Elementary Functions - 4.37 Inverse Hyperbolic Functions
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.37.E1 | \Asinh@@{z} = \int_{0}^{z}\frac{\diff{t}}{(1+t^{2})^{1/2}} |
|
Error
|
ArcSinh[z] == Integrate[Divide[1,(1 + (t)^(2))^(1/2)], {t, 0, z}, GenerateConditions->None]
|
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.37.E2 | \Acosh@@{z} = \int_{1}^{z}\frac{\diff{t}}{(t^{2}-1)^{1/2}} |
|
Error
|
ArcCosh[z] == Integrate[Divide[1,((t)^(2)- 1)^(1/2)], {t, 1, z}, GenerateConditions->None]
|
Missing Macro Error | Aborted | - | Skipped - Because timed out |
4.37.E3 | \Atanh@@{z} = \int_{0}^{z}\frac{\diff{t}}{1-t^{2}} |
|
Error
|
ArcTanh[z] == Integrate[Divide[1,1 - (t)^(2)], {t, 0, z}, GenerateConditions->None]
|
Missing Macro Error | Successful | - | Successful [Tested: 1] |
4.37.E4 | \Acsch@@{z} = \Asinh@{1/z} |
|
Error
|
ArcCsch[z] == ArcSinh[1/z]
|
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.37.E5 | \Asech@@{z} = \Acosh@{1/z} |
|
Error
|
ArcSech[z] == ArcCosh[1/z]
|
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.37.E6 | \Acoth@@{z} = \Atanh@{1/z} |
|
Error
|
ArcCoth[z] == ArcTanh[1/z]
|
Missing Macro Error | Successful | - | Successful [Tested: 7] |
4.37.E7 | \acsch@@{z} = \asinh@{1/z} |
|
arccsch(z) = arcsinh(1/z)
|
ArcCsch[z] == ArcSinh[1/z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.37.E8 | \asech@@{z} = \acosh@{1/z} |
|
arcsech(z) = arccosh(1/z)
|
ArcSech[z] == ArcCosh[1/z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
4.37.E9 | \acoth@@{z} = \atanh@{1/z} |
|
arccoth(z) = arctanh(1/z)
|
ArcCoth[z] == ArcTanh[1/z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 1] |
4.37.E10 | \asinh@{-z} = -\asinh@@{z} |
|
arcsinh(- z) = - arcsinh(z)
|
ArcSinh[- z] == - ArcSinh[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.37.E11 | \acosh@{-z} = +\pi i+\acosh@@{z} |
|
arccosh(- z) = + Pi*I + arccosh(z)
|
ArcCosh[- z] == + Pi*I + ArcCosh[z]
|
Failure | Failure | Failed [3 / 7] Result: 0.-6.283185307*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, Im(z) = 1/2}
Result: 0.-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), Im(z) = 1/2}
Result: -2.094395103*I
Test Values: {z = .5, Im(z) = 1/2}
|
Failed [1 / 1]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[z, Complex[0, Rational[1, 2]]]}
|
4.37.E11 | \acosh@{-z} = -\pi i+\acosh@@{z} |
|
arccosh(- z) = - Pi*I + arccosh(z)
|
ArcCosh[- z] == - Pi*I + ArcCosh[z]
|
Failure | Failure | Failed [5 / 7] Result: 0.+6.283185307*I
Test Values: {z = 1/2-1/2*I*3^(1/2), Im(z) = 1/2}
Result: 0.+6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, Im(z) = 1/2}
Result: 0.+6.283185308*I
Test Values: {z = 1.5, Im(z) = 1/2}
Result: 4.188790205*I
Test Values: {z = .5, Im(z) = 1/2}
... skip entries to safe data |
Successful [Tested: 1] |
4.37.E12 | \atanh@{-z} = -\atanh@@{z} |
|
arctanh(- z) = - arctanh(z)
|
ArcTanh[- z] == - ArcTanh[z]
|
Successful | Successful | - | Successful [Tested: 1] |
4.37.E13 | \acsch@{-z} = -\acsch@@{z} |
|
arccsch(- z) = - arccsch(z)
|
ArcCsch[- z] == - ArcCsch[z]
|
Successful | Successful | - | Successful [Tested: 7] |
4.37.E14 | \asech@{-z} = -\pi i+\asech@@{z} |
|
arcsech(- z) = - Pi*I + arcsech(z)
|
ArcSech[- z] == - Pi*I + ArcSech[z]
|
Failure | Failure | Failed [5 / 7] Result: 0.+6.283185307*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, Im(z) = 1/2}
Result: 0.+6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2), Im(z) = 1/2}
Result: 4.601047966*I
Test Values: {z = 1.5, Im(z) = 1/2}
Result: 0.+6.283185308*I
Test Values: {z = .5, Im(z) = 1/2}
... skip entries to safe data |
Failed [1 / 1]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[z, Complex[0, Rational[1, 2]]]}
|
4.37.E14 | \asech@{-z} = +\pi i+\asech@@{z} |
|
arcsech(- z) = + Pi*I + arcsech(z)
|
ArcSech[- z] == + Pi*I + ArcSech[z]
|
Failure | Failure | Failed [4 / 7] Result: 0.-6.283185307*I
Test Values: {z = 1/2-1/2*I*3^(1/2), Im(z) = 1/2}
Result: 0.-6.283185307*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, Im(z) = 1/2}
Result: -1.682137342*I
Test Values: {z = 1.5, Im(z) = 1/2}
Result: -2.094395103*I
Test Values: {z = 2, Im(z) = 1/2}
|
Successful [Tested: 1] |
4.37.E15 | \acoth@{-z} = -\acoth@@{z} |
|
arccoth(- z) = - arccoth(z)
|
ArcCoth[- z] == - ArcCoth[z]
|
Failure | Successful | Failed [1 / 7] Result: 0.-3.141592654*I
Test Values: {z = .5, z = 1/2}
|
Successful [Tested: 1] |
4.37.E16 | \asinh@@{z} = \ln@{(z^{2}+1)^{1/2}+z} |
|
arcsinh(z) = ln(((z)^(2)+ 1)^(1/2)+ z)
|
ArcSinh[z] == Log[((z)^(2)+ 1)^(1/2)+ z]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 1] |
4.37.E17 | \asinh@{iy} = \tfrac{1}{2}\pi i+\ln@{(y^{2}-1)^{1/2}+y} |
|
arcsinh(I*y) = (1)/(2)*Pi*I + ln(((y)^(2)- 1)^(1/2)+ y)
|
ArcSinh[I*y] == Divide[1,2]*Pi*I + Log[((y)^(2)- 1)^(1/2)+ y]
|
Failure | Successful | Failed [4 / 6] Result: .7e-9-6.283185308*I
Test Values: {y = -1.5, y = 3/2}
Result: -.1347500000e-10-4.188790205*I
Test Values: {y = -.5, y = 3/2}
Result: -.1347500000e-10-2.094395102*I
Test Values: {y = .5, y = 3/2}
Result: .2e-8-6.283185308*I
Test Values: {y = -2, y = 3/2}
|
Successful [Tested: 1] |
4.37.E17 | \asinh@{iy} = \tfrac{1}{2}\pi i-\ln@{(y^{2}-1)^{1/2}+y} |
|
arcsinh(I*y) = (1)/(2)*Pi*I - ln(((y)^(2)- 1)^(1/2)+ y)
|
ArcSinh[I*y] == Divide[1,2]*Pi*I - Log[((y)^(2)- 1)^(1/2)+ y]
|
Failure | Failure | Failed [4 / 6] Result: -1.924847301+0.*I
Test Values: {y = -1.5, y = 3/2}
Result: 1.924847300+0.*I
Test Values: {y = 1.5, y = 3/2}
Result: -2.633915796+0.*I
Test Values: {y = -2, y = 3/2}
Result: 2.633915794+0.*I
Test Values: {y = 2, y = 3/2}
|
Failed [1 / 1]
Result: Complex[1.9248473002384139, 0.0]
Test Values: {Rule[y, Rational[3, 2]]}
|
4.37.E18 | \asinh@{iy} = -\tfrac{1}{2}\pi i+\ln@{(y^{2}-1)^{1/2}-y} |
|
arcsinh(I*y) = -(1)/(2)*Pi*I + ln(((y)^(2)- 1)^(1/2)- y)
|
ArcSinh[I*y] == -Divide[1,2]*Pi*I + Log[((y)^(2)- 1)^(1/2)- y]
|
Failure | Failure | Failed [4 / 6] Result: -1.924847300+0.*I
Test Values: {y = -1.5, y = -2}
Result: 1.924847301+0.*I
Test Values: {y = 1.5, y = -2}
Result: -2.633915794+0.*I
Test Values: {y = -2, y = -2}
Result: 2.633915796+0.*I
Test Values: {y = 2, y = -2}
|
Failed [1 / 1]
Result: Complex[-2.633915793849633, 0.0]
Test Values: {Rule[y, -2]}
|
4.37.E18 | \asinh@{iy} = -\tfrac{1}{2}\pi i-\ln@{(y^{2}-1)^{1/2}-y} |
|
arcsinh(I*y) = -(1)/(2)*Pi*I - ln(((y)^(2)- 1)^(1/2)- y)
|
ArcSinh[I*y] == -Divide[1,2]*Pi*I - Log[((y)^(2)- 1)^(1/2)- y]
|
Failure | Failure | Failed [4 / 6] Result: -.7e-9+6.283185308*I
Test Values: {y = 1.5, y = -2}
Result: .1347500000e-10+2.094395102*I
Test Values: {y = -.5, y = -2}
Result: .1347500000e-10+4.188790205*I
Test Values: {y = .5, y = -2} Result: -.2e-8+6.283185308*I
Test Values: {y = 2, y = -2} |
Successful [Tested: 1] |
4.37.E19 | \acosh@@{z} = \ln@{+(z^{2}-1)^{1/2}+z} |
|
arccosh(z) = ln(+((z)^(2)- 1)^(1/2)+ z) |
ArcCosh[z] == Log[+((z)^(2)- 1)^(1/2)+ z] |
Failure | Failure | Failed [2 / 7] Result: 1.662885893+3.891061519*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 3/2} Result: 1.316957897-4.712388980*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 3/2} |
Successful [Tested: 1] |
4.37.E19 | \acosh@@{z} = \ln@{-(z^{2}-1)^{1/2}+z} |
|
arccosh(z) = ln(-((z)^(2)- 1)^(1/2)+ z) |
ArcCosh[z] == Log[-((z)^(2)- 1)^(1/2)+ z] |
Failure | Failure | Failed [5 / 7] Result: 1.316957897+1.570796326*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 3/2} Result: 1.662885893-2.392123788*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 3/2} Result: 1.924847301
Test Values: {z = 1.5, z = 3/2} Result: -.1347500000e-10+2.094395102*I
Test Values: {z = .5, z = 3/2} ... skip entries to safe data |
Failed [1 / 1]
Result: 1.9248473002384139
Test Values: {Rule[z, Rational[3, 2]]} |
4.37.E20 | \acosh@{\iunit y} = +\tfrac{1}{2}\pi\iunit+\ln@{(y^{2}+1)^{1/2}+ y} |
|
arccosh(I*y) = +(1)/(2)*Pi*I + ln(((y)^(2)+ 1)^(1/2)+ y) |
ArcCosh[I*y] == +Divide[1,2]*Pi*I + Log[((y)^(2)+ 1)^(1/2)+ y] |
Failure | Failure | Failed [3 / 6] Result: 2.389526433-3.141592654*I
Test Values: {y = -1.5, y = 1/2} Result: .9624236498-3.141592654*I
Test Values: {y = -.5, y = 1/2} Result: 2.887270952-3.141592654*I
Test Values: {y = -2, y = 1/2} |
Successful [Tested: 1] |
4.37.E20 | \acosh@{\iunit y} = -\tfrac{1}{2}\pi\iunit+\ln@{(y^{2}+1)^{1/2}- y} |
|
arccosh(I*y) = -(1)/(2)*Pi*I + ln(((y)^(2)+ 1)^(1/2)- y) |
ArcCosh[I*y] == -Divide[1,2]*Pi*I + Log[((y)^(2)+ 1)^(1/2)- y] |
Failure | Failure | Failed [3 / 6] Result: 2.389526433+3.141592654*I
Test Values: {y = 1.5, y = 1/2} Result: .9624236498+3.141592654*I
Test Values: {y = .5, y = 1/2} Result: 2.887270952+3.141592654*I
Test Values: {y = 2, y = 1/2} |
Failed [1 / 1]
Result: Complex[0.9624236501192068, 3.141592653589793]
Test Values: {Rule[y, Rational[1, 2]]} |
4.37.E21 | \acosh@@{z} = 2\ln@{\left(\frac{z+1}{2}\right)^{1/2}+\left(\frac{z-1}{2}\right)^{1/2}} |
|
arccosh(z) = 2*ln(((z + 1)/(2))^(1/2)+((z - 1)/(2))^(1/2)) |
ArcCosh[z] == 2*Log[(Divide[z + 1,2])^(1/2)+(Divide[z - 1,2])^(1/2)] |
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 1] |
4.37.E22 | \acosh@@{x} = +\ln@{i(1-x^{2})^{1/2}+x} |
|
arccosh(x) = + ln(I*(1 - (x)^(2))^(1/2)+ x) |
ArcCosh[x] == + Log[I*(1 - (x)^(2))^(1/2)+ x] |
Failure | Failure | Failed [2 / 3] Result: 1.924847301
Test Values: {x = 1.5, x = 1/2} Result: 2.633915796
Test Values: {x = 2, x = 1/2} |
Successful [Tested: 1] |
4.37.E22 | \acosh@@{x} = -\ln@{i(1-x^{2})^{1/2}+x} |
|
arccosh(x) = - ln(I*(1 - (x)^(2))^(1/2)+ x) |
ArcCosh[x] == - Log[I*(1 - (x)^(2))^(1/2)+ x] |
Failure | Failure | Failed [1 / 3] Result: .1347500000e-10+2.094395102*I
Test Values: {x = .5, x = 1/2} |
Failed [1 / 1]
Result: Complex[0.0, 2.0943951023931953]
Test Values: {Rule[x, Rational[1, 2]]} |
4.37.E23 | \acosh@@{x} = +\pi i+\ln@{(x^{2}-1)^{1/2}-x} |
|
arccosh(x) = + Pi*I + ln(((x)^(2)- 1)^(1/2)- x) |
ArcCosh[x] == + Pi*I + Log[((x)^(2)- 1)^(1/2)- x] |
Failure | Failure | Failed [3 / 3] Result: 1.924847301-6.283185308*I
Test Values: {x = 1.5, x = -2} Result: -.1347500000e-10-4.188790205*I
Test Values: {x = .5, x = -2} Result: 2.633915796-6.283185308*I
Test Values: {x = 2, x = -2} |
Successful [Tested: 1] |
4.37.E23 | \acosh@@{x} = -\pi i+\ln@{(x^{2}-1)^{1/2}-x} |
|
arccosh(x) = - Pi*I + ln(((x)^(2)- 1)^(1/2)- x) |
ArcCosh[x] == - Pi*I + Log[((x)^(2)- 1)^(1/2)- x] |
Failure | Failure | Failed [3 / 3] Result: 1.924847301+0.*I
Test Values: {x = 1.5, x = -2} Result: -.1347500000e-10+2.094395103*I
Test Values: {x = .5, x = -2} Result: 2.633915796+0.*I
Test Values: {x = 2, x = -2} |
Failed [1 / 1]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[x, -2]} |
4.37.E24 | \atanh@@{z} = \tfrac{1}{2}\ln@{\frac{1+z}{1-z}} |
|
arctanh(z) = (1)/(2)*ln((1 + z)/(1 - z)) |
ArcTanh[z] == Divide[1,2]*Log[Divide[1 + z,1 - z]] |
Failure | Failure | Failed [2 / 7] Result: .2e-9-3.141592654*I
Test Values: {z = 1.5, z = 1/2} Result: -.2e-9-3.141592654*I
Test Values: {z = 2, z = 1/2} |
Successful [Tested: 1] |
4.37.E25 | \atanh@@{x} = +\tfrac{1}{2}\pi i+\tfrac{1}{2}\ln@{\frac{x+1}{x-1}} |
|
arctanh(x) = +(1)/(2)*Pi*I +(1)/(2)*ln((x + 1)/(x - 1)) |
ArcTanh[x] == +Divide[1,2]*Pi*I +Divide[1,2]*Log[Divide[x + 1,x - 1]] |
Failure | Failure | Failed [3 / 3] Result: .2e-9-3.141592654*I
Test Values: {x = 1.5, x = -3/2} Result: -.2e-9-3.141592654*I
Test Values: {x = .5, x = -3/2} Result: -.2e-9-3.141592654*I
Test Values: {x = 2, x = -3/2} |
Successful [Tested: 1] |
4.37.E25 | \atanh@@{x} = -\tfrac{1}{2}\pi i+\tfrac{1}{2}\ln@{\frac{x+1}{x-1}} |
|
arctanh(x) = -(1)/(2)*Pi*I +(1)/(2)*ln((x + 1)/(x - 1)) |
ArcTanh[x] == -Divide[1,2]*Pi*I +Divide[1,2]*Log[Divide[x + 1,x - 1]] |
Failure | Failure | Successful [Tested: 3] | Failed [1 / 1]
Result: Complex[-1.1102230246251565*^-16, 3.141592653589793]
Test Values: {Rule[x, Rational[-3, 2]]} |
4.37.E26 | z = \sinh@@{w} |
|
z = sinh(w) |
z == Sinh[w] |
Failure | Failure | Failed [70 / 70] Result: .73886869e-2-.1707313589*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.358636717+.1952940451*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -.3586367171-1.536756763*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -1.724662121-1.170731359*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [70 / 70]
Result: Complex[0.007388686967293889, -0.17073135880721174]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.3586367168171445, 0.19529404497722702]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.37.E27 | z = \cosh@@{w} |
|
z = cosh(w) |
z == Cosh[w] |
Failure | Failure | Failed [70 / 70] Result: -.3617401130+.309246236e-1*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.727765517+.3969500276*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -.7277655170-1.335100780*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -2.093790921-.9690753764*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [70 / 70]
