Algebraic and Analytic Methods - 1.9 Calculus of a Complex Variable
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
1.9.E1 | z = x+iy |
|
(x + y*I) = x + I*y
|
(x + y*I) == x + I*y
|
Successful | Successful | - | Successful [Tested: 1] |
1.9#Ex1 | \realpart@@{z} = x |
|
Re(x + y*I) = x
|
Re[x + y*I] == x
|
Failure | Failure | Successful [Tested: 18] | Successful [Tested: 18] |
1.9#Ex2 | \imagpart@@{z} = y |
|
Im(x + y*I) = y
|
Im[x + y*I] == y
|
Failure | Failure | Successful [Tested: 18] | Successful [Tested: 18] |
1.9#Ex3 | x = r\cos@@{\theta} |
|
x = r*cos(theta)
|
x == r*Cos[\[Theta]]
|
Failure | Failure | Failed [180 / 180] Result: 2.595814528-.5954243254*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, x = 1.5}
Result: 1.595814528-.5954243254*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, x = .5}
Result: 3.095814528-.5954243254*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, x = 2}
Result: 3.341648276+.7036130646*I
Test Values: {r = -1.5, theta = -1/2+1/2*I*3^(1/2), x = 1.5}
... skip entries to safe data |
Failed [180 / 180]
Result: Complex[2.595814528585838, -0.5954243253435487]
Test Values: {Rule[r, -1.5], Rule[x, 1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[3.3416482752961656, 0.7036130644027555]
Test Values: {Rule[r, -1.5], Rule[x, 1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.9#Ex4 | y = r\sin@@{\theta} |
|
y = r*sin(theta)
|
y == r*Sin[\[Theta]]
|
Failure | Failure | Failed [300 / 300] Result: -.211529498+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = -1.5}
Result: 2.788470502+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = 1.5}
Result: .788470502+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = -.5}
Result: 1.788470502+.5063946946*I
Test Values: {r = -1.5, theta = 1/2*3^(1/2)+1/2*I, y = .5}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.21152949854979308, 0.506394694834305]
Test Values: {Rule[r, -1.5], Rule[y, -1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.506097038210817, 1.2879550752257174]
Test Values: {Rule[r, -1.5], Rule[y, -1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.9.E4 | r = (x^{2}+y^{2})^{1/2} |
|
r = ((x)^(2)+ (y)^(2))^(1/2) |
r == ((x)^(2)+ (y)^(2))^(1/2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E6 | \omega = \atan@{|y/x|}\in\left[0,\tfrac{1}{2}\pi\right] |
|
omega 0 <= arctan(abs(y/x)) <= (1)/(2)*Pi
|
\[Omega] 0 <= ArcTan[Abs[y/x]] <= Divide[1,2]*Pi
|
Error | Failure | - | Failed [180 / 180]
Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[-1.0, True]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-0.4999999999999998, 0.8660254037844387], Times[-1.0, True]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Ο, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.9#Ex5 | |z| = r |
|
abs(z) = r
|
Abs[z] == r
|
Failure | Failure | Failed [39 / 42] Result: 2.5
Test Values: {r = -1.5, z = 1/2*3^(1/2)+1/2*I}
Result: 2.5
Test Values: {r = -1.5, z = -1/2+1/2*I*3^(1/2)}
Result: 2.5
Test Values: {r = -1.5, z = 1/2-1/2*I*3^(1/2)}
Result: 2.5
Test Values: {r = -1.5, z = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [39 / 42]
