Error Functions, Dawsonβs and Fresnel Integrals - 7.8 Inequalities
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
7.8.E1 | \MillsM@{x} = \frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}} |
|
Error
|
Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] == Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None],Exp[- (x)^(2)]]
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Plus[-0.2849976548947546, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}
Result: Plus[-0.545641360765047, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}
... skip entries to safe data |
7.8.E1 | \frac{\int_{x}^{\infty}e^{-t^{2}}\diff{t}}{e^{-x^{2}}} = e^{x^{2}}\int_{x}^{\infty}e^{-t^{2}}\diff{t} |
|
(int(exp(- (t)^(2)), t = x..infinity))/(exp(- (x)^(2))) = exp((x)^(2))*int(exp(- (t)^(2)), t = x..infinity)
|
Divide[Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None],Exp[- (x)^(2)]] == Exp[(x)^(2)]*Integrate[Exp[- (t)^(2)], {t, x, Infinity}, GenerateConditions->None]
|
Successful | Successful | - | Successful [Tested: 3] |
7.8.E2 | \frac{1}{x+\sqrt{x^{2}+2}} < \MillsM@{x} |
Error
|
Divide[1,x +Sqrt[(x)^(2)+ 2]] < Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Less[0.28077640640441515, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}
Result: Less[0.5, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}
... skip entries to safe data | |
7.8.E2 | \MillsM@{x} \leq \frac{1}{x+\sqrt{x^{2}+(4/\pi)}} |
Error
|
Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] <= Divide[1,x +Sqrt[(x)^(2)+(4/Pi)]]
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: LessEqual[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.2961182351849971], {Rule[x, 1.5]}
Result: LessEqual[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.5766361194388748], {Rule[x, 0.5]}
... skip entries to safe data | |
7.8.E3 | \frac{\sqrt{\pi}}{2\sqrt{\pi}x+2} \leq \MillsM@{x} |
Error
|
Divide[Sqrt[Pi],2*Sqrt[Pi]*x + 2] <= Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: LessEqual[0.24222581297045487, Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}
Result: LessEqual[0.46984109573138116, Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}
... skip entries to safe data | |
7.8.E3 | \MillsM@{x} < \frac{1}{x+1} |
Error
|
Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[1,x + 1]
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Less[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.4], {Rule[x, 1.5]}
Result: Less[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.6666666666666666], {Rule[x, 0.5]}
... skip entries to safe data | |
7.8.E4 | \MillsM@{x} < \frac{2}{3x+\sqrt{x^{2}+4}} |
Error
|
Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[2,3*x +Sqrt[(x)^(2)+ 4]]
|
Missing Macro Error | Failure | - | Failed [3 / 3]
Result: Less[Times[9.487735836358526, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.2857142857142857], {Rule[x, 1.5]}
Result: Less[Times[1.2840254166877414, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.5615528128088303], {Rule[x, 0.5]}
... skip entries to safe data | |
7.8.E5 | \frac{x^{2}}{2x^{2}+1} \leq \frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3} |
((x)^(2))/(2*(x)^(2)+ 1) <= ((x)^(2)*(2*(x)^(2)+ 5))/(4*(x)^(4)+ 12*(x)^(2)+ 3)
|
Divide[(x)^(2),2*(x)^(2)+ 1] <= Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
7.8.E5 | \frac{x^{2}(2x^{2}+5)}{4x^{4}+12x^{2}+3} \leq x\MillsM@{x} |
Error
|
Divide[(x)^(2)*(2*(x)^(2)+ 5),4*(x)^(4)+ 12*(x)^(2)+ 3] <= x*Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}]
|
Missing Macro Error | Failure | Skip - symbolical successful subtest | Failed [3 / 3]
Result: LessEqual[0.4253731343283582, Times[14.23160375453779, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]]], {Rule[x, 1.5]}
Result: LessEqual[0.22, Times[0.6420127083438707, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]]], {Rule[x, 0.5]}
... skip entries to safe data | |
7.8.E5 | x\MillsM@{x} < \frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15} |
Error
|
x*Exp[Power[x,2]] Int[Exp[-t^2], {t, x, Infinity}] < Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15]
|
Missing Macro Error | Failure | Skip - symbolical successful subtest | Failed [3 / 3]
Result: Less[Times[14.23160375453779, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 1.5, DirectedInfinity[1]}]], 0.42834890965732086], {Rule[x, 1.5]}
Result: Less[Times[0.6420127083438707, Int[Power[2.718281828459045, Times[-1.0, Power[t, 2]]]
Test Values: {t, 0.5, DirectedInfinity[1]}]], 0.31481481481481477], {Rule[x, 0.5]}
... skip entries to safe data | |
7.8.E5 | \frac{2x^{4}+9x^{2}+4}{4x^{4}+20x^{2}+15} < \frac{x^{2}+1}{2x^{2}+3} |
(2*(x)^(4)+ 9*(x)^(2)+ 4)/(4*(x)^(4)+ 20*(x)^(2)+ 15) < ((x)^(2)+ 1)/(2*(x)^(2)+ 3)
|
Divide[2*(x)^(4)+ 9*(x)^(2)+ 4,4*(x)^(4)+ 20*(x)^(2)+ 15] < Divide[(x)^(2)+ 1,2*(x)^(2)+ 3]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
7.8.E6 | \int_{0}^{x}e^{at^{2}}\diff{t} < \frac{1}{3ax}\left(2e^{ax^{2}}+ax^{2}-2\right) |
int(exp(a*(t)^(2)), t = 0..x) < (1)/(3*a*x)*(2*exp(a*(x)^(2))+ a*(x)^(2)- 2)
|
Integrate[Exp[a*(t)^(2)], {t, 0, x}, GenerateConditions->None] < Divide[1,3*a*x]*(2*Exp[a*(x)^(2)]+ a*(x)^(2)- 2)
|
Error | Failure | - | Successful [Tested: 9] | |
7.8.E7 | \int_{0}^{x}e^{t^{2}}\diff{t} < \frac{e^{x^{2}}-1}{x} |
int(exp((t)^(2)), t = 0..x) < (exp((x)^(2))- 1)/(x)
|
Integrate[Exp[(t)^(2)], {t, 0, x}, GenerateConditions->None] < Divide[Exp[(x)^(2)]- 1,x]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
7.8.E8 | \erf@@{x} < \sqrt{1-\expe^{-4x^{2}/\cpi}} |
erf(x) < sqrt(1 - exp(- 4*(x)^(2)/Pi))
|
Erf[x] < Sqrt[1 - Exp[- 4*(x)^(2)/Pi]]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |