Error Functions, Dawson’s and Fresnel Integrals - 8.2 Definitions and Basic Properties
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
8.2.E1 | \incgamma@{a}{z} = \int_{0}^{z}t^{a-1}e^{-t}\diff{t} |
GAMMA(a)-GAMMA(a, z) = int((t)^(a - 1)* exp(- t), t = 0..z)
|
Gamma[a, 0, z] == Integrate[(t)^(a - 1)* Exp[- t], {t, 0, z}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 21] | Successful [Tested: 21] | |
8.2.E2 | \incGamma@{a}{z} = \int_{z}^{\infty}t^{a-1}e^{-t}\diff{t} |
|
GAMMA(a, z) = int((t)^(a - 1)* exp(- t), t = z..infinity)
|
Gamma[a, z] == Integrate[(t)^(a - 1)* Exp[- t], {t, z, Infinity}, GenerateConditions->None]
|
Failure | Successful | Failed [14 / 42] Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -2, z = 1/2*3^(1/2)+1/2*I}
Result: Float(infinity)+Float(infinity)*I
Test Values: {a = -2, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 42] |
8.2.E3 | \incgamma@{a}{z}+\incGamma@{a}{z} = \EulerGamma@{a} |
GAMMA(a)-GAMMA(a, z)+ GAMMA(a, z) = GAMMA(a)
|
Gamma[a, 0, z]+ Gamma[a, z] == Gamma[a]
|
Successful | Successful | - | Successful [Tested: 7] | |
8.2#Ex1 | \normincGammaP@{a}{z} = \frac{\incgamma@{a}{z}}{\EulerGamma@{a}} |
(GAMMA(a)-GAMMA(a, z))/GAMMA(a) = (GAMMA(a)-GAMMA(a, z))/(GAMMA(a))
|
GammaRegularized[a, 0, z] == Divide[Gamma[a, 0, z],Gamma[a]]
|
Successful | Successful | - | Successful [Tested: 21] | |
8.2#Ex2 | \normincGammaQ@{a}{z} = \frac{\incGamma@{a}{z}}{\EulerGamma@{a}} |
GAMMA(a, z)/GAMMA(a) = (GAMMA(a, z))/(GAMMA(a))
|
GammaRegularized[a, z] == Divide[Gamma[a, z],Gamma[a]]
|
Successful | Successful | - | Successful [Tested: 21] | |
8.2.E5 | \normincGammaP@{a}{z}+\normincGammaQ@{a}{z} = 1 |
(GAMMA(a)-GAMMA(a, z))/GAMMA(a)+ GAMMA(a, z)/GAMMA(a) = 1
|
GammaRegularized[a, 0, z]+ GammaRegularized[a, z] == 1
|
Successful | Successful | - | Successful [Tested: 21] | |
8.2.E6 | \scincgamma@{a}{z} = z^{-a}\normincGammaP@{a}{z} |
|
(z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a) = (z)^(- a)* (GAMMA(a)-GAMMA(a, z))/GAMMA(a)
|
Error
|
Successful | Missing Macro Error | Skip - symbolical successful subtest | - |
8.2.E6 | z^{-a}\normincGammaP@{a}{z} = \frac{z^{-a}}{\EulerGamma@{a}}\incgamma@{a}{z} |
(z)^(- a)* (GAMMA(a)-GAMMA(a, z))/GAMMA(a) = ((z)^(- a))/(GAMMA(a))*GAMMA(a)-GAMMA(a, z)
|
(z)^(- a)* GammaRegularized[a, 0, z] == Divide[(z)^(- a),Gamma[a]]*Gamma[a, 0, z]
|
Failure | Successful | Failed [21 / 21] Result: .2669922311+.3869142026*I
Test Values: {a = 1.5, z = 1/2*3^(1/2)+1/2*I}
Result: 3.493684189-.9843316111*I
Test Values: {a = 1.5, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Successful [Tested: 21] | |
8.2.E7 | \scincgamma@{a}{z} = \frac{1}{\EulerGamma@{a}}\int_{0}^{1}t^{a-1}e^{-zt}\diff{t} |
(z)^(-(a))*(GAMMA(a)-GAMMA(a, z))/GAMMA(a) = (1)/(GAMMA(a))*int((t)^(a - 1)* exp(- z*t), t = 0..1)
|
Error
|
Failure | Missing Macro Error | Successful [Tested: 21] | - | |
8.2.E8 | \incgamma@{a}{ze^{2\pi mi}} = e^{2\pi mia}\incgamma@{a}{z} |
GAMMA(a)-GAMMA(a, z*exp(2*Pi*m*I)) = exp(2*Pi*m*I*a)*GAMMA(a)-GAMMA(a, z)
|
Gamma[a, 0, z*Exp[2*Pi*m*I]] == Exp[2*Pi*m*I*a]*Gamma[a, 0, z]
|
Failure | Failure | Failed [28 / 63] Result: 1.772453851+.14e-8*I
Test Values: {a = 1.5, z = 1/2*3^(1/2)+1/2*I, m = 1, a = 1}
Result: 1.772453851+.62e-8*I
Test Values: {a = 1.5, z = 1/2*3^(1/2)+1/2*I, m = 3, a = 1}
... skip entries to safe data |
Successful [Tested: 21] | |
8.2.E9 | \incGamma@{a}{ze^{2\pi mi}} = e^{2\pi mia}\incGamma@{a}{z}+(1-e^{2\pi mia})\EulerGamma@{a} |
GAMMA(a, z*exp(2*Pi*m*I)) = exp(2*Pi*m*I*a)*GAMMA(a, z)+(1 - exp(2*Pi*m*I*a))*GAMMA(a)
|
Gamma[a, z*Exp[2*Pi*m*I]] == Exp[2*Pi*m*I*a]*Gamma[a, z]+(1 - Exp[2*Pi*m*I*a])*Gamma[a]
|
Failure | Failure | Failed [28 / 63] Result: -.701776495-.3980325655*I
Test Values: {a = 1.5, z = 1/2*3^(1/2)+1/2*I, m = 1}
Result: -.701776493-.3980325669*I
Test Values: {a = 1.5, z = 1/2*3^(1/2)+1/2*I, m = 3}
... skip entries to safe data |
Failed [28 / 63]
Result: Complex[-0.7017764946044596, -0.3980325648566406]
Test Values: {Rule[a, 1.5], Rule[m, 1], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.7017764946044598, -0.39803256485664035]
Test Values: {Rule[a, 1.5], Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
... skip entries to safe data | |
8.2.E10 | e^{-\pi ia}\incGamma@{a}{ze^{\pi i}}-e^{\pi ia}\incGamma@{a}{ze^{-\pi i}} = -\frac{2\pi i}{\EulerGamma@{1-a}} |
exp(- Pi*I*a)*GAMMA(a, z*exp(Pi*I))- exp(Pi*I*a)*GAMMA(a, z*exp(- Pi*I)) = -(2*Pi*I)/(GAMMA(1 - a))
|
Exp[- Pi*I*a]*Gamma[a, z*Exp[Pi*I]]- Exp[Pi*I*a]*Gamma[a, z*Exp[- Pi*I]] == -Divide[2*Pi*I,Gamma[1 - a]]
|
Failure | Failure | Failed [28 / 28] Result: -2.710645106+2.690107924*I
Test Values: {a = -1.5, z = 1/2*3^(1/2)+1/2*I}
Result: .1295806364+5.171352915*I
Test Values: {a = -1.5, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [28 / 28]
Result: Complex[-2.710645107283499, 2.690107923521634]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.12958063668571548, 5.171352913200156]
Test Values: {Rule[a, -1.5], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
8.2.E11 | \incGamma@{a}{ze^{+\pi i}} = \EulerGamma@{a}(1-z^{a}e^{+\pi ia}\scincgamma@{a}{-z}) |
GAMMA(a, z*exp(+ Pi*I)) = GAMMA(a)*(1 - (z)^(a)* exp(+ Pi*I*a)*(- z)^(-(a))*(GAMMA(a)-GAMMA(a, - z))/GAMMA(a))
|
Error
|
Failure | Missing Macro Error | Failed [4 / 21] Result: 2.046852240-1.006153525*I
Test Values: {a = 1.5, z = 1/2*3^(1/2)+1/2*I}
Result: -.4563214597+.8560373719*I
Test Values: {a = 1.5, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
- | |
8.2.E11 | \incGamma@{a}{ze^{-\pi i}} = \EulerGamma@{a}(1-z^{a}e^{-\pi ia}\scincgamma@{a}{-z}) |
GAMMA(a, z*exp(- Pi*I)) = GAMMA(a)*(1 - (z)^(a)* exp(- Pi*I*a)*(- z)^(-(a))*(GAMMA(a)-GAMMA(a, - z))/GAMMA(a))
|
Error
|
Failure | Missing Macro Error | Failed [10 / 21] Result: 1.510498964-.9249588863*I
Test Values: {a = 1.5, z = 1/2-1/2*I*3^(1/2)}
Result: -.7017764949-.3980325647*I
Test Values: {a = 1.5, z = -1/2*3^(1/2)-1/2*I}
... skip entries to safe data |
- | |
8.2.E12 | \deriv[2]{w}{z}+\left(1+\frac{1-a}{z}\right)\deriv{w}{z} = 0 |
|
diff(w, [z$(2)])+(1 +(1 - a)/(z))*diff(w, z) = 0
|
D[w, {z, 2}]+(1 +Divide[1 - a,z])*D[w, z] == 0
|
Successful | Successful | - | Successful [Tested: 300] |
8.2.E13 | \deriv[2]{w}{z}-\left(1+\frac{1-a}{z}\right)\deriv{w}{z}+\frac{1-a}{z^{2}}w = 0 |
|
diff(w, [z$(2)])-(1 +(1 - a)/(z))*diff(w, z)+(1 - a)/((z)^(2))*w = 0
|
D[w, {z, 2}]-(1 +Divide[1 - a,z])*D[w, z]+Divide[1 - a,(z)^(2)]*w == 0
|
Failure | Failure | Failed [300 / 300] Result: 2.165063509-1.250000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I}
Result: -2.165063509+1.250000000*I
Test Values: {a = -1.5, w = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[2.1650635094610964, -1.25]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-2.1650635094610964, 1.2500000000000004]
Test Values: {Rule[a, -1.5], Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |