Elementary Functions - 4.45 Methods of Computation
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
4.45.E1 | y = x^{2^{-m}}-1 |
|
y = (x)^((2)^(- m))- 1 |
y == (x)^((2)^(- m))- 1 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.45.E2 | \ln@@{x} = 2^{m}\ln@{1+y} |
|
ln(x) = (2)^(m)* ln(1 + y)
|
Log[x] == (2)^(m)* Log[1 + y]
|
Failure | Failure | Failed [54 / 54] Result: 1.791759469-6.283185308*I
Test Values: {x = 1.5, y = -1.5, m = 1}
Result: 3.178053830-12.56637062*I
Test Values: {x = 1.5, y = -1.5, m = 2}
Result: 5.950642553-25.13274123*I
Test Values: {x = 1.5, y = -1.5, m = 3}
Result: -1.427116356
Test Values: {x = 1.5, y = 1.5, m = 1}
... skip entries to safe data |
Failed [54 / 54]
Result: Complex[1.791759469228055, -6.283185307179586]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[y, -1.5]}
Result: Complex[3.1780538303479453, -12.566370614359172]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[y, -1.5]}
... skip entries to safe data |
4.45.E3 | \ln@@{x} = \ln@@{\xi}+m\ln@@{10} |
|
ln(x) = ln(xi)+ m*ln(10)
|
Log[x] == Log[\[Xi]]+ m*Log[10]
|
Failure | Failure | Failed [90 / 90] Result: -1.897119985-.5235987755*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I, m = 1}
Result: -4.199705078-.5235987755*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I, m = 2}
Result: -6.502290171-.5235987755*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I, m = 3}
Result: -1.897119985-2.094395102*I
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2), m = 1}
... skip entries to safe data |
Failed [90 / 90]
Result: Complex[-1.8971199848858815, -0.5235987755982988]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-4.199705077879927, -0.5235987755982988]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
4.45#Ex1 | m = \floor{\frac{x}{\ln@@{10}}+\frac{1}{2}} |
|
m = floor((x)/(ln(10))+(1)/(2))
|
m == Floor[Divide[x,Log[10]]+Divide[1,2]]
|
Failure | Failure | Failed [7 / 9] Result: 1.
Test Values: {x = 1.5, m = 2}
Result: 2.
Test Values: {x = 1.5, m = 3}
Result: 1.
Test Values: {x = .5, m = 1}
Result: 2.
Test Values: {x = .5, m = 2}
... skip entries to safe data |
Failed [7 / 9]
Result: 1.0
Test Values: {Rule[m, 2], Rule[x, 1.5]}
Result: 2.0
Test Values: {Rule[m, 3], Rule[x, 1.5]}
... skip entries to safe data |
4.45#Ex2 | y = x-m\ln@@{10} |
|
y = x - m*ln(10)
|
y == x - m*Log[10]
|
Failure | Failure | Failed [54 / 54] Result: -.697414907
Test Values: {x = 1.5, y = -1.5, m = 1}
Result: 1.605170186
Test Values: {x = 1.5, y = -1.5, m = 2}
Result: 3.907755279
Test Values: {x = 1.5, y = -1.5, m = 3}
Result: 2.302585093
Test Values: {x = 1.5, y = 1.5, m = 1}
... skip entries to safe data |
Failed [54 / 54]
Result: -0.6974149070059541
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[y, -1.5]}
Result: 1.6051701859880918
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[y, -1.5]}
... skip entries to safe data |
4.45.E5 | e^{x} = 10^{m}e^{y} |
|
exp(x) = (10)^(m)* exp(y) |
Exp[x] == (10)^(m)* Exp[y] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.45#Ex3 | m = \floor{\xi+\tfrac{1}{2}} |
|
m = floor(xi +(1)/(2))
|
m == Floor[\[Xi]+Divide[1,2]]
|
Failure | Failure | Failed [26 / 30] Result: 1.
Test Values: {xi = 1/2*3^(1/2)+1/2*I, m = 2}
Result: 2.
Test Values: {xi = 1/2*3^(1/2)+1/2*I, m = 3}
Result: 1.
Test Values: {xi = -1/2+1/2*I*3^(1/2), m = 1}
Result: 2.