Result: 2.5
Test Values: {Rule[r, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: 2.5
Test Values: {Rule[r, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.9#Ex6 | \phase@@{z} = \theta+2n\pi |
|
argument(z) = theta + 2*n*Pi
|
Arg[z] == \[Theta]+ 2*n*Pi
|
Error | Failure | - | Failed [70 / 70]
Result: Complex[-19.191982549724898, -0.49999999999999994]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-17.82595714594046, -0.8660254037844387]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.9#Ex7 | |\realpart@@{z}| \leq |z| |
|
abs(Re(z)) <= abs(z)
|
Abs[Re[z]] <= Abs[z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
1.9#Ex8 | |\imagpart@@{z}| \leq |z| |
|
abs(Im(z)) <= abs(z)
|
Abs[Im[z]] <= Abs[z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
1.9.E9 | z = re^{i\theta} |
|
z = r*exp(I*theta) |
z == r*Exp[I*\[Theta]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E10 | e^{i\theta} = \cos@@{\theta}+i\sin@@{\theta} |
|
exp(I*theta) = cos(theta)+ I*sin(theta)
|
Exp[I*\[Theta]] == Cos[\[Theta]]+ I*Sin[\[Theta]]
|
Successful | Successful | - | Successful [Tested: 10] |
1.9.E11 | \conj{z} = x-iy |
|
conjugate(x + y*I) = x - I*y
|
Conjugate[x + y*I] == x - I*y
|
Failure | Failure | Successful [Tested: 18] | Successful [Tested: 18] |
1.9.E12 | |\conj{z}| = |z| |
|
abs(conjugate(z)) = abs(z)
|
Abs[Conjugate[z]] == Abs[z]
|
Successful | Successful | - | Successful [Tested: 7] |
1.9.E13 | \phase@@{\conj{z}} = -\phase@@{z} |
|
argument(conjugate(z)) = - argument(z)
|
Arg[Conjugate[z]] == - Arg[z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
1.9.E14 | z_{1}+ z_{2} = x_{1}+ x_{2}+\iunit(y_{1}+ y_{2}) |
|
x + y*I[1]+x + y*I[2] = x[1]+ x[2]+ I*(y[1]+ y[2])
|
Subscript[x + y*I, 1]+Subscript[x + y*I, 2] == Subscript[x, 1]+ Subscript[x, 2]+ I*(Subscript[y, 1]+ Subscript[y, 2])
|
Failure | Failure | Error | Failed [300 / 300]
Result: Plus[Complex[-0.7320508075688775, -2.732050807568877], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, -1.5], 2]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-0.3660254037844388, -1.3660254037844388], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, -1.5], 2]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.9.E14 | z_{1}- z_{2} = x_{1}- x_{2}+\iunit(y_{1}- y_{2}) |
|
x + y*I[1]-x + y*I[2] = x[1]- x[2]+ I*(y[1]- y[2])
|
Subscript[x + y*I, 1]-Subscript[x + y*I, 2] == Subscript[x, 1]- Subscript[x, 2]+ I*(Subscript[y, 1]- Subscript[y, 2])
|
Failure | Failure | Error | Failed [300 / 300]
Result: Plus[Subscript[Complex[1.5, -1.5], 1], Times[-1.0, Subscript[Complex[1.5, -1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-0.36602540378443876, -1.3660254037844384], Subscript[Complex[1.5, -1.5], 1], Times[-1.0, Subscript[Complex[1.5, -1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.9.E15 | z_{1}z_{2} = x_{1}x_{2}-y_{1}y_{2}+i(x_{1}y_{2}+x_{2}y_{1}) |
|
x + y*I[1]*x + y*I[2] = x[1]*x[2]- y[1]*y[2]+ I*(x[1]*y[2]+ x[2]*y[1]) |
Subscript[x + y*I, 1]*Subscript[x + y*I, 2] == Subscript[x, 1]*Subscript[x, 2]- Subscript[y, 1]*Subscript[y, 2]+ I*(Subscript[x, 1]*Subscript[y, 2]+ Subscript[x, 2]*Subscript[y, 1]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E16 | \frac{z_{1}}{z_{2}} = \frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}} |
