Algebraic and Analytic Methods - 1.2 Elementary Algebra

From testwiki
Revision as of 10:58, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
1.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{n}{k} = \frac{n!}{(n-k)!k!}}
\binom{n}{k} = \frac{n!}{(n-k)!k!}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
binomial(n,k) = (factorial(n))/(factorial(n - k)*factorial(k))
Binomial[n,k] == Divide[(n)!,(n - k)!*(k)!]
Successful Successful - Successful [Tested: 9]
1.2.E1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{n!}{(n-k)!k!} = \binom{n}{n-k}}
\frac{n!}{(n-k)!k!} = \binom{n}{n-k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
(factorial(n))/(factorial(n - k)*factorial(k)) = binomial(n,n - k)
Divide[(n)!,(n - k)!*(k)!] == Binomial[n,n - k]
Successful Successful - Successful [Tested: 9]
1.2.E6 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \frac{(-1)^{k}\Pochhammersym{-z}{k}}{k!} = (-1)^{k}\binom{k-z-1}{k}}
\frac{(-1)^{k}\Pochhammersym{-z}{k}}{k!} = (-1)^{k}\binom{k-z-1}{k}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
((- 1)^(k)* pochhammer(- z, k))/(factorial(k)) = (- 1)^(k)*binomial(k - z - 1,k)
Divide[(- 1)^(k)* Pochhammer[- z, k],(k)!] == (- 1)^(k)*Binomial[k - z - 1,k]
Successful Successful - Successful [Tested: 21]
1.2.E7 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \binom{z+1}{k} = \binom{z}{k}+\binom{z}{k-1}}
\binom{z+1}{k} = \binom{z}{k}+\binom{z}{k-1}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
binomial(z + 1,k) = binomial(z,k)+binomial(z,k - 1)
Binomial[z + 1,k] == Binomial[z,k]+Binomial[z,k - 1]
Successful Successful - Successful [Tested: 21]
1.2.E8 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \sum^{m}_{k=0}\binom{z+k}{k} = \binom{z+m+1}{m}}
\sum^{m}_{k=0}\binom{z+k}{k} = \binom{z+m+1}{m}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
sum(binomial(z + k,k), k = 0..m) = binomial(z + m + 1,m)
Sum[Binomial[z + k,k], {k, 0, m}, GenerateConditions->None] == Binomial[z + m + 1,m]
Successful Successful - Successful [Tested: 21]
1.2.E10 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle na+\tfrac{1}{2}n(n-1)d = \tfrac{1}{2}n(a+\ell)}
na+\tfrac{1}{2}n(n-1)d = \tfrac{1}{2}n(a+\ell)
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
n*a +(1)/(2)*n*(n - 1)*d = (1)/(2)*n*(a + ell)
n*a +Divide[1,2]*n*(n - 1)*d == Divide[1,2]*n*(a + \[ScriptL])
Skipped - no semantic math Skipped - no semantic math - -
1.2.E22 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(r) = 0}
M(r) = 0
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
((p[1]*(a[1])^(r)+ p[2]*(a[2])^(r)+ .. + p[n]*(a[n])^(r))^(1/r)) = 0
((Subscript[p, 1]*(Subscript[a, 1])^(r)+ Subscript[p, 2]*(Subscript[a, 2])^(r)+ \[Ellipsis]+ Subscript[p, n]*(Subscript[a, n])^(r))^(1/r)) == 0
Skipped - no semantic math Skipped - no semantic math - -
1.2#Ex1 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(1) = A}
M(1) = A
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
M(1) = ((a[1]+ a[2]+ .. + a[n])/(n))
M[1] == (Divide[Subscript[a, 1]+ Subscript[a, 2]+ \[Ellipsis]+ Subscript[a, n],n])
Skipped - no semantic math Skipped - no semantic math - -
1.2#Ex2 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle M(-1) = H}
M(-1) = H
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
M(- 1) = H
M[- 1] == H
Skipped - no semantic math Skipped - no semantic math - -
1.2.E26 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \lim_{r\to 0}M(r) = G}
\lim_{r\to 0}M(r) = G
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle }
limit((p[1]*(a[1])^(r)+ p[2]*(a[2])^(r)+ .. + p[n]*(a[n])^(r))^(1/r), r = 0) = ((a[1]*a[2] .. a[n])^(1/n))
Limit[(Subscript[p, 1]*(Subscript[a, 1])^(r)+ Subscript[p, 2]*(Subscript[a, 2])^(r)+ \[Ellipsis]+ Subscript[p, n]*(Subscript[a, n])^(r))^(1/r), r -> 0, GenerateConditions->None] == ((Subscript[a, 1]*Subscript[a, 2] \[Ellipsis]Subscript[a, n])^(1/n))
Skipped - no semantic math Skipped - no semantic math - -