Result: Complex[-0.3617401130796717, 0.030924623731496126]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.7277655168641102, 0.3969500275159349]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.37.E28 | z = \tanh@@{w} |
|
z = tanh(w) |
z == Tanh[w] |
Failure | Failure | Failed [70 / 70] Result: .736226475e-1+.2564398629*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I} Result: -1.292402756+.6224652669*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)} Result: -.2924027565-1.109585541*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = 1/2-1/2*I*3^(1/2)} Result: -1.658428160-.7435601371*I
Test Values: {w = 1/2*3^(1/2)+1/2*I, z = -1/2*3^(1/2)-1/2*I} ... skip entries to safe data |
Failed [70 / 70]
Result: Complex[0.07362264736640245, 0.25643986284286624]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[-1.292402756418036, 0.622465266627305]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.37.E29 | w = \Asinh@@{z} |
|
Error |
w == ArcSinh[z] |
Missing Macro Error | Failure | - | Failed [70 / 70]
Result: Complex[0.03458245825512818, 0.12526556729125993]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.524504352246847, -0.28539816339744856]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.37.E29 | \Asinh@@{z} = (-1)^{k}\asinh@@{z}+k\pi i |
|
Error |
ArcSinh[z] == (- 1)^(k)* ArcSinh[z]+ k*Pi*I |
Missing Macro Error | Failure | - | Failed [21 / 21]
Result: Complex[1.662885891058621, -2.392123788172313]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.37.E30 | w = \Acosh@@{z} |
|
Error |
w == ArcCosh[z] |
Missing Macro Error | Failure | - | Failed [70 / 70]
Result: Complex[0.20754645532203042, -0.28539816339744833]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.03458245825512796, -1.4455307595036366]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.37.E30 | \Acosh@@{z} = +\acosh@@{z}+2k\pi i |
|
Error |
ArcCosh[z] == + ArcCosh[z]+ 2*k*Pi*I |
Missing Macro Error | Failure | - | Failed [21 / 21]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[0.0, -12.566370614359172]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.37.E30 | \Acosh@@{z} = -\acosh@@{z}+2k\pi i |
|
Error |
ArcCosh[z] == - ArcCosh[z]+ 2*k*Pi*I |
Missing Macro Error | Failure | - | Failed [21 / 21]
Result: Complex[1.3169578969248166, -4.71238898038469]
Test Values: {Rule[k, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Complex[1.3169578969248166, -10.995574287564276]
Test Values: {Rule[k, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.37.E31 | w = \Atanh@@{z} |
|
Error |
w == ArcTanh[z] |
Missing Macro Error | Failure | - | Failed [10 / 10]
Result: Complex[0.3167192594503839, 0.49999999999999994]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Rational[1, 2]]} Result: Complex[-1.0493061443340546, 0.8660254037844387]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[z, Rational[1, 2]]} ... skip entries to safe data |
4.37.E31 | \Atanh@@{z} = \atanh@@{z}+k\pi i |
|
Error |
ArcTanh[z] == ArcTanh[z]+ k*Pi*I |
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Complex[0.0, -3.141592653589793]
Test Values: {Rule[k, 1], Rule[z, Rational[1, 2]]} Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[k, 2], Rule[z, Rational[1, 2]]} ... skip entries to safe data |