|
(z[1])/(z[2]) = (z[1]*conjugate(z)[2])/((abs(z[2]))^(2))
|
Divide[Subscript[z, 1],Subscript[z, 2]] == Divide[Subscript[z, 1]*Subscript[Conjugate[z], 2],(Abs[Subscript[z, 2]])^(2)]
|
Failure | Failure | Error | Failed [300 / 300]
Result: Plus[1.0, Times[Complex[-0.8660254037844387, -0.49999999999999994], Subscript[Complex[0.8660254037844387, -0.49999999999999994], 2]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.0, -1.0], Times[Complex[-0.8660254037844387, -0.49999999999999994], Subscript[Complex[0.8660254037844387, -0.49999999999999994], 2]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.9.E16 | \frac{z_{1}\conj{z}_{2}}{|z_{2}|^{2}} = \frac{x_{1}x_{2}+y_{1}y_{2}+i(x_{2}y_{1}-x_{1}y_{2})}{x_{2}^{2}+y_{2}^{2}} |
|
(x + y*I[1]*conjugate(x + y*I)[2])/((abs(x + y*I[2]))^(2)) = (x[1]*x[2]+ y[1]*y[2]+ I*(x[2]*y[1]- x[1]*y[2]))/((x[2])^(2)+ (y[2])^(2))
|
Divide[Subscript[x + y*I, 1]*Subscript[Conjugate[x + y*I], 2],(Abs[Subscript[x + y*I, 2]])^(2)] == Divide[Subscript[x, 1]*Subscript[x, 2]+ Subscript[y, 1]*Subscript[y, 2]+ I*(Subscript[x, 2]*Subscript[y, 1]- Subscript[x, 1]*Subscript[y, 2]),(Subscript[x, 2])^(2)+ (Subscript[y, 2])^(2)]
|
Failure | Failure | Error | Failed [300 / 300]
Result: DirectedInfinity[]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-0.6666666666666669, -0.6666666666666667], Times[Power[Abs[Subscript[Complex[1.5, -1.5], 2]], -2], Subscript[Complex[1.5, -1.5], 1], Subscript[Complex[1.5, 1.5], 2]]]
Test Values: {Rule[x, 1.5], Rule[y, -1.5], Rule[Subscript[x, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[y, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.9.E17 | |z_{1}z_{2}| = |z_{1}|\;|z_{2}| |
|
abs(z[1]*z[2]) = abs(z[1])*abs(z[2]) |
Abs[Subscript[z, 1]*Subscript[z, 2]] == Abs[Subscript[z, 1]]*Abs[Subscript[z, 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E18 | \phase@{z_{1}z_{2}} = \phase@@{z_{1}}+\phase@@{z_{2}} |
|
argument(z[1]*z[2]) = argument(z[1])+ argument(z[2])
|
Arg[Subscript[z, 1]*Subscript[z, 2]] == Arg[Subscript[z, 1]]+ Arg[Subscript[z, 2]]
|
Failure | Failure | Failed [25 / 100] Result: -6.283185308
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}
Result: -6.283185308
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}
Result: -6.283185308
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -2}
Result: -6.283185309
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [25 / 100]
Result: -6.283185307179587
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -1.5]}
Result: -6.283185307179587
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}
... skip entries to safe data |
1.9.E19 | \abs{\frac{z_{1}}{z_{2}}} = \frac{|z_{1}|}{|z_{2}|} |
|
abs((z[1])/(z[2])) = (abs(z[1]))/(abs(z[2]))
|
Abs[Divide[Subscript[z, 1],Subscript[z, 2]]] == Divide[Abs[Subscript[z, 1]],Abs[Subscript[z, 2]]]
|
Successful | Successful | - | Successful [Tested: 100] |
1.9.E20 | \phase@@{\frac{z_{1}}{z_{2}}} = \phase@@{z_{1}}-\phase@@{z_{2}} |
|
argument((z[1])/(z[2])) = argument(z[1])- argument(z[2]) |
Arg[Divide[Subscript[z, 1],Subscript[z, 2]]] == Arg[Subscript[z, 1]]- Arg[Subscript[z, 2]] |
Failure | Failure | Failed [25 / 100] Result: -6.283185308
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I} Result: 6.283185308
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)} Result: 6.283185307
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1.5} Result: 6.283185307
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -.5} ... skip entries to safe data |
Failed [25 / 100]
Result: -6.283185307179586
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: 6.283185307179586
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
1.9.E22 | \cos@@{n\theta}+i\sin@@{n\theta} = (\cos@@{\theta}+i\sin@@{\theta})^{n} |
|
cos(n*theta)+ I*sin(n*theta) = (cos(theta)+ I*sin(theta))^(n) |
Cos[n*\[Theta]]+ I*Sin[n*\[Theta]] == (Cos[\[Theta]]+ I*Sin[\[Theta]])^(n) |
Error | Successful | - | Successful [Tested: 10] |
1.9.E23 | \abs{\abs{z_{1}}-\abs{z_{2}}} \leq \abs{z_{1}+z_{2}} |
|
abs(abs(z[1])- abs(z[2])) <= abs(z[1]+ z[2]) |
Abs[Abs[Subscript[z, 1]]- Abs[Subscript[z, 2]]] <= Abs[Subscript[z, 1]+ Subscript[z, 2]] |
Failure | Failure | Successful [Tested: 100] | Successful [Tested: 100] |
1.9.E23 | \abs{z_{1}+z_{2}} \leq \abs{z_{1}}+\abs{z_{2}} |
|
abs(z[1]+ z[2]) <= abs(z[1])+ abs(z[2]) |
Abs[Subscript[z, 1]+ Subscript[z, 2]] <= Abs[Subscript[z, 1]]+ Abs[Subscript[z, 2]] |
Failure | Failure | Successful [Tested: 100] | Successful [Tested: 100] |
1.9#Ex9 | \pderiv{u}{x} = \pderiv{v}{y} |
|
diff(u, x) = diff(v, y) |
D[u, x] == D[v, y] |
Successful | Successful | - | Successful [Tested: 300] |
1.9#Ex10 | \pderiv{u}{y} = -\pderiv{v}{x} |
|
diff(u, y) = - diff(v, x) |
D[u, y] == - D[v, x] |
Successful | Successful | - | Successful [Tested: 300] |
1.9.E26 | \pderiv[2]{u}{x}+\pderiv[2]{u}{y} = \pderiv[2]{v}{x}+\pderiv[2]{v}{y} |
|
diff(u, [x$(2)])+ diff(u, [y$(2)]) = diff(v, [x$(2)])+ diff(v, [y$(2)]) |
D[u, {x, 2}]+ D[u, {y, 2}] == D[v, {x, 2}]+ D[v, {y, 2}] |
Successful | Successful | - | Successful [Tested: 300] |
1.9.E26 | \pderiv[2]{v}{x}+\pderiv[2]{v}{y} = 0 |
|
diff(v, [x$(2)])+ diff(v, [y$(2)]) = 0 |
D[v, {x, 2}]+ D[v, {y, 2}] == 0 |
Successful | Successful | - | Successful [Tested: 180] |
1.9.E27 | \pderiv[2]{u}{r}+\frac{1}{r}\pderiv{u}{r}+\frac{1}{r^{2}}\pderiv[2]{u}{\theta} = 0 |
|
diff(u, [r$(2)])+(1)/(r)*diff(u, r)+(1)/((r)^(2))*diff(u, [theta$(2)]) = 0 |
D[u, {r, 2}]+Divide[1,r]*D[u, r]+Divide[1,(r)^(2)]*D[u, {\[Theta], 2}] == 0 |
Successful | Successful | - | Successful [Tested: 300] |
1.9.E33 | u(z) = \frac{1}{2\pi}\int^{2\pi}_{0}u(z+re^{i\phi})\diff{\phi} |
|
u(z) = (1)/(2*Pi)*int(u(z + r*exp(I*phi)), phi = 0..2*Pi) |
u[z] == Divide[1,2*Pi]*Integrate[u[z + r*Exp[I*\[Phi]]], {\[Phi], 0, 2*Pi}, GenerateConditions->None] |
Successful | Successful | - | Successful [Tested: 300] |
1.9.E34 | u(re^{i\theta}) = \frac{1}{2\pi}\int^{2\pi}_{0}\frac{(R^{2}-r^{2})h(Re^{i\phi})\diff{\phi}}{R^{2}-2Rr\cos@{\phi-\theta}+r^{2}} |
|
u(r*exp(I*theta)) = (1)/(2*Pi)*int((((R)^(2)- (r)^(2))*h(R*exp(I*phi)))/((R)^(2)- 2*R*r*cos(phi - theta)+ (r)^(2)), phi = 0..2*Pi) |
