Numerical Methods - 4.2 Definitions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.2.E1 | \Ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t} |
ln(z) = int((1)/(t), t = 1..z)
|
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
4.2.E2 | \ln@@{z} = \int_{1}^{z}\frac{\diff{t}}{t} |
|
ln(z) = int((1)/(t), t = 1..z)
|
Log[z] == Integrate[Divide[1,t], {t, 1, z}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.2.E3 | \ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z} |
ln(z) = ln(abs(z))+ I*argument(z)
|
Log[z] == Log[Abs[z]]+ I*Arg[z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
4.2.E4 | z = x |
(x + y*I) = x |
(x + y*I) == x |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.2.E5 | \ln@@{z} = \ln@@{\abs{z}}+\iunit\phase@@{z} |
ln(z) = ln(abs(z))+ I*argument(z)
|
Log[z] == Log[Abs[z]]+ I*Arg[z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
4.2.E6 | \Ln@@{z} = \ln@@{z}+2k\pi\iunit |
|
ln(z) = ln(z)+ 2*k*Pi*I
|
Log[z] == Log[z]+ 2*k*Pi*I
|
Failure | Failure | Failed [21 / 21] Result: -6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1}
Result: -12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2}
Result: -18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3}
Result: -6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1}
... skip entries to safe data |
Failed [21 / 21]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
4.2.E7 | \ln@{x+\iunit 0} = \ln@@{|x|}+ i\pi |
ln(x + I*0) = ln(abs(x))+ I*Pi
|
Log[x + I*0] == Log[Abs[x]]+ I*Pi
|
Failure | Successful | Error | Skip - symbolical successful subtest | |
4.2.E7 | \ln@{x-\iunit 0} = \ln@@{|x|}- i\pi |
ln(x - I*0) = ln(abs(x))- I*Pi
|
Log[x - I*0] == Log[Abs[x]]- I*Pi
|
Failure | Failure | Error | Skip - No test values generated | |
4.2.E8 | \genlog{a}@@{z} = \ifrac{\ln@@{z}}{\ln@@{a}} |
|
log[a](z) = (ln(z))/(ln(a))
|
Log[a,z] == Divide[Log[z],Log[a]]
|
Successful | Successful | - | Successful [Tested: 42] |
4.2.E9 | \genlog{a}@@{z} = \frac{\genlog{b}@@{z}}{\genlog{b}@@{a}} |
|
log[a](z) = (log[b](z))/(log[b](a))
|
Log[a,z] == Divide[Log[b,z],Log[b,a]]
|
Successful | Successful | - | Successful [Tested: 252] |
4.2.E10 | \genlog{a}@@{b} = \frac{1}{\genlog{b}@@{a}} |
|
log[a](b) = (1)/(log[b](a))
|
Log[a,b] == Divide[1,Log[b,a]]
|
Successful | Successful | - | Successful [Tested: 36] |
4.2.E11 | e = 2.71828\ 18284\ 59045\ 23536\dots |
|
exp(1) = 2.71828182845904523536
|
E == 2.71828182845904523536
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E12 | \ln@@{e} = 1 |
|
ln(exp(1)) = 1
|
Log[E] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E13 | \int_{1}^{e}\frac{\diff{t}}{t} = 1 |
|
int((1)/(t), t = 1..exp(1)) = 1
|
Integrate[Divide[1,t], {t, 1, E}, GenerateConditions->None] == 1
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E14 | \genlog{e}@@{z} = \ln@@{z} |
|
log[exp(1)](z) = ln(z)
|
Log[E,z] == Log[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E15 | \genlog{10}@@{z} = \ifrac{(\ln@@{z})}{(\ln@@{10})} |
|
log[10](z) = (ln(z))/(ln(10))
|
Log[10,z] == Divide[Log[z],Log[10]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E15 | \ifrac{(\ln@@{z})}{(\ln@@{10})} = (\genlog{10}@@{e})\ln@@{z} |
|
(ln(z))/(ln(10)) = (log[10](exp(1)))*ln(z)
|
Divide[Log[z],Log[10]] == (Log[10,E])*Log[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E16 | \ln@@{z} = (\ln@@{10})\genlog{10}@@{z} |
|
ln(z) = (ln(10))*log[10](z)
|
Log[z] == (Log[10])*Log[10,z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E17 | \genlog{10}@@{e} = 0.43429\ 44819\ 03251\ 82765\dots |
|
log[10](exp(1)) = 0.43429448190325182765
|
Log[10,E] == 0.43429448190325182765
|
Failure | Successful | Successful [Tested: 0] | Successful [Tested: 1] |
4.2.E18 | \ln@@{10} = 2.30258\ 50929\ 94045\ 68401\dots |
|
ln(10) = 2.30258509299404568401
|
Log[10] == 2.30258509299404568401
|
Successful | Successful | - | Successful [Tested: 1] |
4.2.E20 | \exp@{z+2\pi i} = \exp@@{z} |
|
exp(z + 2*Pi*I) = exp(z)
|
Exp[z + 2*Pi*I] == Exp[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E21 | \exp@{-z} = 1/\exp@{z} |
|
exp(- z) = 1/exp(z)
|
Exp[- z] == 1/Exp[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E22 | |\exp@@{z}| = \exp@{\realpart@@{z}} |
|
abs(exp(z)) = exp(Re(z))
|
Abs[Exp[z]] == Exp[Re[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.2.E23 | \phase@{\exp@@{z}} = \imagpart@@{z}+2k\pi |
|
argument(exp(z)) = Im(z)+ 2*k*Pi
|
Arg[Exp[z]] == Im[z]+ 2*k*Pi
|
Failure | Failure | Failed [21 / 21] Result: -6.283185308
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}
Result: -12.56637062
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}
