Elementary Functions - 4.38 Inverse Hyperbolic Functions: Further Properties
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.38.E4 | \acosh@@{z} = (2(z-1))^{1/2}\*{\left(1+\sum_{n=1}^{\infty}(-1)^{n}\frac{1\cdot 3\cdot 5\cdots(2n-1)}{2^{2n}n!(2n+1)}(z-1)^{n}\right)} |
arccosh(z) = (2*(z - 1))^(1/2)*(1 + sum((- 1)^(n)*(1 * 3 * 5*(2*n - 1))/((2)^(2*n)* factorial(n)*(2*n + 1))*(z - 1)^(n), n = 1..infinity))
|
ArcCosh[z] == (2*(z - 1))^(1/2)*(1 + Sum[(- 1)^(n)*Divide[1 * 3 * 5*(2*n - 1),(2)^(2*n)* (n)!*(2*n + 1)]*(z - 1)^(n), {n, 1, Infinity}, GenerateConditions->None])
|
Failure | Failure | Failed [5 / 5] Result: -.5552108774+.3065228369*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}
Result: -1.819822265-.3498215011*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}
Result: .5204832489
Test Values: {z = 1.5}
Result: -.651724541*I
Test Values: {z = .5}
... skip entries to safe data |
Failed [5 / 5]
Result: Complex[-0.5552108781095244, 0.30652283644847583]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.8198222655846492, -0.34982149976378074]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data | |
4.38.E8 | x^{2}-y^{2} = \tfrac{1}{2} |
|
(x)^(2)- (y)^(2) = (1)/(2) |
(x)^(2)- (y)^(2) == Divide[1,2] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.38.E9 | \deriv{}{z}\asinh@@{z} = (1+z^{2})^{-1/2} |
|
diff(arcsinh(z), z) = (1 + (z)^(2))^(- 1/2)
|
D[ArcSinh[z], z] == (1 + (z)^(2))^(- 1/2)
|
Successful | Successful | - | Successful [Tested: 7] |
4.38.E10 | \deriv{}{z}\acosh@@{z} = +(z^{2}-1)^{-1/2} |
|
diff(arccosh(z), z) = +((z)^(2)- 1)^(- 1/2)
|
D[ArcCosh[z], z] == +((z)^(2)- 1)^(- 1/2)
|
Failure | Failure | Failed [2 / 7] Result: -.3933198932-1.467889825*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}
Result: -1.000000000+1.732050808*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}
|
Successful [Tested: 1] |
4.38.E10 | \deriv{}{z}\acosh@@{z} = -(z^{2}-1)^{-1/2} |
|
diff(arccosh(z), z) = -((z)^(2)- 1)^(- 1/2)
|
D[ArcCosh[z], z] == -((z)^(2)- 1)^(- 1/2)
|
Failure | Failure | Failed [5 / 7] Result: 1.000000000-1.732050808*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}
Result: .3933198932+1.467889825*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}
Result: 1.788854382
Test Values: {z = 1.5, z = 1/2}
Result: -2.309401076*I
Test Values: {z = .5, z = 1/2}
... skip entries to safe data |
Failed [1 / 1]
Result: Complex[0.0, -2.3094010767585034]
Test Values: {Rule[z, Rational[1, 2]]}
|
4.38.E11 | \deriv{}{z}\atanh@@{z} = \frac{1}{1-z^{2}} |
|
diff(arctanh(z), z) = (1)/(1 - (z)^(2))
|
D[ArcTanh[z], z] == Divide[1,1 - (z)^(2)]
|
Successful | Successful | - | Successful [Tested: 7] |
4.38.E12 | \deriv{}{z}\acsch@@{z} = -\frac{1}{z(1+z^{2})^{1/2}} |
|
diff(arccsch(z), z) = -(1)/(z*(1 + (z)^(2))^(1/2))
|
D[ArcCsch[z], z] == -Divide[1,z*(1 + (z)^(2))^(1/2)]
|
Failure | Failure | Failed [2 / 7] Result: .6696152420e-9-2.000000000*I
Test Values: {z = -1/2+1/2*I*3^(1/2), z = 1/2}
Result: -1.074569932+1.074569932*I
Test Values: {z = -1/2*3^(1/2)-1/2*I, z = 1/2}
|
Successful [Tested: 1] |
4.38.E12 | \deriv{}{z}\acsch@@{z} = +\frac{1}{z(1+z^{2})^{1/2}} |
|
diff(arccsch(z), z) = +(1)/(z*(1 + (z)^(2))^(1/2))
|
D[ArcCsch[z], z] == +Divide[1,z*(1 + (z)^(2))^(1/2)]
|
Failure | Failure | Failed [5 / 7] Result: -1.074569932+1.074569932*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, z = 1/2}
Result: .6696152420e-9-2.000000000*I
Test Values: {z = 1/2-1/2*I*3^(1/2), z = 1/2}
Result: -.7396002616
Test Values: {z = 1.5, z = 1/2}
Result: -3.577708764
Test Values: {z = .5, z = 1/2}
... skip entries to safe data |
Failed [1 / 1]
Result: -3.5777087639996634
Test Values: {Rule[z, Rational[1, 2]]}
|
4.38.E13 | \deriv{}{z}\asech@@{z} = -\frac{1}{z(1-z^{2})^{1/2}} |
|
diff(arcsech(z), z) = -(1)/(z*(1 - (z)^(2))^(1/2))
|
D[ArcSech[z], z] == -Divide[1,z*(1 - (z)^(2))^(1/2)]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] |
4.38.E14 | \deriv{}{z}\acoth@@{z} = \frac{1}{1-z^{2}} |
|
diff(arccoth(z), z) = (1)/(1 - (z)^(2))
|
D[ArcCoth[z], z] == Divide[1,1 - (z)^(2)]
|
Successful | Successful | - | Successful [Tested: 7] |
4.38.E15 | \Asinh@@{u}+\Asinh@@{v} = \Asinh@{u(1+v^{2})^{1/2}+ v(1+u^{2})^{1/2}} |
|
Error
|
ArcSinh[u]+ ArcSinh[v] == ArcSinh[u*(1 + (v)^(2))^(1/2)+ v*(1 + (u)^(2))^(1/2)]
|
Missing Macro Error | Failure | - | Failed [1 / 100]
Result: Complex[-2.633915793849633, 4.440892098500626*^-16]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
|
4.38.E15 | \Asinh@@{u}-\Asinh@@{v} = \Asinh@{u(1+v^{2})^{1/2}- v(1+u^{2})^{1/2}} |
|
Error
|
ArcSinh[u]- ArcSinh[v] == ArcSinh[u*(1 + (v)^(2))^(1/2)- v*(1 + (u)^(2))^(1/2)]
|
Missing Macro Error | Failure | - | Successful [Tested: 100] |
4.38.E16 | \Acosh@@{u}+\Acosh@@{v} = \Acosh@{uv+((u^{2}-1)(v^{2}-1))^{1/2}} |
|
Error
|
ArcCosh[u]+ ArcCosh[v] == ArcCosh[u*v +(((u)^(2)- 1)*((v)^(2)- 1))^(1/2)]
|
Missing Macro Error | Failure | - | Failed [60 / 100]
Result: Complex[1.3169578969248166, 1.5707963267948966]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.316957896924817, 1.5707963267948966]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.38.E16 | \Acosh@@{u}-\Acosh@@{v} = \Acosh@{uv-((u^{2}-1)(v^{2}-1))^{1/2}} |
|
Error
|
ArcCosh[u]- ArcCosh[v] == ArcCosh[u*v -(((u)^(2)- 1)*((v)^(2)- 1))^(1/2)]
|
Missing Macro Error | Failure | - | Failed [80 / 100]
Result: Complex[-1.3169578969248166, -1.5707963267948966]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.6628858910586213, -3.8910615190072733]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.38.E17 | \Atanh@@{u}+\Atanh@@{v} = \Atanh@{\frac{u+ v}{1+ uv}} |
|
Error
|
ArcTanh[u]+ ArcTanh[v] == ArcTanh[Divide[u + v,1 + u*v]]
|
Missing Macro Error | Failure | - | Successful [Tested: 1] |
4.38.E17 | \Atanh@@{u}-\Atanh@@{v} = \Atanh@{\frac{u- v}{1- uv}} |
|
Error
|
ArcTanh[u]- ArcTanh[v] == ArcTanh[Divide[u - v,1 - u*v]]
|
Missing Macro Error | Failure | - | Successful [Tested: 1] |
4.38.E18 | \Asinh@@{u}+\Acosh@@{v} = \Asinh@{uv+((1+u^{2})(v^{2}-1))^{1/2}} |
|
Error
|
ArcSinh[u]+ ArcCosh[v] == ArcSinh[u*v +((1 + (u)^(2))*((v)^(2)- 1))^(1/2)]
