DLMF
|
Formula
|
Constraints
|
Maple
|
Mathematica
|
Symbolic Maple
|
Symbolic Mathematica
|
Numeric Maple
|
Numeric Mathematica
|
5.12.E1 |
\EulerBeta@{a}{b} = \int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t} |
|
Beta(a, b) = int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..1)
|
Beta[a, b] == Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, 1}, GenerateConditions->None]
|
Failure |
Successful |
Error |
Failed [11 / 36] Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2]}
Result: Indeterminate
Test Values: {Rule[a, 1.5], Rule[b, -2]}
... skip entries to safe data
|
5.12.E1 |
\int_{0}^{1}t^{a-1}(1-t)^{b-1}\diff{t} = \frac{\EulerGamma@{a}\EulerGamma@{b}}{\EulerGamma@{a+b}} |
|
int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..1) = (GAMMA(a)*GAMMA(b))/(GAMMA(a + b))
|
Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, 1}, GenerateConditions->None] == Divide[Gamma[a]*Gamma[b],Gamma[a + b]]
|
Successful |
Successful |
Skip - symbolical successful subtest |
Successful [Tested: 9]
|
5.12.E2 |
\int_{0}^{\pi/2}\sin^{2a-1}@@{\theta}\cos^{2b-1}@@{\theta}\diff{\theta} = \tfrac{1}{2}\EulerBeta@{a}{b} |
|
int((sin(theta))^(2*a - 1)* (cos(theta))^(2*b - 1), theta = 0..Pi/2) = (1)/(2)*Beta(a, b)
|
Integrate[(Sin[\[Theta]])^(2*a - 1)* (Cos[\[Theta]])^(2*b - 1), {\[Theta], 0, Pi/2}, GenerateConditions->None] == Divide[1,2]*Beta[a, b]
|
Failure |
Successful |
Error |
Successful [Tested: 9]
|
5.12.E3 |
\int_{0}^{\infty}\frac{t^{a-1}\diff{t}}{(1+t)^{a+b}} = \EulerBeta@{a}{b} |
|
int(((t)^(a - 1))/((1 + t)^(a + b)), t = 0..infinity) = Beta(a, b)
|
Integrate[Divide[(t)^(a - 1),(1 + t)^(a + b)], {t, 0, Infinity}, GenerateConditions->None] == Beta[a, b]
|
Failure |
Successful |
Error |
Successful [Tested: 9]
|
5.12.E4 |
\int_{0}^{1}\frac{t^{a-1}(1-t)^{b-1}}{(t+z)^{a+b}}\diff{t} = \EulerBeta@{a}{b}(1+z)^{-a}z^{-b} |
|
int(((t)^(a - 1)*(1 - t)^(b - 1))/((t + z)^(a + b)), t = 0..1) = Beta(a, b)*(1 + z)^(- a)* (z)^(- b)
|
Integrate[Divide[(t)^(a - 1)*(1 - t)^(b - 1),(t + z)^(a + b)], {t, 0, 1}, GenerateConditions->None] == Beta[a, b]*(1 + z)^(- a)* (z)^(- b)
|
Failure |
Failure |
Skipped - Because timed out |
Failed [77 / 252] Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data
|
5.12.E5 |
\int_{0}^{\pi/2}(\cos@@{t})^{a-1}\cos@{bt}\diff{t} = \frac{\pi}{2^{a}}\frac{1}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}} |
|
int((cos(t))^(a - 1)* cos(b*t), t = 0..Pi/2) = (Pi)/((2)^(a))*(1)/(a*Beta((1)/(2)*(a + b + 1), (1)/(2)*(a - b + 1)))
|
Integrate[(Cos[t])^(a - 1)* Cos[b*t], {t, 0, Pi/2}, GenerateConditions->None] == Divide[Pi,(2)^(a)]*Divide[1,a*Beta[Divide[1,2]*(a + b + 1), Divide[1,2]*(a - b + 1)]]
|
Failure |
Aborted |
Successful [Tested: 18] |
Skipped - Because timed out
|
5.12.E6 |
\int_{0}^{\pi}(\sin@@{t})^{a-1}e^{ibt}\diff{t} = \frac{\pi}{2^{a-1}}\frac{e^{i\pi b/2}}{a\EulerBeta@{\frac{1}{2}(a+b+1)}{\frac{1}{2}(a-b+1)}} |
|
int((sin(t))^(a - 1)* exp(I*b*t), t = 0..Pi) = (Pi)/((2)^(a - 1))*(exp(I*Pi*b/2))/(a*Beta((1)/(2)*(a + b + 1), (1)/(2)*(a - b + 1)))
|
Integrate[(Sin[t])^(a - 1)* Exp[I*b*t], {t, 0, Pi}, GenerateConditions->None] == Divide[Pi,(2)^(a - 1)]*Divide[Exp[I*Pi*b/2],a*Beta[Divide[1,2]*(a + b + 1), Divide[1,2]*(a - b + 1)]]
|
Failure |
Aborted |
Successful [Tested: 18] |
Failed [9 / 18] Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[b, -1.5]}
Result: DirectedInfinity[]
Test Values: {Rule[a, 1.5], Rule[b, 0.5]}
... skip entries to safe data
|
5.12.E7 |
\int_{0}^{\infty}\frac{\cosh@{2bt}}{(\cosh@@{t})^{2a}}\diff{t} = 4^{a-1}\EulerBeta@{a+b}{a-b} |
|
int((cosh(2*b*t))/((cosh(t))^(2*a)), t = 0..infinity) = (4)^(a - 1)* Beta(a + b, a - b)
|
Integrate[Divide[Cosh[2*b*t],(Cosh[t])^(2*a)], {t, 0, Infinity}, GenerateConditions->None] == (4)^(a - 1)* Beta[a + b, a - b]
|
Failure |
Failure |
Successful [Tested: 6] |
Successful [Tested: 6]
|
5.12.E8 |
\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{\diff{t}}{(w+it)^{a}(z-it)^{b}} = \frac{(w+z)^{1-a-b}}{(a+b-1)\EulerBeta@{a}{b}} |
|
(1)/(2*Pi)*int((1)/((w + I*t)^(a)*(z - I*t)^(b)), t = - infinity..infinity) = ((w + z)^(1 - a - b))/((a + b - 1)*Beta(a, b))
|
Divide[1,2*Pi]*Integrate[Divide[1,(w + I*t)^(a)*(z - I*t)^(b)], {t, - Infinity, Infinity}, GenerateConditions->None] == Divide[(w + z)^(1 - a - b),(a + b - 1)*Beta[a, b]]
|
Skipped - Unable to analyze test case: Null |
Failure |
- |
Successful [Tested: 250]
|
5.12.E9 |
\frac{1}{2\pi i}\int_{c-\infty i}^{c+\infty i}t^{-a}(1-t)^{-1-b}\diff{t} = \frac{1}{b\EulerBeta@{a}{b}} |
|
(1)/(2*Pi*I)*int((t)^(- a)*(1 - t)^(- 1 - b), t = c - infinity*I..c + infinity*I) = (1)/(b*Beta(a, b))
|
Divide[1,2*Pi*I]*Integrate[(t)^(- a)*(1 - t)^(- 1 - b), {t, c - Infinity*I, c + Infinity*I}, GenerateConditions->None] == Divide[1,b*Beta[a, b]]
|
Skipped - Unable to analyze test case: Null |
Aborted |
- |
Skipped - Because timed out
|
5.12.E10 |
\frac{1}{2\pi i}\int_{0}^{(1+)}t^{a-1}(t-1)^{b-1}\diff{t} = \frac{\sin@{\pi b}}{\pi}\EulerBeta@{a}{b} |
|
(1)/(2*Pi*I)*int((t)^(a - 1)*(t - 1)^(b - 1), t = 0..(1 +)) = (sin(Pi*b))/(Pi)*Beta(a, b)
|
Divide[1,2*Pi*I]*Integrate[(t)^(a - 1)*(t - 1)^(b - 1), {t, 0, (1 +)}, GenerateConditions->None] == Divide[Sin[Pi*b],Pi]*Beta[a, b]
|
Skipped - Unable to analyze test case: Null |
Failure |
- |
Error
|
5.12.E11 |
\frac{1}{e^{2\pi ia}-1}\int_{\infty}^{(0+)}t^{a-1}(1+t)^{-a-b}\diff{t} = \EulerBeta@{a}{b} |
|
(1)/(exp(2*Pi*I*a)- 1)*int((t)^(a - 1)*(1 + t)^(- a - b), t = infinity..(0 +)) = Beta(a, b)
|
Divide[1,Exp[2*Pi*I*a]- 1]*Integrate[(t)^(a - 1)*(1 + t)^(- a - b), {t, Infinity, (0 +)}, GenerateConditions->None] == Beta[a, b]
|
Error |
Failure |
- |
Error
|
5.12.E12 |
\int_{P}^{(1+,0+,1-,0-)}t^{a-1}(1-t)^{b-1}\diff{t} = -4e^{\pi i(a+b)}\sin@{\pi a}\sin@{\pi b}\EulerBeta@{a}{b} |
|
int((t)^(a - 1)*(1 - t)^(b - 1), t = P..(1 + , 0 + , 1 - , 0 -)) = - 4*exp(Pi*I*(a + b))*sin(Pi*a)*sin(Pi*b)*Beta(a, b)
|
Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, P, (1 + , 0 + , 1 - , 0 -)}, GenerateConditions->None] == - 4*Exp[Pi*I*(a + b)]*Sin[Pi*a]*Sin[Pi*b]*Beta[a, b]
|
Error |
Failure |
- |
Error
|