Result: -18.84955592
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}
Result: -6.283185308
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}
... skip entries to safe data |
Failed [7 / 7]
Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: -18.84955592153876
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.2.E24 | \exp@@{z} = e^{x}\cos@@{y}+ie^{x}\sin@@{y} |
|
exp(x + y*I) = exp(x)*cos(y)+ I*exp(x)*sin(y)
|
Exp[x + y*I] == Exp[x]*Cos[y]+ I*Exp[x]*Sin[y]
|
Successful | Successful | - | Successful [Tested: 18] |
4.2.E26 | z^{a} = \exp@{a\Ln@@{z}} |
(z)^(a) = exp(a*ln(z))
|
(z)^(a) == Exp[a*Log[z]]
|
Successful | Successful | - | Successful [Tested: 42] | |
4.2.E28 | z^{a} = \exp@{a\ln@@{z}} |
|
(z)^(a) = exp(a*ln(z))
|
(z)^(a) == Exp[a*Log[z]]
|
Successful | Successful | - | Successful [Tested: 42] |
4.2.E29 | |z^{a}| = |z|^{\realpart@@{a}}\exp@{-(\imagpart@@{a})\phase@@{z}} |
|
abs((z)^(a)) = (abs(z))^(Re(a))* exp(-(Im(a))*argument(z))
|
Abs[(z)^(a)] == (Abs[z])^(Re[a])* Exp[-(Im[a])*Arg[z]]
|
Failure | Failure | Successful [Tested: 42] | Successful [Tested: 42] |
4.2.E30 | \phase@{z^{a}} = (\realpart@@{a})\phase@@{z}+(\imagpart@@{a})\ln@@{|z|} |
|
argument((z)^(a)) = (Re(a))*argument(z)+(Im(a))*ln(abs(z))
|
Arg[(z)^(a)] == (Re[a])*Arg[z]+(Im[a])*Log[Abs[z]]
|
Failure | Failure | Failed [6 / 42] Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I}
Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}
Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}
Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
4.2#Ex1 | |z^{a}| = |z|^{a} |
|
abs((z)^(a)) = (abs(z))^(a) |
Abs[(z)^(a)] == (Abs[z])^(a) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.2#Ex2 | \phase@{z^{a}} = a\phase@@{z} |
|
argument((z)^(a)) = a*argument(z) |
Arg[(z)^(a)] == a*Arg[z] |
Failure | Failure | Failed [6 / 42] Result: -6.283185308
Test Values: {a = -1.5, z = -1/2*3^(1/2)-1/2*I} Result: 6.283185308
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I} Result: 6.283185307
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)} Result: -6.283185309
Test Values: {a = -2, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [6 / 42]
Result: -6.283185307179586
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: 6.283185307179586
Test Values: {Rule[a, 1.5], Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} ... skip entries to safe data |
4.2.E32 | e^{z} = \exp@@{z} |
|
exp(z) = exp(z) |
Exp[z] == Exp[z] |
Successful | Successful | - | Successful [Tested: 7] |
4.2.E33 | e^{z} = (\exp@@{z})\exp@{2kz\pi\iunit} |
|
exp(z) = (exp(z))*exp(2*k*z*Pi*I) |
Exp[z] == (Exp[z])*Exp[2*k*z*Pi*I] |
Failure | Failure | Failed [16 / 21] Result: 1.989606315+1.174241786*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3} Result: 2.084725711+1.143917762*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3} Result: 2.086486474+1.139979111*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3} Result: .3946493584+.4640329579*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3} ... skip entries to safe data |
Failed [6 / 7]
Result: Complex[2.0864864733305994, 1.139979110702337]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.3929465878104918, 0.4620308216689905]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.2.E36 | -\pi \leq \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} |
|
- Pi <= Im((1)/(a)*ln(w)) |
- Pi <= Im[Divide[1,a]*Log[w]] |
Failure | Failure | Failed [5 / 60] Result: -3.141592654 <= -4.188790204
Test Values: {a = -.5, w = -1/2+1/2*I*3^(1/2)} Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -1.5} Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -.5} Result: -3.141592654 <= -6.283185308
Test Values: {a = -.5, w = -2} ... skip entries to safe data |
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} Result: False
Test Values: {Rule[a, -0.5], Rule[w, -1.5]} ... skip entries to safe data |
4.2.E36 | \imagpart@@{\left(\frac{1}{a}\Ln@@{w}\right)} \leq \pi |
|
Im((1)/(a)*ln(w)) <= Pi |
Im[Divide[1,a]*Log[w]] <= Pi |
Failure | Failure | Failed [5 / 60] Result: 5.235987758 <= 3.141592654
Test Values: {a = -.5, w = -1/2*3^(1/2)-1/2*I} Result: 4.188790204 <= 3.141592654
Test Values: {a = .5, w = -1/2+1/2*I*3^(1/2)} Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -1.5} Result: 6.283185308 <= 3.141592654
Test Values: {a = .5, w = -.5} ... skip entries to safe data |
Failed [5 / 60]
Result: False
Test Values: {Rule[a, -0.5], Rule[w, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: False
Test Values: {Rule[a, 0.5], Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |