Gamma Function - 6.2 Definitions and Interrelations

From testwiki
Revision as of 11:14, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
6.2.E1 E 1 ( z ) = z e - t t d t exponential-integral 𝑧 superscript subscript 𝑧 superscript 𝑒 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle E_{1}\left(z\right)=\int_{z}^{\infty}\frac{e^{-t}% }{t}\mathrm{d}t}}
\expintE@{z} = \int_{z}^{\infty}\frac{e^{-t}}{t}\diff{t}
z 0 𝑧 0 {\displaystyle{\displaystyle z\neq 0}}
Ei(z) = int((exp(- t))/(t), t = z..infinity)
ExpIntegralE[1, z] == Integrate[Divide[Exp[- t],t], {t, z, Infinity}, GenerateConditions->None]
Failure Failure
Failed [7 / 7]
Result: 1.393548628+1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .8944744989+3.773814377*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 7]
6.2.E2 E 1 ( z ) = e - z 0 e - t t + z d t exponential-integral 𝑧 superscript 𝑒 𝑧 superscript subscript 0 superscript 𝑒 𝑡 𝑡 𝑧 𝑡 {\displaystyle{\displaystyle E_{1}\left(z\right)=e^{-z}\int_{0}^{\infty}\frac{% e^{-t}}{t+z}\mathrm{d}t}}
\expintE@{z} = e^{-z}\int_{0}^{\infty}\frac{e^{-t}}{t+z}\diff{t}
| ph z | < π phase 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|<\pi}}
Ei(z) = exp(- z)*int((exp(- t))/(t + z), t = 0..infinity)
ExpIntegralE[1, z] == Exp[- z]*Integrate[Divide[Exp[- t],t + z], {t, 0, Infinity}, GenerateConditions->None]
Failure Failure
Failed [7 / 7]
Result: 1.393548628+1.498247032*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: .8944744989+3.773814377*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

... skip entries to safe data
Successful [Tested: 7]
6.2.E3 Ein ( z ) = 0 z 1 - e - t t d t complementary-exponential-integral 𝑧 superscript subscript 0 𝑧 1 superscript 𝑒 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Ein}\left(z\right)=\int_{0}^{z}\frac{1-e^{% -t}}{t}\mathrm{d}t}}
\expintEin@{z} = \int_{0}^{z}\frac{1-e^{-t}}{t}\diff{t}

Error
ExpIntegralE[1, z] + Ln[z] + EulerGamma == Integrate[Divide[1 - Exp[- t],t], {t, 0, z}, GenerateConditions->None]
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[Complex[0.0, -0.5235987755982988], Ln[Complex[0.8660254037844387, 0.49999999999999994]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.0, -2.0943951023931953], Ln[Complex[-0.4999999999999998, 0.8660254037844387]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
6.2.E4 E 1 ( z ) = Ein ( z ) - ln z - γ exponential-integral 𝑧 complementary-exponential-integral 𝑧 𝑧 {\displaystyle{\displaystyle E_{1}\left(z\right)=\mathrm{Ein}\left(z\right)-% \ln z-\gamma}}
\expintE@{z} = \expintEin@{z}-\ln@@{z}-\EulerConstant

Error
ExpIntegralE[1, z] == ExpIntegralE[1, z] + Ln[z] + EulerGamma - Log[z]- EulerGamma
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[Complex[0.0, 0.5235987755982988], Times[-1.0, Ln[Complex[0.8660254037844387, 0.49999999999999994]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.0, 2.0943951023931953], Times[-1.0, Ln[Complex[-0.4999999999999998, 0.8660254037844387]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
6.2.E6 Ei ( - x ) = - x e - t t d t exponential-integral-Ei 𝑥 superscript subscript 𝑥 superscript 𝑒 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Ei}\left(-x\right)=-\int_{x}^{\infty}\frac% {e^{-t}}{t}\mathrm{d}t}}
\expintEi@{-x} = -\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t}

