Elementary Functions - 4.8 Identities
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.8.E1 | \Ln@{z_{1}z_{2}} = \Ln@@{z_{1}}+\Ln@@{z_{2}} |
|
ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])
|
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]
|
Failure | Failure | Failed [25 / 100] Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -1.5}
Result: 0.-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -.5}
Result: -.1e-9-6.283185308*I
Test Values: {z[1] = 1/2*3^(1/2)+1/2*I, z[2] = -2}
Result: .133199999e-10-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -1.5]}
Result: Complex[0.0, -6.283185307179587]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[z, 2], -0.5]}
... skip entries to safe data |
4.8.E2 | \ln@{z_{1}z_{2}} = \ln@@{z_{1}}+\ln@@{z_{2}} |
ln(z[1]*z[2]) = ln(z[1])+ ln(z[2])
|
Log[Subscript[z, 1]*Subscript[z, 2]] == Log[Subscript[z, 1]]+ Log[Subscript[z, 2]]
|
Failure | Failure | Successful [Tested: 59] | Successful [Tested: 75] | |
4.8.E3 | \Ln@@{\frac{z_{1}}{z_{2}}} = \Ln@@{z_{1}}-\Ln@@{z_{2}} |
|
ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])
|
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]
|
Failure | Failure | Failed [25 / 100] Result: 0.-6.283185307*I
Test Values: {z[1] = -1/2+1/2*I*3^(1/2), z[2] = -1/2*3^(1/2)-1/2*I}
Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}
Result: .1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1.5}
Result: -.1e-9+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -.5}
... skip entries to safe data |
Failed [25 / 100]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.8.E4 | \ln@@{\frac{z_{1}}{z_{2}}} = \ln@@{z_{1}}-\ln@@{z_{2}} |
ln((z[1])/(z[2])) = ln(z[1])- ln(z[2])
|
Log[Divide[Subscript[z, 1],Subscript[z, 2]]] == Log[Subscript[z, 1]]- Log[Subscript[z, 2]]
|
Failure | Failure | Failed [3 / 70] Result: 0.+6.283185307*I
Test Values: {z[1] = 1/2-1/2*I*3^(1/2), z[2] = -1/2+1/2*I*3^(1/2)}
Result: 0.+6.283185308*I
Test Values: {z[1] = -1/2*3^(1/2)-1/2*I, z[2] = 1/2*3^(1/2)+1/2*I}
Result: 6.283185308*I
Test Values: {z[1] = 2, z[2] = -2}
|
Failed [11 / 86]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[Subscript[z, 1], Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[Subscript[z, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
4.8.E5 | \Ln@{z^{n}} = n\Ln@@{z} |
|
ln((z)^(n)) = n*ln(z)
|
Log[(z)^(n)] == n*Log[z]
|
Failure | Failure | Failed [5 / 21] Result: .133199999e-10-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2, n = 3}
Result: .4399599996e-9-6.283185306*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 3, n = 3}
Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}
Result: .133199999e-10+6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, n = 2, n = 3}
... skip entries to safe data |
Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data |
4.8.E6 | \ln@{z^{n}} = n\ln@@{z} |
ln((z)^(n)) = n*ln(z)
|
Log[(z)^(n)] == n*Log[z]
|
Failure | Failure | Failed [1 / 17] Result: .4399599996e-9+6.283185306*I
Test Values: {z = 1/2-1/2*I*3^(1/2), n = 3, n = 3}
|
Failed [3 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data | |
4.8.E7 | \ln@@{\frac{1}{z}} = -\ln@@{z} |
ln((1)/(z)) = - ln(z)
|
Log[Divide[1,z]] == - Log[z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
4.8.E8 | \Ln@{\exp@@{z}} = z+2k\pi\iunit |
|
ln(exp(z)) = z + 2*k*Pi*I
|
Log[Exp[z]] == z + 2*k*Pi*I
|
Failure | Failure | Failed [21 / 21] Result: -.1e-9-6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}
Result: -.1e-9-12.56637062*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}
Result: -.1e-9-18.84955592*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}
Result: 0.-6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}
... skip entries to safe data |
Failed [7 / 7]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.8.E9 | \ln@{\exp@@{z}} = z |
ln(exp(z)) = z
|
Log[Exp[z]] == z
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
4.8.E10 | \exp@{\ln@@{z}} = \exp@{\Ln@@{z}} |
|
exp(ln(z)) = exp(ln(z))
|
Exp[Log[z]] == Exp[Log[z]]
|
Successful | Successful | - | Successful [Tested: 7] |
4.8.E10 | \exp@{\Ln@@{z}} = z |
|
exp(ln(z)) = z
|
Exp[Log[z]] == z
|
Successful | Successful | - | Successful [Tested: 7] |
4.8.E11 | \Ln@{a^{z}} = z\Ln@@{a}+2k\pi\iunit |
|
ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I
|
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I
|
Failure | Failure | Failed [126 / 126] Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1, k = 3}
Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2, k = 3}
Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3, k = 3}
Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1, k = 3}
... skip entries to safe data |
Failed [42 / 42]
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, -18.84955592153876]
Test Values: {Rule[a, -1.5], Rule[k, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.8.E12 | \ln@{a^{z}} = z\ln@@{a}+2k\pi\iunit |
|
ln((a)^(z)) = z*ln(a)+ 2*k*Pi*I
|
Log[(a)^(z)] == z*Log[a]+ 2*k*Pi*I
|
Failure | Failure | Failed [126 / 126] Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 1}
Result: 0.-12.56637062*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 2}
Result: 0.-18.84955592*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I, k = 3}
Result: 0.-6.283185308*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2), k = 1}
... skip entries to safe data |
Failed [126 / 126]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[a, -1.5], Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[a, -1.5], Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
4.8.E13 | \ln@{a^{x}} = x\ln@@{a} |
ln((a)^(x)) = x*ln(a)
|
Log[(a)^(x)] == x*Log[a]
|
Successful | Failure | - | Successful [Tested: 9] | |
4.8.E14 | a^{z_{1}}a^{z_{2}} = a^{z_{1}+z_{2}} |
(a)^(z[1])* (a)^(z[2]) = (a)^(z[1]+ z[2]) |
(a)^(Subscript[z, 1])* (a)^(Subscript[z, 2]) == (a)^(Subscript[z, 1]+ Subscript[z, 2]) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.8.E15 | a^{z}b^{z} = (ab)^{z} |
(a)^(z)* (b)^(z) = (a*b)^(z) |
(a)^(z)* (b)^(z) == (a*b)^(z) |
Skipped - no semantic math | Skipped - no semantic math | - | - | |
4.8.E16 | e^{z_{1}}e^{z_{2}} = e^{z_{1}+z_{2}} |
|
exp(z[1])*exp(z[2]) = exp(z[1]+ z[2]) |
Exp[Subscript[z, 1]]*Exp[Subscript[z, 2]] == Exp[Subscript[z, 1]+ Subscript[z, 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.8.E17 | (e^{z_{1}})^{z_{2}} = e^{z_{1}z_{2}} |
(exp(z[1]))^(z[2]) = exp(z[1]*z[2]) |
(Exp[Subscript[z, 1]])^(Subscript[z, 2]) == Exp[Subscript[z, 1]*Subscript[z, 2]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |