(2)]))+ diff(w, [zeta$(2)])+ (k)^(2)* w = 0 Divide[1,\[Xi]^(2)+ \[Eta]^(2)]*(D[w, {\[Xi], 2}]+ D[w, {\[Eta], 2}])+ D[w, {\[Zeta], 2}]+ (k)^(2)* w == 0 Failure Failure
Failed [300 / 300]
300/300]: [[.8660254040+.5000000000*I <- {eta = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, k = 1}
3.464101616+2.*I <- {eta = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, zeta = 1/2*3^(1/2)+1/2*I, k = 2}
Failed [300 / 300]
{Complex[0.8660254037844387, 0.49999999999999994] <- {Rule[k, 1], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Complex[3.464101615137755, 1.9999999999999998] <- {Rule[k, 2], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ζ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[η, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}