Exponential, Logarithmic, Sine, and Cosine Integrals - 6.4 Analytic Continuation

From testwiki
Revision as of 11:14, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
6.4.E1 E 1 ( z ) = Ein ( z ) - Ln z - γ exponential-integral 𝑧 complementary-exponential-integral 𝑧 multivalued-natural-logarithm 𝑧 {\displaystyle{\displaystyle E_{1}\left(z\right)=\mathrm{Ein}\left(z\right)-% \operatorname{Ln}z-\gamma}}
\expintE@{z} = \expintEin@{z}-\Ln@@{z}-\EulerConstant

Error
ExpIntegralE[1, z] == ExpIntegralE[1, z] + Ln[z] + EulerGamma - Log[z]- EulerGamma
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[Complex[0.0, 0.5235987755982988], Times[-1.0, Ln[Complex[0.8660254037844387, 0.49999999999999994]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.0, 2.0943951023931953], Times[-1.0, Ln[Complex[-0.4999999999999998, 0.8660254037844387]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
6.4.E2 E 1 ( z e 2 m π i ) = E 1 ( z ) - 2 m π i exponential-integral 𝑧 superscript 𝑒 2 𝑚 𝜋 𝑖 exponential-integral 𝑧 2 𝑚 𝜋 𝑖 {\displaystyle{\displaystyle E_{1}\left(ze^{2m\pi i}\right)=E_{1}\left(z\right% )-2m\pi i}}
\expintE@{ze^{2m\pi i}} = \expintE@{z}-2m\pi i

Ei(z*exp(2*m*Pi*I)) = Ei(z)- 2*m*Pi*I
ExpIntegralE[1, z*Exp[2*m*Pi*I]] == ExpIntegralE[1, z]- 2*m*Pi*I
Failure Failure
Failed [21 / 21]
Result: -.1e-8+6.283185310*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 1, m = 3}

Result: -.6e-8+12.56637063*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, m = 2, m = 3}

... skip entries to safe data
Failed [7 / 7]
Result: Complex[0.0, 18.84955592153876]
Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, 18.84955592153876]
Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
6.4.E3 E 1 ( z e + π i ) = Ein ( - z ) - ln z - γ - π i exponential-integral 𝑧 superscript 𝑒 𝜋 𝑖 complementary-exponential-integral 𝑧 𝑧 𝜋 𝑖 {\displaystyle{\displaystyle E_{1}\left(ze^{+\pi i}\right)=\mathrm{Ein}\left(-% z\right)-\ln z-\gamma-\pi i}}
\expintE@{ze^{+\pi i}} = \expintEin@{-z}-\ln@@{z}-\EulerConstant-\pi i
| ph z | π phase 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\pi}}
Error
ExpIntegralE[1, z*Exp[+ Pi*I]] == ExpIntegralE[1, - z] + Ln[- z] + EulerGamma - Log[z]- EulerGamma - Pi*I
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[Complex[0.0, 3.6651914291880923], Times[-1.0, Ln[Complex[-0.8660254037844387, -0.49999999999999994]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.0, 5.235987755982989], Times[-1.0, Ln[Complex[0.4999999999999998, -0.8660254037844387]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
6.4.E3 E 1 ( z e - π i ) = Ein ( - z ) - ln z - γ + π i exponential-integral 𝑧 superscript 𝑒 𝜋 𝑖 complementary-exponential-integral 𝑧 𝑧 𝜋 𝑖 {\displaystyle{\displaystyle E_{1}\left(ze^{-\pi i}\right)=\mathrm{Ein}\left(-% z\right)-\ln z-\gamma+\pi i}}
\expintE@{ze^{-\pi i}} = \expintEin@{-z}-\ln@@{z}-\EulerConstant+\pi i
| ph z | π phase 𝑧 𝜋 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\pi}}
Error
ExpIntegralE[1, z*Exp[- Pi*I]] == ExpIntegralE[1, - z] + Ln[- z] + EulerGamma - Log[z]- EulerGamma + Pi*I
Missing Macro Error Failure -
Failed [7 / 7]
Result: Plus[Complex[0.0, -2.6179938779914944], Times[-1.0, Ln[Complex[-0.8660254037844387, -0.49999999999999994]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Plus[Complex[0.0, -1.0471975511965976], Times[-1.0, Ln[Complex[0.4999999999999998, -0.8660254037844387]]]]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

... skip entries to safe data
6.4.E4 Ci ( z e + π i ) = + π i + Ci ( z ) cosine-integral 𝑧 superscript 𝑒 𝜋 𝑖 𝜋 𝑖 cosine-integral 𝑧 {\displaystyle{\displaystyle\mathrm{Ci}\left(ze^{+\pi i}\right)=+\pi i+\mathrm% {Ci}\left(z\right)}}
\cosint@{ze^{+\pi i}} = +\pi i+\cosint@{z}

Ci(z*exp(+ Pi*I)) = + Pi*I + Ci(z)
CosIntegral[z*Exp[+ Pi*I]] == + Pi*I + CosIntegral[z]
Failure Failure
Failed [2 / 7]
Result: 0.-6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: 0.-6.283185308*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Failed [2 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

6.4.E4 Ci ( z e - π i ) = - π i + Ci ( z ) cosine-integral 𝑧 superscript 𝑒 𝜋 𝑖 𝜋 𝑖 cosine-integral 𝑧 {\displaystyle{\displaystyle\mathrm{Ci}\left(ze^{-\pi i}\right)=-\pi i+\mathrm% {Ci}\left(z\right)}}
\cosint@{ze^{-\pi i}} = -\pi i+\cosint@{z}

Ci(z*exp(- Pi*I)) = - Pi*I + Ci(z)
CosIntegral[z*Exp[- Pi*I]] == - Pi*I + CosIntegral[z]
Failure Failure
Failed [5 / 7]
Result: 0.+6.283185308*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 0.+6.283185308*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[0.0, 6.283185307179585]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data
6.4.E5 Chi ( z e + π i ) = + π i + Chi ( z ) hyperbolic-cosine-integral 𝑧 superscript 𝑒 𝜋 𝑖 𝜋 𝑖 hyperbolic-cosine-integral 𝑧 {\displaystyle{\displaystyle\mathrm{Chi}\left(ze^{+\pi i}\right)=+\pi i+% \mathrm{Chi}\left(z\right)}}
\coshint@{ze^{+\pi i}} = +\pi i+\coshint@{z}

Chi(z*exp(+ Pi*I)) = + Pi*I + Chi(z)
CoshIntegral[z*Exp[+ Pi*I]] == + Pi*I + CoshIntegral[z]
Failure Failure
Failed [2 / 7]
Result: 0.-6.283185308*I
Test Values: {z = 1/2*3^(1/2)+1/2*I}

Result: 0.-6.283185307*I
Test Values: {z = -1/2+1/2*I*3^(1/2)}

Failed [2 / 7]
Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}

Result: Complex[0.0, -6.283185307179586]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}

6.4.E5 Chi ( z e - π i ) = - π i + Chi ( z ) hyperbolic-cosine-integral 𝑧 superscript 𝑒 𝜋 𝑖 𝜋 𝑖 hyperbolic-cosine-integral 𝑧 {\displaystyle{\displaystyle\mathrm{Chi}\left(ze^{-\pi i}\right)=-\pi i+% \mathrm{Chi}\left(z\right)}}
\coshint@{ze^{-\pi i}} = -\pi i+\coshint@{z}

Chi(z*exp(- Pi*I)) = - Pi*I + Chi(z)
CoshIntegral[z*Exp[- Pi*I]] == - Pi*I + CoshIntegral[z]
Failure Failure
Failed [5 / 7]
Result: 0.+6.283185307*I
Test Values: {z = 1/2-1/2*I*3^(1/2)}

Result: 0.+6.283185308*I
Test Values: {z = -1/2*3^(1/2)-1/2*I}

... skip entries to safe data
Failed [5 / 7]
Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}

Result: Complex[0.0, 6.283185307179586]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[-5, 6]], Pi]]]}

... skip entries to safe data