Error
ExpIntegralEi[- x] == - Integrate[Divide[Exp[- t],t], {t, x, Infinity}, GenerateConditions->None]
Missing Macro Error Failure Skip - symbolical successful subtest Successful [Tested: 3]
6.2.E6 - x e - t t d t = - E 1 ( x ) superscript subscript 𝑥 superscript 𝑒 𝑡 𝑡 𝑡 exponential-integral 𝑥 {\displaystyle{\displaystyle-\int_{x}^{\infty}\frac{e^{-t}}{t}\mathrm{d}t=-E_{% 1}\left(x\right)}}
-\int_{x}^{\infty}\frac{e^{-t}}{t}\diff{t} = -\expintE@{x}

- int((exp(- t))/(t), t = x..infinity) = - Ei(x)
- Integrate[Divide[Exp[- t],t], {t, x, Infinity}, GenerateConditions->None] == - ExpIntegralE[1, x]
Failure Failure
Failed [3 / 3]
Result: 3.201265867
Test Values: {x = 1.5}

Result: -.1055536899
Test Values: {x = .5}

... skip entries to safe data
Successful [Tested: 3]
6.2.E7 Ei ( + x ) = - Ein ( - x ) + ln x + γ exponential-integral-Ei 𝑥 complementary-exponential-integral 𝑥 𝑥 {\displaystyle{\displaystyle\mathrm{Ei}\left(+x\right)=-\mathrm{Ein}\left(-x% \right)+\ln x+\gamma}}
\expintEi@{+ x} = -\expintEin@{- x}+\ln@@{x}+\EulerConstant

Error
ExpIntegralEi[+ x] == - ExpIntegralE[1, - x] + Ln[- x] + EulerGamma + Log[x]+ EulerGamma
Missing Macro Error Failure -
Failed [3 / 3]
Result: Plus[Complex[-1.5598964379112301, -3.141592653589793], Times[-1.0, Ln[-1.5]]]
Test Values: {Rule[x, 1.5]}

Result: Plus[Complex[-0.46128414924312044, -3.141592653589793], Times[-1.0, Ln[-0.5]]]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
6.2.E7 Ei ( - x ) = - Ein ( + x ) + ln x + γ exponential-integral-Ei 𝑥 complementary-exponential-integral 𝑥 𝑥 {\displaystyle{\displaystyle\mathrm{Ei}\left(-x\right)=-\mathrm{Ein}\left(+x% \right)+\ln x+\gamma}}
\expintEi@{- x} = -\expintEin@{+ x}+\ln@@{x}+\EulerConstant

Error
ExpIntegralEi[- x] == - ExpIntegralE[1, + x] + Ln[+ x] + EulerGamma + Log[x]+ EulerGamma
Missing Macro Error Failure -
Failed [3 / 3]
Result: Plus[-1.5598964379112301, Times[-1.0, Ln[1.5]]]
Test Values: {Rule[x, 1.5]}

Result: Plus[-0.46128414924312044, Times[-1.0, Ln[0.5]]]
Test Values: {Rule[x, 0.5]}

... skip entries to safe data
6.2.E9 Si ( z ) = 0 z sin t t d t sine-integral 𝑧 superscript subscript 0 𝑧 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Si}\left(z\right)=\int_{0}^{z}\frac{\sin t% }{t}\mathrm{d}t}}
\sinint@{z} = \int_{0}^{z}\frac{\sin@@{t}}{t}\diff{t}

Si(z) = int((sin(t))/(t), t = 0..z)
SinIntegral[z] == Integrate[Divide[Sin[t],t], {t, 0, z}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
6.2.E10 si ( z ) = - z sin t t d t shifted-sine-integral 𝑧 superscript subscript 𝑧 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{si}\left(z\right)=-\int_{z}^{\infty}\frac{% \sin t}{t}\mathrm{d}t}}
\shiftsinint@{z} = -\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t}

Ssi(z) = - int((sin(t))/(t), t = z..infinity)
SinIntegral[z] - Pi/2 == - Integrate[Divide[Sin[t],t], {t, z, Infinity}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
6.2.E10 - z sin t t d t = Si ( z ) - 1 2 π superscript subscript 𝑧 𝑡 𝑡 𝑡 sine-integral 𝑧 1 2 𝜋 {\displaystyle{\displaystyle-\int_{z}^{\infty}\frac{\sin t}{t}\mathrm{d}t=% \mathrm{Si}\left(z\right)-\tfrac{1}{2}\pi}}
-\int_{z}^{\infty}\frac{\sin@@{t}}{t}\diff{t} = \sinint@{z}-\tfrac{1}{2}\pi

- int((sin(t))/(t), t = z..infinity) = Si(z)-(1)/(2)*Pi
- Integrate[Divide[Sin[t],t], {t, z, Infinity}, GenerateConditions->None] == SinIntegral[z]-Divide[1,2]*Pi
Successful Successful - Successful [Tested: 7]
6.2.E11 Ci ( z ) = - z cos t t d t cosine-integral 𝑧 superscript subscript 𝑧 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Ci}(z)=-\int_{z}^{\infty}\frac{\cos t}{t}% \mathrm{d}t}}
\cosint(z) = -\int_{z}^{\infty}\frac{\cos@@{t}}{t}\diff{t}

Ci((z) ) = - int((cos(t))/(t), t = z..infinity)
CosIntegral[(z) ] == - Integrate[Divide[Cos[t],t], {t, z, Infinity}, GenerateConditions->None]
Translation Error Translation Error - -
6.2#Ex1 lim x Si ( x ) = 1 2 π subscript 𝑥 sine-integral 𝑥 1 2 𝜋 {\displaystyle{\displaystyle\lim_{x\to\infty}\mathrm{Si}\left(x\right)=\tfrac{% 1}{2}\pi}}
\lim_{x\to\infty}\sinint@{x} = \tfrac{1}{2}\pi

limit(Si(x), x = infinity) = (1)/(2)*Pi
Limit[SinIntegral[x], x -> Infinity, GenerateConditions->None] == Divide[1,2]*Pi
Successful Successful - Successful [Tested: 1]
6.2#Ex2 lim x Ci ( x ) = 0 subscript 𝑥 cosine-integral 𝑥 0 {\displaystyle{\displaystyle\lim_{x\to\infty}\mathrm{Ci}\left(x\right)=0}}
\lim_{x\to\infty}\cosint@{x} = 0

limit(Ci(x), x = infinity) = 0
Limit[CosIntegral[x], x -> Infinity, GenerateConditions->None] == 0
Successful Successful - Successful [Tested: 1]
6.2.E15 Shi ( z ) = 0 z sinh t t d t hyperbolic-sine-integral 𝑧 superscript subscript 0 𝑧 𝑡 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Shi}\left(z\right)=\int_{0}^{z}\frac{\sinh t% }{t}\mathrm{d}t}}
\sinhint@{z} = \int_{0}^{z}\frac{\sinh@@{t}}{t}\diff{t}

Shi(z) = int((sinh(t))/(t), t = 0..z)
SinhIntegral[z] == Integrate[Divide[Sinh[t],t], {t, 0, z}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]
6.2.E16 Chi ( z ) = γ + ln z + 0 z cosh t - 1 t d t hyperbolic-cosine-integral 𝑧 𝑧 superscript subscript 0 𝑧 𝑡 1 𝑡 𝑡 {\displaystyle{\displaystyle\mathrm{Chi}\left(z\right)=\gamma+\ln z+\int_{0}^{% z}\frac{\cosh t-1}{t}\mathrm{d}t}}
\coshint@{z} = \EulerConstant+\ln@@{z}+\int_{0}^{z}\frac{\cosh@@{t}-1}{t}\diff{t}

Chi(z) = gamma + ln(z)+ int((cosh(t)- 1)/(t), t = 0..z)
CoshIntegral[z] == EulerGamma + Log[z]+ Integrate[Divide[Cosh[t]- 1,t], {t, 0, z}, GenerateConditions->None]
Successful Successful - Successful [Tested: 7]