Test Values: {xi = -1/2+1/2*I*3^(1/2), m = 2}
... skip entries to safe data |
Failed [26 / 30]
Result: 1.0
Test Values: {Rule[m, 2], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: 2.0
Test Values: {Rule[m, 3], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
4.45#Ex4 | \theta = \pi(\xi-m) |
|
theta = Pi*(xi - m) |
\[Theta] == Pi*(\[Xi]- m) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.45#Ex5 | \sin@@{x} = (-1)^{m}\sin@@{\theta} |
|
sin(x) = (- 1)^(m)* sin(theta)
|
Sin[x] == (- 1)^(m)* Sin[\[Theta]]
|
Failure | Failure | Failed [81 / 90] Result: 1.856475321+.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 1}
Result: .1385146521-.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 2}
Result: 1.856475321+.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 3}
Result: 1.338405873+.3375964631*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = .5, m = 1}
... skip entries to safe data |
Failed [81 / 90]
Result: Complex[1.8564753209041922, 0.33759646322287]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.13851465230391657, -0.33759646322287]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
4.45#Ex6 | \cos@@{x} = (-1)^{m}\cos@@{\theta} |
|
cos(x) = (- 1)^(m)* cos(theta)
|
Cos[x] == (- 1)^(m)* Cos[\[Theta]]
|
Failure | Failure | Failed [84 / 90] Result: .8012802206-.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 1}
Result: -.6598058172+.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 2}
Result: .8012802206-.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = 1.5, m = 3}
Result: 1.608125581-.3969495503*I
Test Values: {theta = 1/2*3^(1/2)+1/2*I, x = .5, m = 1}
... skip entries to safe data |
Failed [84 / 90]
Result: Complex[0.8012802207249281, -0.3969495502290325]
Test Values: {Rule[m, 1], Rule[x, 1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.6598058173895223, 0.3969495502290325]
Test Values: {Rule[m, 2], Rule[x, 1.5], Rule[ΞΈ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
4.45.E8 | 2\atan@@{\frac{x}{1+(1+x^{2})^{1/2}}} = \atan@@{x} |
2*arctan((x)/(1 +(1 + (x)^(2))^(1/2))) = arctan(x)
|
2*ArcTan[Divide[x,1 +(1 + (x)^(2))^(1/2)]] == ArcTan[x]
|
Successful | Failure | - | Successful [Tested: 3] | |
4.45.E9 | x_{n} = \frac{x_{n-1}}{1+(1+x^{2}_{n-1})^{1/2}} |
|
x[n] = (x[n - 1])/(1 +(1 + (x[n - 1])^(2))^(1/2)) |
Subscript[x, n] == Divide[Subscript[x, n - 1],1 +(1 + (Subscript[x, n - 1])^(2))^(1/2)] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.45.E10 | \atan@@{x} = 2^{n}\atan@@{x_{n}} |
|
arctan(x) = (2)^(n)* arctan(x[n])
|
ArcTan[x] == (2)^(n)* ArcTan[Subscript[x, n]]
|
Failure | Failure | Failed [90 / 90] Result: -.5880026038-.5493061442*I
Test Values: {x = 1.5, x[n] = 1/2*3^(1/2)+1/2*I, n = 1}
Result: -2.158798931-1.098612288*I
Test Values: {x = 1.5, x[n] = 1/2*3^(1/2)+1/2*I, n = 2}
Result: -5.300391585-2.197224577*I
Test Values: {x = 1.5, x[n] = 1/2*3^(1/2)+1/2*I, n = 3}
Result: 2.553590050-1.316957897*I
Test Values: {x = 1.5, x[n] = -1/2+1/2*I*3^(1/2), n = 1}
... skip entries to safe data |
Failed [90 / 90]
Result: Complex[-0.5880026035475677, -0.5493061443340551]
Test Values: {Rule[n, 1], Rule[x, 1.5], Rule[Subscript[x, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.1587989303424644, -1.0986122886681102]
Test Values: {Rule[n, 2], Rule[x, 1.5], Rule[Subscript[x, n], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
4.45#Ex7 | x_{1} = 0.90000\dots |
|
x[1] = 0.90000 |
Subscript[x, 1] == 0.90000 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.45#Ex8 | x_{2} = 0.38373\dots |
|
x[2] = 0.38373 |
Subscript[x, 2] == 0.38373 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.45#Ex9 | x_{3} = 0.18528\dots |
|
x[3] = 0.18528 |
Subscript[x, 3] == 0.18528 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.45#Ex10 | x_{4} = 0.09185\dots |
|
x[4] = 0.09185 |
Subscript[x, 4] == 0.09185 |
Skipped - no semantic math | Skipped - no semantic math | - | - |
4.45.E13 | \atan@@{x} = 16\atan@@{x_{4}} |
|
arctan(x) = 16*arctan(x[4])
|
ArcTan[x] == 16*ArcTan[Subscript[x, 4]]
|
Failure | Failure | Failed [30 / 30] Result: -11.58357690-4.394449154*I
Test Values: {x = 1.5, x[4] = 1/2*3^(1/2)+1/2*I}
Result: 13.54916434-10.53566318*I
Test Values: {x = 1.5, x[4] = -1/2+1/2*I*3^(1/2)}
Result: -11.58357690+10.53566318*I
Test Values: {x = 1.5, x[4] = 1/2-1/2*I*3^(1/2)}
Result: 13.54916434+4.394449154*I
Test Values: {x = 1.5, x[4] = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [30 / 30]
Result: Complex[-11.583576891111845, -4.394449154672441]
Test Values: {Rule[x, 1.5], Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[13.549164337606502, -10.535663175398536]
Test Values: {Rule[x, 1.5], Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
4.45.E13 | 16\atan@@{x_{4}} = 1.46563\dots |
|
16*arctan(x[4]) = 1.46563
|
16*ArcTan[Subscript[x, 4]] == 1.46563
|
Failure | Failure | Failed [10 / 10] Result: 11.10074062+4.394449154*I
Test Values: {x[4] = 1/2*3^(1/2)+1/2*I}
Result: -14.03200062+10.53566318*I
Test Values: {x[4] = -1/2+1/2*I*3^(1/2)}
Result: 11.10074062-10.53566318*I
Test Values: {x[4] = 1/2-1/2*I*3^(1/2)}
Result: -14.03200062-4.394449154*I
Test Values: {x[4] = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
Failed [10 / 10]
Result: Complex[11.100740614359175, 4.394449154672441]
Test Values: {Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-14.032000614359173, 10.535663175398536]
Test Values: {Rule[Subscript[x, 4], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data |
4.45.E15 | \ln@@{z} = \ln@@{|z|}+i\phase@@{z} |
ln(z) = ln(abs(z))+ I*argument(z) |
Log[z] == Log[Abs[z]]+ I*Arg[z] |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
4.45.E16 | e^{z} = e^{\realpart@@{z}}(\cos@{\imagpart@@{z}}+i\sin@{\imagpart@@{z}}) |
|
exp(z) = exp(Re(z))*(cos(Im(z))+ I*sin(Im(z))) |
Exp[z] == Exp[Re[z]]*(Cos[Im[z]]+ I*Sin[Im[z]]) |
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |