Asymptotic Approximations - 2.8 Differential Equations with a Parameter
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
2.8#Ex2 | \xi = \int f^{1/2}(z)\diff{z} |
|
xi = int((f(z))^(1/2), z)
|
\[Xi] == Integrate[(f[z])^(1/2), z, GenerateConditions->None]
|
Failure | Failure | Error | Failed [100 / 100]
Result: Plus[Complex[0.8660254037844387, 0.49999999999999994], Times[Complex[-0.48296291314453416, -0.12940952255126037], Power[z, 2]]]
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-0.4999999999999998, 0.8660254037844387], Times[Complex[-0.48296291314453416, -0.12940952255126037], Power[z, 2]]]
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
2.8#Ex4 | \tfrac{2}{3}\xi^{3/2} = \int_{z_{0}}^{z}f^{1/2}(t)\diff{t} |
|
(2)/(3)*(xi)^(3/2) = int((f(t))^(1/2), t = z[0]..z)
|
Divide[2,3]*\[Xi]^(3/2) == Integrate[(f[t])^(1/2), {t, Subscript[z, 0], z}, GenerateConditions->None]
|
Failure | Failure | Failed [300 / 300] Result: .4714045210+.4714045209*I
Test Values: {f = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, z[0] = 1/2*3^(1/2)+1/2*I}
Result: .2125854754-.4945213056*I
Test Values: {f = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, z[0] = -1/2+1/2*I*3^(1/2)}
Result: .2125854754-.4945213056*I
Test Values: {f = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, z[0] = 1/2-1/2*I*3^(1/2)}
Result: .4714045210+.4714045209*I
Test Values: {f = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, z[0] = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.4714045207910317, 0.4714045207910316]
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.21258547568851094, -0.4945213054980366]
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
2.8#Ex6 | 2\xi^{1/2} = \int_{z_{0}}^{z}f^{1/2}(t)\diff{t} |
|
2*(xi)^(1/2) = int((f(t))^(1/2), t = z[0]..z)
|
2*\[Xi]^(1/2) == Integrate[(f[t])^(1/2), {t, Subscript[z, 0], z}, GenerateConditions->None]
|
Failure | Failure | Failed [300 / 300] Result: 1.931851653+.5176380902*I
Test Values: {f = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, z[0] = 1/2*3^(1/2)+1/2*I}
Result: 1.673032607-.4482877363*I
Test Values: {f = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, z[0] = -1/2+1/2*I*3^(1/2)}
Result: 1.673032607-.4482877363*I
Test Values: {f = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, z[0] = 1/2-1/2*I*3^(1/2)}
Result: 1.931851653+.5176380902*I
Test Values: {f = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, z[0] = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.9318516525781366, 0.5176380902050415]
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.6730326074756159, -0.4482877360840267]
Test Values: {Rule[f, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
2.8.E8 | \ideriv[2]{W}{\xi} = \left(u^{2}\xi^{m}+\psi(\xi)\right)W |
|
diff(W, [xi$(2)]) = ((u)^(2)* (xi)^(m)+ psi(xi))*W
|
D[W, {\[Xi], 2}] == ((u)^(2)* \[Xi]^(m)+ \[Psi][\[Xi]])*W
|
Failure | Failure | Failed [300 / 300] Result: .4999999999-1.866025406*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, m = 1}
Result: .8660254042-1.500000002*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, m = 2}
Result: 1.000000001-1.000000001*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I, m = 3}
Result: 1.866025406+.4999999999*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = -1/2+1/2*I*3^(1/2), m = 1}
... skip entries to safe data |
Failed [296 / 300]
Result: Complex[0.4999999999999997, -1.8660254037844388]
Test Values: {Rule[m, 1], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ψ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.8660254037844382, -1.5000000000000002]
Test Values: {Rule[m, 2], Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ψ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
2.8.E9 | \deriv[2]{W}{\xi} = \left(\frac{u^{2}}{\xi}+\frac{\rho}{\xi^{2}}\right)W |
|
diff(W, [xi$(2)]) = (((u)^(2))/(xi)+(rho)/((xi)^(2)))*W
|
D[W, {\[Xi], 2}] == (Divide[(u)^(2),\[Xi]]+Divide[\[Rho],\[Xi]^(2)])*W
|
Failure | Failure | Failed [300 / 300] Result: -1.500000001-.8660254042*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, rho = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I}
Result: .1339745960+.5000000004*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, rho = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = -1/2+1/2*I*3^(1/2)}
Result: 1.866025404-.5000000004*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, rho = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2-1/2*I*3^(1/2)}
Result: -.4999999996+.8660254040*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, rho = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-1.5000000000000002, -0.8660254037844386]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ρ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.5000000000000004, -1.8660254037844388]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ρ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
2.8.E10 | \ideriv[2]{W}{\xi} = (u^{2}+\psi(\xi))W |
|
diff(W, [xi$(2)]) = ((u)^(2)+ psi(xi))*W
|
D[W, {\[Xi], 2}] == ((u)^(2)+ \[Psi][\[Xi]])*W
|
Failure | Failure | Failed [288 / 300] Result: -.6467477718e-9-2.000000002*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I}
Result: 1.000000000-1.000000001*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = -1/2+1/2*I*3^(1/2)}
Result: -1.000000001-1.000000000*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2-1/2*I*3^(1/2)}
Result: .7500000002+.2990381054*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = -1.5}
... skip entries to safe data |
Failed [288 / 300]
Result: Complex[0.0, -2.0]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ψ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.9999999999999998, -1.0000000000000002]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ψ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
2.8.E14 | \ideriv[2]{W}{\xi} = (u^{2}\xi+\psi(\xi))W |
|
diff(W, [xi$(2)]) = ((u)^(2)* xi + psi(xi))*W
|
D[W, {\[Xi], 2}] == ((u)^(2)* \[Xi]+ \[Psi][\[Xi]])*W
|
Failure | Failure | Failed [300 / 300] Result: .4999999999-1.866025406*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I}
Result: 1.866025406+.4999999999*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = -1/2+1/2*I*3^(1/2)}
Result: -1.866025406-.4999999999*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2-1/2*I*3^(1/2)}
Result: -.4999999999+1.866025406*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.4999999999999997, -1.8660254037844388]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ψ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.5, -0.8660254037844387]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ψ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
2.8.E19 | \AiryAi@{x} = \AiryBi@{x} |
|
AiryAi(x) = AiryBi(x)
|
AiryAi[x] == AiryBi[x]
|
Failure | Failure | Failed [3 / 3] Result: -1.807192007
Test Values: {x = 1.5}
Result: -.6225834366
Test Values: {x = .5}
Result: -3.263170870
Test Values: {x = 2}
|
Failed [3 / 3]
Result: -1.8071920067397889
Test Values: {Rule[x, 1.5]}
Result: -0.622583436622322
Test Values: {Rule[x, 0.5]}
... skip entries to safe data |
2.8.E24 | \deriv[2]{W}{\xi} = \left(\frac{u^{2}}{4\xi}+\frac{\nu^{2}-1}{4\xi^{2}}+\frac{\psi(\xi)}{\xi}\right)W |
|
diff(W, [xi$(2)]) = (((u)^(2))/(4*xi)+((nu)^(2)- 1)/(4*(xi)^(2))+(psi(xi))/(xi))*W
|
D[W, {\[Xi], 2}] == (Divide[(u)^(2),4*\[Xi]]+Divide[\[Nu]^(2)- 1,4*\[Xi]^(2)]+Divide[\[Psi][\[Xi]],\[Xi]])*W
|
Failure | Failure | Failed [300 / 300] Result: -.6250000006-1.332531755*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2*3^(1/2)+1/2*I}
Result: -.7165063513-.4910254040*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = -1/2+1/2*I*3^(1/2)}
Result: -.2834936493-.7410254042*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = 1/2-1/2*I*3^(1/2)}
Result: -.3750000004-.8995190529*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, nu = 1/2*3^(1/2)+1/2*I, psi = 1/2*3^(1/2)+1/2*I, u = 1/2*3^(1/2)+1/2*I, xi = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.6250000000000002, -1.3325317547305482]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ψ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.7410254037844384, -0.9665063509461098]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ψ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
2.8.E32 | \BesselJ{\nu}(x)+\BesselY{\nu}(x) = 0 |
|
BesselJ(nu, x)+ BesselY(nu, (x) ) = 0
|
BesselJ[\[Nu], x]+ BesselY[\[Nu], (x) ] == 0
|
Translation Error | Translation Error | - | - |