Algebraic and Analytic Methods - 1.12 Continued Fractions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
1.12#Ex1 | A_{k} = b_{k}A_{k-1}+a_{k}A_{k-2} |
|
A[k] = b[k]*A[k - 1]+ a[k]*A[k - 2] |
Subscript[A, k] == Subscript[b, k]*Subscript[A, k - 1]+ Subscript[a, k]*Subscript[A, k - 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex2 | B_{k} = b_{k}B_{k-1}+a_{k}B_{k-2} |
|
B[k] = b[k]*B[k - 1]+ a[k]*B[k - 2] |
Subscript[B, k] == Subscript[b, k]*Subscript[B, k - 1]+ Subscript[a, k]*Subscript[B, k - 2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex3 | A_{-1} = 1 |
|
A[- 1] = 1 |
Subscript[A, - 1] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex4 | A_{0} = b_{0} |
|
A[0] = b[0] |
Subscript[A, 0] == Subscript[b, 0] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex5 | B_{-1} = 0 |
|
B[- 1] = 0 |
Subscript[B, - 1] == 0 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex6 | B_{0} = 1 |
|
B[0] = 1 |
Subscript[B, 0] == 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12.E7 | A_{n}B_{n-1}-B_{n}A_{n-1} = (-1)^{n-1}\prod^{n}_{k=1}a_{k} |
|
A[n]*B[n - 1]- B[n]*A[n - 1] = (- 1)^(n - 1)* product(a[k], k = 1..n) |
Subscript[A, n]*Subscript[B, n - 1]- Subscript[B, n]*Subscript[A, n - 1] == (- 1)^(n - 1)* Product[Subscript[a, k], {k, 1, n}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12.E8 | C_{n}-C_{n-1} = \frac{(-1)^{n-1}\prod^{n}_{k=1}a_{k}}{B_{n-1}B_{n}} |
|
C[n]- C[n - 1] = ((- 1)^(n - 1)* product(a[k], k = 1..n))/(B[n - 1]*B[n]) |
Subscript[C, n]- Subscript[C, n - 1] == Divide[(- 1)^(n - 1)* Product[Subscript[a, k], {k, 1, n}, GenerateConditions->None],Subscript[B, n - 1]*Subscript[B, n]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12.E10 | a_{n} = \frac{A_{n-1}B_{n}-A_{n}B_{n-1}}{A_{n-1}B_{n-2}-A_{n-2}B_{n-1}} |
|
a[n] = (A[n - 1]*B[n]- A[n]*B[n - 1])/(A[n - 1]*B[n - 2]- A[n - 2]*B[n - 1]) |
Subscript[a, n] == Divide[Subscript[A, n - 1]*Subscript[B, n]- Subscript[A, n]*Subscript[B, n - 1],Subscript[A, n - 1]*Subscript[B, n - 2]- Subscript[A, n - 2]*Subscript[B, n - 1]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12.E11 | a_{n} = \frac{B_{n}}{B_{n-2}}\frac{C_{n-1}-C_{n}}{C_{n-1}-C_{n-2}} |
|
a[n] = (B[n])/(B[n - 2])*(C[n - 1]- C[n])/(C[n - 1]- C[n - 2]) |
Subscript[a, n] == Divide[Subscript[B, n],Subscript[B, n - 2]]*Divide[Subscript[C, n - 1]- Subscript[C, n],Subscript[C, n - 1]- Subscript[C, n - 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12.E12 | b_{n} = \frac{A_{n}B_{n-2}-A_{n-2}B_{n}}{A_{n-1}B_{n-2}-A_{n-2}B_{n-1}} |
|
b[n] = (A[n]*B[n - 2]- A[n - 2]*B[n])/(A[n - 1]*B[n - 2]- A[n - 2]*B[n - 1]) |
Subscript[b, n] == Divide[Subscript[A, n]*Subscript[B, n - 2]- Subscript[A, n - 2]*Subscript[B, n],Subscript[A, n - 1]*Subscript[B, n - 2]- Subscript[A, n - 2]*Subscript[B, n - 1]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12.E13 | b_{n} = \frac{B_{n}}{B_{n-1}}\frac{C_{n}-C_{n-2}}{C_{n-1}-C_{n-2}} |
|
b[n] = (B[n])/(B[n - 1])*(C[n]- C[n - 2])/(C[n - 1]- C[n - 2]) |
Subscript[b, n] == Divide[Subscript[B, n],Subscript[B, n - 1]]*Divide[Subscript[C, n]- Subscript[C, n - 2],Subscript[C, n - 1]- Subscript[C, n - 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex7 | b_{0} = A_{0} |
|
b[0] = A[0] |
Subscript[b, 0] == Subscript[A, 0] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex8 | b_{1} = B_{1} |
|
b[1] = B[1] |
Subscript[b, 1] == Subscript[B, 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex9 | a_{1} = A_{1}-A_{0}B_{1} |
|
a[1] = A[1]- A[0]*B[1] |
Subscript[a, 1] == Subscript[A, 1]- Subscript[A, 0]*Subscript[B, 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex10 | C_{n}(w) = \frac{A_{n}+A_{n-1}w}{B_{n}+B_{n-1}w} |
|
C[n](w) = (A[n]+ A[n - 1]*w)/(B[n]+ B[n - 1]*w) |
Subscript[C, n][w] == Divide[Subscript[A, n]+ Subscript[A, n - 1]*w,Subscript[B, n]+ Subscript[B, n - 1]*w] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex13 | C_{0}\not = \infty |
|
C[0] <> infinity |
Subscript[C, 0] \[NotEqual]*Infinity |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12#Ex14 | C_{n}\not = C_{n-1} |
|
C[n] <> C[n - 1] |
Subscript[C, n] \[NotEqual]*Subscript[C, n - 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12.E25 | |b_{n}| \geq |a_{n}|+1 |
|
abs(b[n]) >= abs(a[n])+ 1 |
Abs[Subscript[b, n]] >= Abs[Subscript[a, n]]+ 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
1.12.E26 | -\tfrac{1}{2}\pi+\delta < \phase@@{b_{n}} |
|
-(1)/(2)*Pi + delta < argument(b[n])
|
-Divide[1,2]*Pi + \[Delta] < Arg[Subscript[b, n]]
|
Failure | Failure | Failed [27 / 300] Result: -.70796327e-1 < -1.047197551
Test Values: {delta = 1.5, b[n] = 1/2-1/2*I*3^(1/2), n = 1, n = 3}
Result: -.70796327e-1 < -1.047197551
Test Values: {delta = 1.5, b[n] = 1/2-1/2*I*3^(1/2), n = 2, n = 3}
Result: -.70796327e-1 < -1.047197551
Test Values: {delta = 1.5, b[n] = 1/2-1/2*I*3^(1/2), n = 3, n = 3}
Result: -.70796327e-1 < -2.617993878
Test Values: {delta = 1.5, b[n] = -1/2*3^(1/2)-1/2*I, n = 1, n = 3}
... skip entries to safe data |
Failed [49 / 100]
Result: Less[Complex[-0.7047709230104579, 0.49999999999999994], 0.5235987755982988]
Test Values: {Rule[n, 3], Rule[Ξ΄, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Less[Complex[-0.7047709230104579, 0.49999999999999994], 2.0943951023931953]
Test Values: {Rule[n, 3], Rule[Ξ΄, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.12.E26 | \phase@@{b_{n}} < \tfrac{1}{2}\pi-\delta |
|
argument(b[n]) < (1)/(2)*Pi - delta
|
Arg[Subscript[b, n]] < Divide[1,2]*Pi - \[Delta]
|
Failure | Failure | Failed [72 / 300] Result: 3.141592654 < 3.070796327
Test Values: {delta = -1.5, b[n] = -1.5, n = 1, n = 3}
Result: 3.141592654 < 3.070796327
Test Values: {delta = -1.5, b[n] = -1.5, n = 2, n = 3}
Result: 3.141592654 < 3.070796327
Test Values: {delta = -1.5, b[n] = -1.5, n = 3, n = 3}
Result: 3.141592654 < 3.070796327
Test Values: {delta = -1.5, b[n] = -.5, n = 1, n = 3}
... skip entries to safe data |
Failed [64 / 100]
Result: Less[0.5235987755982988, Complex[0.7047709230104579, -0.49999999999999994]]
Test Values: {Rule[n, 3], Rule[Ξ΄, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Less[2.0943951023931953, Complex[0.7047709230104579, -0.49999999999999994]]
Test Values: {Rule[n, 3], Rule[Ξ΄, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[b, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.12.E27 | -\tfrac{1}{2}\pi+\delta < \phase@@{C_{n}} |
|
-(1)/(2)*Pi + delta < argument(C[n])
|
-Divide[1,2]*Pi + \[Delta] < Arg[Subscript[C, n]]
|
Failure | Failure | Failed [27 / 300] Result: -.70796327e-1 < -1.047197551
Test Values: {delta = 1.5, C[n] = 1/2-1/2*I*3^(1/2), n = 1, n = 3}
Result: -.70796327e-1 < -1.047197551
Test Values: {delta = 1.5, C[n] = 1/2-1/2*I*3^(1/2), n = 2, n = 3}
Result: -.70796327e-1 < -1.047197551
Test Values: {delta = 1.5, C[n] = 1/2-1/2*I*3^(1/2), n = 3, n = 3}
Result: -.70796327e-1 < -2.617993878
Test Values: {delta = 1.5, C[n] = -1/2*3^(1/2)-1/2*I, n = 1, n = 3}
... skip entries to safe data |
Failed [49 / 100]
Result: Less[Complex[-0.7047709230104579, 0.49999999999999994], 0.5235987755982988]
Test Values: {Rule[n, 3], Rule[Ξ΄, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Less[Complex[-0.7047709230104579, 0.49999999999999994], 2.0943951023931953]
Test Values: {Rule[n, 3], Rule[Ξ΄, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.12.E27 | \phase@@{C_{n}} < \tfrac{1}{2}\pi-\delta |
|
argument(C[n]) < (1)/(2)*Pi - delta
|
Arg[Subscript[C, n]] < Divide[1,2]*Pi - \[Delta]
|
Failure | Failure | Failed [72 / 300] Result: 3.141592654 < 3.070796327
Test Values: {delta = -1.5, C[n] = -1.5, n = 1, n = 3}
Result: 3.141592654 < 3.070796327
Test Values: {delta = -1.5, C[n] = -1.5, n = 2, n = 3}
Result: 3.141592654 < 3.070796327
Test Values: {delta = -1.5, C[n] = -1.5, n = 3, n = 3}
Result: 3.141592654 < 3.070796327
Test Values: {delta = -1.5, C[n] = -.5, n = 1, n = 3}
... skip entries to safe data |
Failed [64 / 100]
Result: Less[0.5235987755982988, Complex[0.7047709230104579, -0.49999999999999994]]
Test Values: {Rule[n, 3], Rule[Ξ΄, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Less[2.0943951023931953, Complex[0.7047709230104579, -0.49999999999999994]]
Test Values: {Rule[n, 3], Rule[Ξ΄, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[C, n], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
1.12.E28 | \sum^{\infty}_{n=1}|b_{n}| = \infty |
|
sum(abs(b[n]), n = 1..infinity) = infinity |
Sum[Abs[Subscript[b, n]], {n, 1, Infinity}, GenerateConditions->None] == Infinity |
Skipped - no semantic math | Skipped - no semantic math | - | - |