|
Missing Macro Error | Failure | - | Failed [53 / 100]
Result: Complex[1.66288587615746, 3.891061504106112]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[1.6628858910586204, -2.3921237881723125]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
... skip entries to safe data |
4.38.E18 | \Asinh@@{u}-\Acosh@@{v} = \Asinh@{uv-((1+u^{2})(v^{2}-1))^{1/2}} |
|
Error
|
ArcSinh[u]- ArcCosh[v] == ArcSinh[u*v -((1 + (u)^(2))*((v)^(2)- 1))^(1/2)]
|
Missing Macro Error | Failure | - | Failed [53 / 100]
Result: Complex[1.6628858910586208, -2.392123788172313]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[1.6628858910586208, 3.8910615190072733]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
... skip entries to safe data |
4.38.E18 | \Asinh@{uv+((1+u^{2})(v^{2}-1))^{1/2}} = \Acosh@{v(1+u^{2})^{1/2}+ u(v^{2}-1)^{1/2}} |
|
Error
|
ArcSinh[u*v +((1 + (u)^(2))*((v)^(2)- 1))^(1/2)] == ArcCosh[v*(1 + (u)^(2))^(1/2)+ u*((v)^(2)- 1)^(1/2)]
|
Missing Macro Error | Failure | - | Failed [65 / 100]
Result: Complex[1.4901161193847656*^-8, -3.141592638688632]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-0.34592799413380415, -2.320265192212377]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
... skip entries to safe data |
4.38.E18 | \Asinh@{uv-((1+u^{2})(v^{2}-1))^{1/2}} = \Acosh@{v(1+u^{2})^{1/2}- u(v^{2}-1)^{1/2}} |
|
Error
|
ArcSinh[u*v -((1 + (u)^(2))*((v)^(2)- 1))^(1/2)] == ArcCosh[v*(1 + (u)^(2))^(1/2)- u*((v)^(2)- 1)^(1/2)]
|
Missing Macro Error | Failure | - | Failed [86 / 100]
Result: Complex[-3.325771782117242, -1.4989377308349603]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
Result: Complex[-2.9798437879834374, 0.8213274613774169]
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}
... skip entries to safe data |
4.38.E19 | \Atanh@@{u}+\Acoth@@{v} = \Atanh@{\frac{uv+ 1}{v+ u}} |
|
Error
|
ArcTanh[u]+ ArcCoth[v] == ArcTanh[Divide[u*v + 1,v + u]]
|
Missing Macro Error | Failure | - | Failed [1 / 10]
Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, -0.5]}
|
4.38.E19 | \Atanh@@{u}-\Acoth@@{v} = \Atanh@{\frac{uv- 1}{v- u}} |
|
Error
|
ArcTanh[u]- ArcCoth[v] == ArcTanh[Divide[u*v - 1,v - u]]
|
Missing Macro Error | Failure | - | Failed [1 / 10]
Result: Indeterminate
Test Values: {Rule[u, Rational[1, 2]], Rule[v, 0.5]}
|
4.38.E19 | \Atanh@{\frac{uv+ 1}{v+ u}} = \Acoth@{\frac{v+ u}{uv+ 1}} |
|
Error |
ArcTanh[Divide[u*v + 1,v + u]] == ArcCoth[Divide[v + u,u*v + 1]] |
Missing Macro Error | Successful | - | Failed [8 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]} Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} ... skip entries to safe data |
4.38.E19 | \Atanh@{\frac{uv- 1}{v- u}} = \Acoth@{\frac{v- u}{uv- 1}} |
|
Error |
ArcTanh[Divide[u*v - 1,v - u]] == ArcCoth[Divide[v - u,u*v - 1]] |
Missing Macro Error | Successful | - | Failed [10 / 100]
Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Indeterminate
Test Values: {Rule[u, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]], Rule[v, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |