Error Functions, Dawson’s and Fresnel Integrals - 7.18 Repeated Integrals of the Complementary Error Function
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
7.18#Ex1 | \repinterfc{-1}@{z} = \frac{2}{\sqrt{\pi}}e^{-z^{2}} |
|
erfc(- 1, z) = (2)/(sqrt(Pi))*exp(- (z)^(2))
|
I^(- 1)*Erfc[z] == Divide[2,Sqrt[Pi]]*Exp[- (z)^(2)]
|
Successful | Failure | - | Failed [7 / 7]
Result: Complex[-0.6965576261018753, 0.4234600295072003]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.0623272173358496, -3.394891496894652]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
7.18#Ex2 | \repinterfc{0}@{z} = \erfc@@{z} |
|
erfc(0, z) = erfc(z)
|
I^(0)*Erfc[z] == Erfc[z]
|
Successful | Successful | - | Successful [Tested: 7] |
7.18.E2 | \repinterfc{n}@{z} = \int_{z}^{\infty}\repinterfc{n-1}@{t}\diff{t} |
|
erfc(n, z) = int(erfc(n - 1, t), t = z..infinity)
|
I^(n)*Erfc[z] == Integrate[I^(n - 1)*Erfc[t], {t, z, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [12 / 21] Result: Float(undefined)-.9036864554e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 1}
Result: Float(undefined)-.2674601677e-1*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 2}
... skip entries to safe data |
Failed [21 / 21]
Result: Complex[0.24282268468866475, 0.18825452738900728]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.18825452738900728, 0.24282268468866475]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
7.18.E2 | \int_{z}^{\infty}\repinterfc{n-1}@{t}\diff{t} = \frac{2}{\sqrt{\pi}}\int_{z}^{\infty}\frac{(t-z)^{n}}{n!}e^{-t^{2}}\diff{t} |
|
int(erfc(n - 1, t), t = z..infinity) = (2)/(sqrt(Pi))*int(((t - z)^(n))/(factorial(n))*exp(- (t)^(2)), t = z..infinity)
|
Integrate[I^(n - 1)*Erfc[t], {t, z, Infinity}, GenerateConditions->None] == Divide[2,Sqrt[Pi]]*Integrate[Divide[(t - z)^(n),(n)!]*Exp[- (t)^(2)], {t, z, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [12 / 21] Result: Float(undefined)
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 1}
Result: Float(undefined)
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 2}
... skip entries to safe data |
Failed [13 / 21]
Result: Complex[0.09296765524307439, 0.0370882508190411]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.008358539694265255, 0.09727600825382138]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
7.18.E3 | \deriv{}{z}\repinterfc{n}@{z} = -\repinterfc{n-1}@{z} |
|
diff(erfc(n, z), z) = - erfc(n - 1, z)
|
D[I^(n)*Erfc[z], z] == - I^(n - 1)*Erfc[z]
|
Successful | Failure | - | Failed [7 / 7]
Result: Complex[0.4234600295072003, 0.6965576261018753]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-3.394891496894652, 2.0623272173358496]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
7.18.E4 | \deriv[n]{}{z}\left(e^{z^{2}}\erfc@@{z}\right) = (-1)^{n}2^{n}n!e^{z^{2}}\repinterfc{n}@{z} |
|
diff(exp((z)^(2))*erfc(z), [z$(n)]) = (- 1)^(n)* (2)^(n)* factorial(n)*exp((z)^(2))*erfc(n, z)
|
D[Exp[(z)^(2)]*Erfc[z], {z, n}] == (- 1)^(n)* (2)^(n)* (n)!*Exp[(z)^(2)]*I^(n)*Erfc[z]
|
Failure | Failure | Skipped - Because timed out | Failed [7 / 7]
Result: Complex[-7.3936292130611685, -19.806900214215183]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-48.524741574815884, -12.92653708276189]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
7.18.E5 | \deriv[2]{W}{z}+2z\deriv{W}{z}-2nW = 0 |
diff(W, [z$(2)])+ 2*z*diff(W, z)- 2*n*W = 0
|
D[W, {z, 2}]+ 2*z*D[W, z]- 2*n*W == 0
|
Failure | Failure | Failed [210 / 210] Result: -1.732050808-1.000000000*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 1}
Result: -3.464101616-2.*I
Test Values: {W = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, n = 2}
... skip entries to safe data |
Failed [210 / 210]
Result: Complex[-1.7320508075688774, -0.9999999999999999]
Test Values: {Rule[n, 1], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-3.464101615137755, -1.9999999999999998]
Test Values: {Rule[n, 2], Rule[W, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
7.18.E6 | \repinterfc{n}@{z} = \sum_{k=0}^{\infty}\frac{(-1)^{k}z^{k}}{2^{n-k}k!\EulerGamma@{1+\frac{1}{2}(n-k)}} |
erfc(n, z) = sum(((- 1)^(k)* (z)^(k))/((2)^(n - k)* factorial(k)*GAMMA(1 +(1)/(2)*(n - k))), k = 0..infinity)
|
I^(n)*Erfc[z] == Sum[Divide[(- 1)^(k)* (z)^(k),(2)^(n - k)* (k)!*Gamma[1 +Divide[1,2]*(n - k)]], {k, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Failed [21 / 21] Result: -.8660254034-.4999999991*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 1}
Result: .4999999999+.4330127014*I
Test Values: {z = 1/2*3^(1/2)+1/2*I, n = 2}
... skip entries to safe data |
Failed [21 / 21]
Result: Complex[0.2428226846886648, 0.18825452738900733]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.09528687214593286, 0.27991093550770596]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
7.18.E7 | \repinterfc{n}@{z} = -\frac{z}{n}\repinterfc{n-1}@{z}+\frac{1}{2n}\repinterfc{n-2}@{z} |
|
erfc(n, z) = -(z)/(n)*erfc(n - 1, z)+(1)/(2*n)*erfc(n - 2, z)
|
I^(n)*Erfc[z] == -Divide[z,n]*I^(n - 1)*Erfc[z]+Divide[1,2*n]*I^(n - 2)*Erfc[z]
|
Successful | Failure | - | Failed [7 / 7]
Result: Complex[-0.36581044505750443, -0.05743209207542904]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.9176954586385406, -3.02111135172986]
Test Values: {Rule[n, 3], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
7.18.E8 | (-1)^{n}\repinterfc{n}@{z}+\repinterfc{n}@{-z} = \frac{i^{-n}}{2^{n-1}n!}\HermitepolyH{n}@{iz} |
|
(- 1)^(n)* erfc(n, z)+ erfc(n, - z) = ((I)^(- n))/((2)^(n - 1)* factorial(n))*HermiteH(n, I*z)
|
(- 1)^(n)* I^(n)*Erfc[z]+ I^(n)*Erfc[- z] == Divide[(I)^(- n),(2)^(n - 1)* (n)!]*HermiteH[n, I*z]
|
Failure | Failure | Successful [Tested: 21] | Failed [21 / 21]
Result: Complex[-2.2383806450017882, 0.8042282364091201]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-3.0, -0.8660254037844386]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
7.18.E9 | \repinterfc{n}@{z} = e^{-z^{2}}\left(\frac{1}{2^{n}\EulerGamma@{\tfrac{1}{2}n+1}}\KummerconfhyperM@{\tfrac{1}{2}n+\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}}-\frac{z}{2^{n-1}\EulerGamma@{\tfrac{1}{2}n+\tfrac{1}{2}}}\KummerconfhyperM@{\tfrac{1}{2}n+1}{\tfrac{3}{2}}{z^{2}}\right) |
erfc(n, z) = exp(- (z)^(2))*((1)/((2)^(n)* GAMMA((1)/(2)*n + 1))*KummerM((1)/(2)*n +(1)/(2), (1)/(2), (z)^(2))-(z)/((2)^(n - 1)* GAMMA((1)/(2)*n +(1)/(2)))*KummerM((1)/(2)*n + 1, (3)/(2), (z)^(2)))
|
I^(n)*Erfc[z] == Exp[- (z)^(2)]*(Divide[1,(2)^(n)* Gamma[Divide[1,2]*n + 1]]*Hypergeometric1F1[Divide[1,2]*n +Divide[1,2], Divide[1,2], (z)^(2)]-Divide[z,(2)^(n - 1)* Gamma[Divide[1,2]*n +Divide[1,2]]]*Hypergeometric1F1[Divide[1,2]*n + 1, Divide[3,2], (z)^(2)])
|
Failure | Failure | Successful [Tested: 21] | Failed [21 / 21]
Result: Complex[0.24282268468866477, 0.18825452738900755]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.09528687214593284, 0.27991093550770596]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
7.18.E10 | \repinterfc{n}@{z} = \frac{e^{-z^{2}}}{2^{n}\sqrt{\pi}}\KummerconfhyperU@{\tfrac{1}{2}n+\tfrac{1}{2}}{\tfrac{1}{2}}{z^{2}} |
|
erfc(n, z) = (exp(- (z)^(2)))/((2)^(n)*sqrt(Pi))*KummerU((1)/(2)*n +(1)/(2), (1)/(2), (z)^(2))
|
I^(n)*Erfc[z] == Divide[Exp[- (z)^(2)],(2)^(n)*Sqrt[Pi]]*HypergeometricU[Divide[1,2]*n +Divide[1,2], Divide[1,2], (z)^(2)]
|
Failure | Failure | Failed [6 / 21] Result: 1.000000000-1.732050808*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 1}
Result: .1727305880-1.014340238*I
Test Values: {z = -1/2+1/2*I*3^(1/2), n = 2}
... skip entries to safe data |
Failed [21 / 21]
Result: Complex[0.24282268468866502, 0.1882545273890069]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.09528687214593298, 0.2799109355077059]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |
7.18.E11 | \repinterfc{n}@{z} = \frac{e^{-z^{2}/2}}{\sqrt{2^{n-1}\pi}}\paraU@{n+\tfrac{1}{2}}{z\sqrt{2}} |
|
erfc(n, z) = (exp(- (z)^(2)/2))/(sqrt((2)^(n - 1)* Pi))*CylinderU(n +(1)/(2), z*sqrt(2))
|
I^(n)*Erfc[z] == Divide[Exp[- (z)^(2)/2],Sqrt[(2)^(n - 1)* Pi]]*ParabolicCylinderD[- 1/2 -(n +Divide[1,2]), z*Sqrt[2]]
|
Failure | Failure | Successful [Tested: 21] | Failed [21 / 21]
Result: Complex[0.24282268468866486, 0.1882545273890072]
Test Values: {Rule[n, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.09528687214593298, 0.2799109355077059]
Test Values: {Rule[n, 2], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data |