u[r*Exp[I*\[Theta]]] == Divide[1,2*Pi]*Integrate[Divide[((R)^(2)- (r)^(2))*h[R*Exp[I*\[Phi]]],(R)^(2)- 2*R*r*Cos[\[Phi]- \[Theta]]+ (r)^(2)], {\[Phi], 0, 2*Pi}, GenerateConditions->None] |
Aborted | Failure | Skipped - Because timed out | Failed [300 / 300]
Result: Complex[-0.1639294614698989, -0.894905511379796]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[R, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-0.6307543640677387, -0.014887794479775784]
Test Values: {Rule[h, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[r, -1.5], Rule[R, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
1.9.E36 | \infty+ z = z+\infty |
|
infinity + z = z + infinity |
Infinity + z == z + Infinity |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E37 | \infty\cdot z = z\cdot\infty |
|
infinity * z = z * infinity |
Infinity * z == z * Infinity |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E38 | z/\infty = 0 |
|
z/infinity = 0 |
z/Infinity == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E39 | z/0 = \infty |
z/0 = infinity |
z/0 == Infinity |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
1.9.E44 | z = \frac{dw-b}{-cw+a} |
|
z = (d*w - b)/(- c*w + a) |
z == Divide[d*w - b,- c*w + a] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E48 | a_{n} = \frac{f^{(n)}(z_{0})}{n!} |
|
a[n] = ((f(z[0]))^(n))/(factorial(n)) |
Subscript[a, n] == Divide[(f[Subscript[z, 0]])^(n),(n)!] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E50 | \sum^{\infty}_{n=0}(a_{n}+ b_{n})z^{n} = \sum^{\infty}_{n=0}a_{n}z^{n}+\sum^{\infty}_{n=0}b_{n}z^{n} |
|
sum((a[n]+ b[n])*(z)^(n), n = 0..infinity) = sum(a[n]*(z)^(n), n = 0..infinity)+ sum(b[n]*(z)^(n), n = 0..infinity) |
Sum[(Subscript[a, n]+ Subscript[b, n])*(z)^(n), {n, 0, Infinity}, GenerateConditions->None] == Sum[Subscript[a, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]+ Sum[Subscript[b, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E51 | \left(\sum^{\infty}_{n=0}a_{n}z^{n}\right)\left(\sum^{\infty}_{n=0}b_{n}z^{n}\right) = \sum^{\infty}_{n=0}c_{n}z^{n} |
|
(sum(a[n]*(z)^(n), n = 0..infinity))*(sum(b[n]*(z)^(n), n = 0..infinity)) = sum(c[n]*(z)^(n), n = 0..infinity) |
(Sum[Subscript[a, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None])*(Sum[Subscript[b, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None]) == Sum[Subscript[c, n]*(z)^(n), {n, 0, Infinity}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E52 | c_{n} = \sum^{n}_{k=0}a_{k}b_{n-k} |
|
c[n] = sum(a[k]*b[n - k], k = 0..n) |
Subscript[c, n] == Sum[Subscript[a, k]*Subscript[b, n - k], {k, 0, n}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9#Ex13 | b_{0} = 1/a_{0} |
|
b[0] = 1/a[0] |
Subscript[b, 0] == 1/Subscript[a, 0] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9#Ex14 | b_{1} = -a_{1}/a_{0}^{2} |
|
b[1] = - a[1]/(a[0])^(2) |
Subscript[b, 1] == - Subscript[a, 1]/(Subscript[a, 0])^(2) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9#Ex15 | b_{2} = (a_{1}^{2}-a_{0}a_{2})/a_{0}^{3} |
|
b[2] = ((a[1])^(2)- a[0]*a[2])/(a[0])^(3) |
Subscript[b, 2] == ((Subscript[a, 1])^(2)- Subscript[a, 0]*Subscript[a, 2])/(Subscript[a, 0])^(3) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9#Ex16 | q_{1} = a_{1} |
|
q[1] = a[1] |
Subscript[q, 1] == Subscript[a, 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9#Ex17 | q_{2} = (2a_{2}-a_{1}^{2})/2 |
|
q[2] = (2*a[2]- (a[1])^(2))/2 |
Subscript[q, 2] == (2*Subscript[a, 2]- (Subscript[a, 1])^(2))/2 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9#Ex18 | q_{3} = (3a_{3}-3a_{1}a_{2}+a_{1}^{3})/3 |
|
q[3] = (3*a[3]- 3*a[1]*a[2]+ (a[1])^(3))/3 |
Subscript[q, 3] == (3*Subscript[a, 3]- 3*Subscript[a, 1]*Subscript[a, 2]+ (Subscript[a, 1])^(3))/3 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9#Ex19 | p_{0} = 1 |
|
p[0] = 1 |
Subscript[p, 0] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9#Ex20 | p_{1} = \nu a_{1} |
|
p[1] = nu*a[1] |
Subscript[p, 1] == \[Nu]*Subscript[a, 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9#Ex21 | p_{2} = \nu((\nu-1)a_{1}^{2}+2a_{2})/2 |
|
p[2] = nu*((nu - 1)*(a[1])^(2)+ 2*a[2])/2 |
Subscript[p, 2] == \[Nu]*((\[Nu]- 1)*(Subscript[a, 1])^(2)+ 2*Subscript[a, 2])/2 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E63 | f^{(m)}(z) = \sum_{n=0}^{\infty}\Pochhammersym{n+1}{m}a_{n+m}(z-z_{0})^{n} |
(f(z))^(m) = sum(pochhammer(n + 1, m)*a[n + m]*(z - z[0])^(n), n = 0..infinity) |
(f[z])^(m) == Sum[Pochhammer[n + 1, m]*Subscript[a, n + m]*(z - Subscript[z, 0])^(n), {n, 0, Infinity}, GenerateConditions->None] |
Failure | Failure | Skipped - Because timed out | Skipped - Because timed out | |
1.9.E64 | |z_{m,n}-z| < \epsilon |
|
abs(z[m , n]- z) < epsilon |
Abs[Subscript[z, m , n]- z] < \[Epsilon] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E66 | z_{p,q} = \sum^{p}_{m=0}\sum^{q}_{n=0}\zeta_{m,n} |
|
z[p , q] = sum(sum(zeta[m , n], n = 0..q), m = 0..p) |
Subscript[z, p , q] == Sum[Sum[Subscript[\[Zeta], m , n], {n, 0, q}, GenerateConditions->None], {m, 0, p}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.9.E69 | \int^{b}_{a}\sum^{\infty}_{n=0}|f_{n}(t)|\diff{t} < \infty |
|
int(sum(abs(f[n](t)), n = 0..infinity), t = a..b) < infinity |
Integrate[Sum[Abs[Subscript[f, n][t]], {n, 0, Infinity}, GenerateConditions->None], {t, a, b}, GenerateConditions->None] < Infinity |
Missing Macro Error | Missing Macro Error | - | - |
1.9.E70 | \sum^{\infty}_{n=0}\int^{b}_{a}|f_{n}(t)|\diff{t} < \infty |
|
sum(int(abs(f[n](t)), t = a..b) , n = 0..infinity)< infinity |
Sum[Integrate[Abs[Subscript[f, n][t]], {t, a, b}, GenerateConditions->None] , {n, 0, Infinity}, GenerateConditions->None]< Infinity |
Missing Macro Error | Missing Macro Error | - | - |
1.9.E71 | \int^{b}_{a}\sum^{\infty}_{n=0}f_{n}(t)\diff{t} = \sum^{\infty}_{n=0}\int^{b}_{a}f_{n}(t)\diff{t} |
|
int(sum(f[n](t), n = 0..infinity), t = a..b) = sum(int(f[n](t), t = a..b), n = 0..infinity) |
Integrate[Sum[Subscript[f, n][t], {n, 0, Infinity}, GenerateConditions->None], {t, a, b}, GenerateConditions->None] == Sum[Integrate[Subscript[f, n][t], {t, a, b}, GenerateConditions->None], {n, 0, Infinity}, GenerateConditions->None] |
Successful | Aborted | - | Skipped - Because timed out |