Elementary Functions - 4.23 Inverse Trigonometric Functions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.23.E1 | \Asin@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1-t^{2})^{1/2}} |
|
Error
|
ArcSin[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, 0, z}, GenerateConditions->None]
|
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.23.E2 | \Acos@@{z} = \int_{z}^{1}\frac{\diff{t}}{(1-t^{2})^{1/2}} |
|
Error
|
ArcCos[z] == Integrate[Divide[1,(1 - (t)^(2))^(1/2)], {t, z, 1}, GenerateConditions->None]
|
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.23.E3 | \Atan@@{z} = \int_{0}^{z}\frac{\diff{t}}{1+t^{2}} |
|
Error
|
ArcTan[z] == Integrate[Divide[1,1 + (t)^(2)], {t, 0, z}, GenerateConditions->None]
|
Missing Macro Error | Successful | - | Successful [Tested: 1] |
4.23.E4 | \Acsc@@{z} = \Asin@{1/z} |
|
Error
|
ArcCsc[z] == ArcSin[1/z]
|
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.23.E5 | \Asec@@{z} = \Acos@{1/z} |
|
Error
|
ArcSec[z] == ArcCos[1/z]
|
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.23.E6 | \Acot@@{z} = \Atan@{1/z} |
|
Error
|
ArcCot[z] == ArcTan[1/z]
|
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.23.E7 | \acsc@@{z} = \asin@{1/z} |
|
arccsc(z) = arcsin(1/z)
|
ArcCsc[z] == ArcSin[1/z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E8 | \asec@@{z} = \acos@{1/z} |
|
arcsec(z) = arccos(1/z)
|
ArcSec[z] == ArcCos[1/z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E9 | \acot@@{z} = \atan@{1/z} |
|
arccot(z) = arctan(1/z)
|
ArcCot[z] == ArcTan[1/z]
|
Failure | Successful | Failed [2 / 7] Result: 3.141592654+0.*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}
Result: 3.141592654+0.*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}
|
Successful [Tested: 1] |
4.23.E10 | \asin@{-z} = -\asin@@{z} |
|
arcsin(- z) = - arcsin(z)
|
ArcSin[- z] == - ArcSin[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.23.E11 | \acos@{-z} = \pi-\acos@@{z} |
|
arccos(- z) = Pi - arccos(z)
|
ArcCos[- z] == Pi - ArcCos[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.23.E12 | \atan@{-z} = -\atan@@{z} |
|
arctan(- z) = - arctan(z)
|
ArcTan[- z] == - ArcTan[z]
|
Successful | Successful | - | Successful [Tested: 1] |
4.23.E13 | \acsc@{-z} = -\acsc@@{z} |
|
arccsc(- z) = - arccsc(z)
|
ArcCsc[- z] == - ArcCsc[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.23.E14 | \asec@{-z} = \pi-\asec@@{z} |
|
arcsec(- z) = Pi - arcsec(z)
|
ArcSec[- z] == Pi - ArcSec[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.23.E15 | \acot@{-z} = -\acot@@{z} |
|
arccot(- z) = - arccot(z)
|
ArcCot[- z] == - ArcCot[z]
|
Failure | Successful | Skip - No test values generated | Successful [Tested: 1] |
4.23.E16 | \acos@@{z} = \tfrac{1}{2}\pi-\asin@@{z} |
|
arccos(z) = (1)/(2)*Pi - arcsin(z)
|
ArcCos[z] == Divide[1,2]*Pi - ArcSin[z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E17 | \asec@@{z} = \tfrac{1}{2}\pi-\acsc@@{z} |
|
arcsec(z) = (1)/(2)*Pi - arccsc(z)
|
ArcSec[z] == Divide[1,2]*Pi - ArcCsc[z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E18 | \acot@@{z} = +\tfrac{1}{2}\pi-\atan@@{z} |
|
arccot(z) = +(1)/(2)*Pi - arctan(z)
|
ArcCot[z] == +Divide[1,2]*Pi - ArcTan[z]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 1] |
4.23.E18 | \acot@@{z} = -\tfrac{1}{2}\pi-\atan@@{z} |
|
arccot(z) = -(1)/(2)*Pi - arctan(z)
|
ArcCot[z] == -Divide[1,2]*Pi - ArcTan[z]
|
Failure | Failure | Failed [7 / 7] Result: 3.141592654+0.*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}
Result: 3.141592654+0.*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}
Result: 3.141592654+0.*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}
Result: 3.141592654+0.*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}
... skip entries to safe data |
Failed [1 / 1]
Result: 3.141592653589793
Test Values: {Rule[z, Rational[1, 2]]}
|
4.23.E19 | \asin@@{z} = -i\ln@{(1-z^{2})^{1/2}+iz} |
|
arcsin(z) = - I*ln((1 - (z)^(2))^(1/2)+ I*z)
|
ArcSin[z] == - I*Log[(1 - (z)^(2))^(1/2)+ I*z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E20 | \asin@@{x} = \tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}+x} |
|
arcsin(x) = (1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)+ x)
|
ArcSin[x] == Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)+ x]
|
Failure | Failure | Failed [2 / 3] Result: 0.-1.924847300*I
Test Values: {x = 1.5, x = 3/2}
Result: 0.-2.633915794*I
Test Values: {x = 2, x = 3/2}
|
Failed [1 / 1]
Result: Complex[0.0, -1.9248473002384139]
Test Values: {Rule[x, Rational[3, 2]]}
|
4.23.E20 | \asin@@{x} = \tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}+x} |
|
arcsin(x) = (1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)+ x)
|
ArcSin[x] == Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)+ x]
|
Failure | Failure | Failed [1 / 3] Result: -2.094395102+.1347500000e-10*I
Test Values: {x = .5, x = 3/2}
|
Successful [Tested: 1] |
4.23.E21 | \asin@@{x} = -\tfrac{1}{2}\pi+ i\ln@{(x^{2}-1)^{1/2}-x} |
|
arcsin(x) = -(1)/(2)*Pi + I*ln(((x)^(2)- 1)^(1/2)- x)
|
ArcSin[x] == -Divide[1,2]*Pi + I*Log[((x)^(2)- 1)^(1/2)- x]
|
Failure | Failure | Failed [3 / 3] Result: 6.283185308+.7e-9*I
Test Values: {x = 1.5, x = -2}
Result: 4.188790205-.1347500000e-10*I
Test Values: {x = .5, x = -2}
Result: 6.283185308+.2e-8*I
Test Values: {x = 2, x = -2}
|
Successful [Tested: 1] |
4.23.E21 | \asin@@{x} = -\tfrac{1}{2}\pi- i\ln@{(x^{2}-1)^{1/2}-x} |
|
arcsin(x) = -(1)/(2)*Pi - I*ln(((x)^(2)- 1)^(1/2)- x)
|
ArcSin[x] == -Divide[1,2]*Pi - I*Log[((x)^(2)- 1)^(1/2)- x]
|
Failure | Failure | Failed [2 / 3] Result: 0.-1.924847301*I
Test Values: {x = 1.5, x = -2}
Result: 0.-2.633915796*I
Test Values: {x = 2, x = -2}
|
Failed [1 / 1]
Result: Complex[0.0, 2.633915793849633]
Test Values: {Rule[x, -2]}
|
4.23.E22 | \acos@@{z} = \tfrac{1}{2}\pi+i\ln@{(1-z^{2})^{1/2}+iz} |
|
arccos(z) = (1)/(2)*Pi + I*ln((1 - (z)^(2))^(1/2)+ I*z)
|
ArcCos[z] == Divide[1,2]*Pi + I*Log[(1 - (z)^(2))^(1/2)+ I*z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E23 | \acos@@{z} = -2i\ln@{\left(\frac{1+z}{2}\right)^{1/2}+i\left(\frac{1-z}{2}\right)^{1/2}} |
|
arccos(z) = - 2*I*ln(((1 + z)/(2))^(1/2)+ I*((1 - z)/(2))^(1/2))
|
ArcCos[z] == - 2*I*Log[(Divide[1 + z,2])^(1/2)+ I*(Divide[1 - z,2])^(1/2)]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E24 | \acos@@{x} = - i\ln@{(x^{2}-1)^{1/2}+x} |
|
arccos(x) = - I*ln(((x)^(2)- 1)^(1/2)+ x)
|
ArcCos[x] == - I*Log[((x)^(2)- 1)^(1/2)+ x]
|
Failure | Failure | Failed [2 / 3] Result: 1.924847300*I
Test Values: {x = 1.5, x = 3/2}
Result: 2.633915794*I
Test Values: {x = 2, x = 3/2}
|
Failed [1 / 1]
Result: Complex[0.0, 1.9248473002384139]
Test Values: {Rule[x, Rational[3, 2]]} |
4.23.E24 | \acos@@{x} = + i\ln@{(x^{2}-1)^{1/2}+x} |
|
arccos(x) = + I*ln(((x)^(2)- 1)^(1/2)+ x) |
ArcCos[x] == + I*Log[((x)^(2)- 1)^(1/2)+ x] |
Failure | Failure | Failed [1 / 3] Result: 2.094395102-.1347500000e-10*I
Test Values: {x = .5, x = 3/2} |
Successful [Tested: 1] |
4.23.E25 | \acos@@{x} = \pi- i\ln@{(x^{2}-1)^{1/2}-x} |
|
arccos(x) = Pi - I*ln(((x)^(2)- 1)^(1/2)- x) |
ArcCos[x] == Pi - I*Log[((x)^(2)- 1)^(1/2)- x] |
Failure | Failure | Failed [3 / 3] Result: -6.283185308-.7e-9*I
Test Values: {x = 1.5, x = -2} Result: -4.188790205+.1347500000e-10*I
Test Values: {x = .5, x = -2} Result: -6.283185308-.2e-8*I
Test Values: {x = 2, x = -2} |
Successful [Tested: 1] |
4.23.E25 | \acos@@{x} = \pi+ i\ln@{(x^{2}-1)^{1/2}-x} |
|
arccos(x) = Pi + I*ln(((x)^(2)- 1)^(1/2)- x) |
ArcCos[x] == Pi + I*Log[((x)^(2)- 1)^(1/2)- x] |
Failure | Failure | Failed [2 / 3] Result: 0.+1.924847301*I
Test Values: {x = 1.5, x = -2} Result: 0.+2.633915796*I
Test Values: {x = 2, x = -2} |
Failed [1 / 1]
Result: Complex[0.0, -2.633915793849633]
Test Values: {Rule[x, -2]} |
4.23.E26 | \atan@@{z} = \frac{i}{2}\ln@{\frac{i+z}{i-z}} |
|
arctan(z) = (I)/(2)*ln((I + z)/(I - z)) |
ArcTan[z] == Divide[I,2]*Log[Divide[I + z,I - z]] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.23.E27 | \atan@{iy} = +\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}} |
|
arctan(I*y) = +(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1)) |
ArcTan[I*y] == +Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]] |
Failure | Failure | Failed [2 / 6] Result: -3.141592654-.2e-9*I
Test Values: {y = -1.5, y = -3/2} Result: -3.141592654+.2e-9*I
Test Values: {y = -2, y = -3/2} |
Failed [1 / 1]
Result: Complex[-3.141592653589793, -1.1102230246251565*^-16]
Test Values: {Rule[y, Rational[-3, 2]]} |
4.23.E27 | \atan@{iy} = -\frac{1}{2}\pi+\frac{i}{2}\ln@{\frac{y+1}{y-1}} |
|
arctan(I*y) = -(1)/(2)*Pi +(I)/(2)*ln((y + 1)/(y - 1)) |
ArcTan[I*y] == -Divide[1,2]*Pi +Divide[I,2]*Log[Divide[y + 1,y - 1]] |
Failure | Failure | Failed [4 / 6] Result: 3.141592654+.2e-9*I
Test Values: {y = 1.5, y = -3/2} Result: 3.141592654+.2e-9*I
Test Values: {y = -.5, y = -3/2} Result: 3.141592654-.2e-9*I
Test Values: {y = .5, y = -3/2} Result: 3.141592654-.2e-9*I
Test Values: {y = 2, y = -3/2} |
Successful [Tested: 1] |
4.23.E28 | z = \sin@@{w} |
|
z = sin(w) |
z == Sin[w] |
Failure | Failure | Failed [70 / 70] Result: .70450695e-2+.1624035369*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.358980334+.5284289409*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -.3589803345-1.203621867*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -1.725005738-.8375964631*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [70 / 70]
Result: Complex[0.007045069484300837, 0.16240353677712993]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.3589803343001376, 0.5284289405615687]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.23.E29 | z = \cos@@{w} |
|
z = cos(w) |
z == Cos[w] |
Failure | Failure | Failed [70 / 70] Result: .1354823851+.8969495503*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.230543019+1.262974954*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -.2305430189-.4690758537*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -1.596568423-.1030504497*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [70 / 70]
Result: Complex[0.13548238472721352, 0.8969495502290324]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.230543019057225, 1.2629749540134712]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.23.E30 | z = \tan@@{w} |
|
z = tan(w) |
z == Tan[w] |
Failure | Failure | Failed [70 / 70] Result: .1520945236-.3500402975*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.213930880+.159851065e-1*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -.2139308804-1.716065702*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -1.579956284-1.350040298*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [70 / 70]
Result: Complex[0.1520945235384168, -0.3500402971922752]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.2139308802460218, 0.015985106592163567]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.23.E31 | w = \Asin@@{z} |
|
Error |
w == ArcSin[z] |
Missing Macro Error | Failure | - | Failed [70 / 70]
Result: Complex[0.0806272403869902, -0.15847894846240845]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.2407598364931787, -0.3314429455293106]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.23.E31 | \Asin@@{z} = (-1)^{k}\asin@@{z}+k\pi |
|
Error |
ArcSin[z] == (- 1)^(k)* ArcSin[z]+ k*Pi |
Missing Macro Error | Failure | - | Failed [21 / 21]
Result: Complex[-1.5707963267948961, 1.3169578969248168]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: -6.283185307179586
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.23.E32 | w = \Acos@@{z} |
|
Error |
w == ArcCos[z] |
Missing Macro Error | Failure | - | Failed [70 / 70]
Result: Complex[0.08062724038699065, 1.1584789484624083]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.0795053557191978, 1.3314429455293104]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.23.E32 | \Acos@@{z} = +\acos@@{z}+2k\pi |
|
Error |
ArcCos[z] == + ArcCos[z]+ 2*k*Pi |
Missing Macro Error | Failure | - | Failed [21 / 21]
Result: -6.283185307179586
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: -12.566370614359172
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.23.E32 | \Acos@@{z} = -\acos@@{z}+2k\pi |
|
Error |
ArcCos[z] == - ArcCos[z]+ 2*k*Pi |
Missing Macro Error | Failure | - | Failed [21 / 21]
Result: Complex[-4.71238898038469, -1.3169578969248168]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-10.995574287564276, -1.3169578969248168]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.23.E33 | w = \Atan@@{z} |
|
Error |
w == ArcTan[z] |
Missing Macro Error | Failure | - | Failed [10 / 10]
Result: Complex[0.4023777947836326, 0.49999999999999994]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Rational[1, 2]]} Result: Complex[-0.9636476090008059, 0.8660254037844387]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Rational[1, 2]]} ... skip entries to safe data |
4.23.E33 | \Atan@@{z} = \atan@@{z}+k\pi |
|
Error |
ArcTan[z] == ArcTan[z]+ k*Pi |
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: -3.141592653589793
Test Values: {Rule[k, 1], Rule[z, Rational[1, 2]]} Result: -6.283185307179586
Test Values: {Rule[k, 2], Rule[z, Rational[1, 2]]} ... skip entries to safe data |
4.23.E34 | \asin@@{z} = \asin@@{\beta}+\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}} |
|
arcsin(x + y*I) = arcsin((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+ I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)) |
ArcSin[x + y*I] == ArcSin[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]+ I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)] |
Failure | Failure | Successful [Tested: 18] | Successful [Tested: 18] |
4.23.E35 | \acos@@{z} = \acos@@{\beta}-\iunit\sign@{y}\ln@{\alpha+(\alpha^{2}-1)^{1/2}} |
|
arccos(x + y*I) = arccos((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)-(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))- I*signum(y)*ln(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))+(((1)/(2)*((x + 1)^(2)+ (y)^(2))^(1/2)+(1)/(2)*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)) |
ArcCos[x + y*I] == ArcCos[Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)-Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2)]- I*Sign[y]*Log[(Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))+((Divide[1,2]*((x + 1)^(2)+ (y)^(2))^(1/2)+Divide[1,2]*((x - 1)^(2)+ (y)^(2))^(1/2))^(2)- 1)^(1/2)] |
Failure | Failure | Successful [Tested: 18] | Successful [Tested: 18] |
4.23.E36 | \atan@@{z} = \tfrac{1}{2}\atan@{\frac{2x}{1-x^{2}-y^{2}}}+\tfrac{1}{4}i\ln@{\frac{x^{2}+(y+1)^{2}}{x^{2}+(y-1)^{2}}} |
|
arctan(x + y*I) = (1)/(2)*arctan((2*x)/(1 - (x)^(2)- (y)^(2)))+(1)/(4)*I*ln(((x)^(2)+(y + 1)^(2))/((x)^(2)+(y - 1)^(2))) |
ArcTan[x + y*I] == Divide[1,2]*ArcTan[Divide[2*x,1 - (x)^(2)- (y)^(2)]]+Divide[1,4]*I*Log[Divide[(x)^(2)+(y + 1)^(2),(x)^(2)+(y - 1)^(2)]] |
Failure | Failure | Failed [16 / 18] Result: 1.570796327-.1e-9*I
Test Values: {x = 1.5, y = -1.5} Result: 1.570796327-.1e-9*I
Test Values: {x = 1.5, y = 1.5} Result: 1.570796327+0.*I
Test Values: {x = 1.5, y = -.5} Result: 1.570796327+0.*I
Test Values: {x = 1.5, y = .5} ... skip entries to safe data |
Failed [16 / 18]
Result: Complex[1.5707963267948968, 1.1102230246251565*^-16]
Test Values: {Rule[x, 1.5], Rule[y, -1.5]} Result: Complex[1.5707963267948968, -1.6653345369377348*^-16]
Test Values: {Rule[x, 1.5], Rule[y, 1.5]} ... skip entries to safe data |
4.23.E39 | \Gudermannian@{x} = \int_{0}^{x}\sech@@{t}\diff{t} |
arctan(sinh(x)) = int(sech(t), t = 0..x) |
Gudermannian[x] == Integrate[Sech[t], {t, 0, x}, GenerateConditions->None] |
Successful | Aborted | - | Successful [Tested: 3] | |
4.23.E40 | \Gudermannian@{x} = 2\atan@{e^{x}}-\tfrac{1}{2}\pi\\ |
arctan(sinh(x)) = 2*arctan(exp(x))-(1)/(2)*Pi |
Gudermannian[x] == 2*ArcTan[Exp[x]]-Divide[1,2]*Pi |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | 2\atan@{e^{x}}-\tfrac{1}{2}\pi\\ = \asin@{\tanh@@{x}} |
2*arctan(exp(x))-(1)/(2)*Pi = arcsin(tanh(x)) |
2*ArcTan[Exp[x]]-Divide[1,2]*Pi == ArcSin[Tanh[x]] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | \asin@{\tanh@@{x}} = \acsc@{\coth@@{x}}\\ |
arcsin(tanh(x)) = arccsc(coth(x)) |
ArcSin[Tanh[x]] == ArcCsc[Coth[x]] |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | \acsc@{\coth@@{x}}\\ = \acos@{\sech@@{x}} |
arccsc(coth(x)) = arccos(sech(x)) |
ArcCsc[Coth[x]] == ArcCos[Sech[x]] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | \acos@{\sech@@{x}} = \asec@{\cosh@@{x}}\\ |
arccos(sech(x)) = arcsec(cosh(x)) |
ArcCos[Sech[x]] == ArcSec[Cosh[x]] |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | \asec@{\cosh@@{x}}\\ = \atan@{\sinh@@{x}} |
arcsec(cosh(x)) = arctan(sinh(x)) |
ArcSec[Cosh[x]] == ArcTan[Sinh[x]] |
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E40 | \atan@{\sinh@@{x}} = \acot@{\csch@@{x}} |
arctan(sinh(x)) = arccot(csch(x)) |
ArcTan[Sinh[x]] == ArcCot[Csch[x]] |
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
4.23.E41 | \aGudermannian@{x} = \int_{0}^{x}\sec@@{t}\diff{t} |
arctanh(sin(x)) = int(sec(t), t = 0..x) |
InverseGudermannian[x] == Integrate[Sec[t], {t, 0, x}, GenerateConditions->None] |
Failure | Aborted | Successful [Tested: 2] | Successful [Tested: 2] | |
4.23.E42 | \aGudermannian@{x} = \ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}} |
arctanh(sin(x)) = ln(tan((1)/(2)*x +(1)/(4)*Pi)) |
InverseGudermannian[x] == Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]] |
Failure | Successful | Successful [Tested: 2] | Successful [Tested: 2] | |
4.23.E42 | \ln@@{\tan@{\tfrac{1}{2}x+\tfrac{1}{4}\pi}} = \ln@{\sec@@{x}+\tan@@{x}} |
ln(tan((1)/(2)*x +(1)/(4)*Pi)) = ln(sec(x)+ tan(x)) |
Log[Tan[Divide[1,2]*x +Divide[1,4]*Pi]] == Log[Sec[x]+ Tan[x]] |
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 2] | |
4.23.E42 | \ln@{\sec@@{x}+\tan@@{x}} = \asinh@{\tan@@{x}} |
ln(sec(x)+ tan(x)) = arcsinh(tan(x)) |
Log[Sec[x]+ Tan[x]] == ArcSinh[Tan[x]] |
Failure | Failure | Successful [Tested: 2] | Failed [1 / 3]
Result: Complex[3.046904887125347, 3.141592653589793]
Test Values: {Rule[x, 2]} | |
4.23.E42 | \asinh@{\tan@@{x}} = \acsch@{\cot@@{x}} |
arcsinh(tan(x)) = arccsch(cot(x)) |
ArcSinh[Tan[x]] == ArcCsch[Cot[x]] |
Failure | Successful | Successful [Tested: 2] | Successful [Tested: 2] | |
4.23.E42 | \acsch@{\cot@@{x}} = \acosh@{\sec@@{x}} |
arccsch(cot(x)) = arccosh(sec(x)) |
ArcCsch[Cot[x]] == ArcCosh[Sec[x]] |
Failure | Failure | Successful [Tested: 2] | Failed [1 / 3]
Result: Complex[-3.046904887125347, -3.141592653589793]
Test Values: {Rule[x, 2]} | |
4.23.E42 | \acosh@{\sec@@{x}} = \asech@{\cos@@{x}} |
arccosh(sec(x)) = arcsech(cos(x)) |
ArcCosh[Sec[x]] == ArcSech[Cos[x]] |
Failure | Successful | Successful [Tested: 2] | Successful [Tested: 2] | |
4.23.E42 | \asech@{\cos@@{x}} = \atanh@{\sin@@{x}} |
arcsech(cos(x)) = arctanh(sin(x)) |
ArcSech[Cos[x]] == ArcTanh[Sin[x]] |
Failure | Failure | Successful [Tested: 2] | Failed [1 / 3]
Result: Complex[0.0, 3.141592653589793]
Test Values: {Rule[x, 2]} | |
4.23.E42 | \atanh@{\sin@@{x}} = \acoth@{\csc@@{x}} |
arctanh(sin(x)) = arccoth(csc(x)) |
ArcTanh[Sin[x]] == ArcCoth[Csc[x]] |
Failure | Successful | Successful [Tested: 2] | Successful [Tested: 2] |