DLMF
|
Formula
|
Constraints
|
Maple
|
Mathematica
|
Symbolic Maple
|
Symbolic Mathematica
|
Numeric Maple
|
Numeric Mathematica
|
8.17.E1 |
\incBeta{x}@{a}{b} = \int_{0}^{x}t^{a-1}(1-t)^{b-1}\diff{t} |
|
int(t^(a-1)*(1-t)^(b-1), t = 0 .. x) = int((t)^(a - 1)*(1 - t)^(b - 1), t = 0..x)
|
Beta[x, a, b] == Integrate[(t)^(a - 1)*(1 - t)^(b - 1), {t, 0, x}, GenerateConditions->None]
|
Successful |
Successful |
- |
Successful [Tested: 108]
|
8.17.E2 |
\normincBetaI{x}@{a}{b} = \incBeta{x}@{a}{b}/\EulerBeta@{a}{b} |
|
|
BetaRegularized[x, a, b] == Beta[x, a, b]/Beta[a, b]
|
Missing Macro Error |
Successful |
- |
Failed [45 / 108] Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[x, 1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[x, 0.5]}
... skip entries to safe data
|
8.17.E3 |
\EulerBeta@{a}{b} = \frac{\EulerGamma@{a}\EulerGamma@{b}}{\EulerGamma@{a+b}} |
|
Beta(a, b) = (GAMMA(a)*GAMMA(b))/(GAMMA(a + b))
|
Beta[a, b] == Divide[Gamma[a]*Gamma[b],Gamma[a + b]]
|
Failure |
Successful |
Successful [Tested: 9] |
Successful [Tested: 9]
|
8.17.E4 |
\normincBetaI{x}@{a}{b} = 1-\normincBetaI{1-x}@{b}{a} |
|
|
BetaRegularized[x, a, b] == 1 - BetaRegularized[1 - x, b, a]
|
Missing Macro Error |
Failure |
- |
Failed [39 / 108] Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[x, 1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[x, 0.5]}
... skip entries to safe data
|
8.17.E5 |
\normincBetaI{x}@{m}{n-m+1} = \sum_{j=m}^{n}\binom{n}{j}x^{j}(1-x)^{n-j} |
|
|
BetaRegularized[x, m, n - m + 1] == Sum[Binomial[n,j]*(x)^(j)*(1 - x)^(n - j), {j, m, n}, GenerateConditions->None]
|
Missing Macro Error |
Failure |
- |
Successful [Tested: 9]
|
8.17.E6 |
\normincBetaI{x}@{a}{a} = \tfrac{1}{2}\normincBetaI{4x(1-x)}@{a}{\tfrac{1}{2}} |
|
|
BetaRegularized[x, a, a] == Divide[1,2]*BetaRegularized[4*x*(1 - x), a, Divide[1,2]]
|
Missing Macro Error |
Failure |
- |
Failed [3 / 6] Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[x, 0.5]}
Result: Indeterminate
Test Values: {Rule[a, -0.5], Rule[x, 0.5]}
... skip entries to safe data
|
8.17.E7 |
\incBeta{x}@{a}{b} = \frac{x^{a}}{a}\hyperF@{a}{1-b}{a+1}{x} |
|
int(t^(a-1)*(1-t)^(b-1), t = 0 .. x) = ((x)^(a))/(a)*hypergeom([a, 1 - b], [a + 1], x)
|
Beta[x, a, b] == Divide[(x)^(a),a]*Hypergeometric2F1[a, 1 - b, a + 1, x]
|
Failure |
Successful |
Skipped - Because timed out |
Failed [18 / 108] Result: Indeterminate
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[x, 1.5]}
Result: Indeterminate
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[x, 0.5]}
... skip entries to safe data
|
8.17.E8 |
\incBeta{x}@{a}{b} = \frac{x^{a}(1-x)^{b}}{a}\hyperF@{a+b}{1}{a+1}{x} |
|
int(t^(a-1)*(1-t)^(b-1), t = 0 .. x) = ((x)^(a)*(1 - x)^(b))/(a)*hypergeom([a + b, 1], [a + 1], x)
|
Beta[x, a, b] == Divide[(x)^(a)*(1 - x)^(b),a]*Hypergeometric2F1[a + b, 1, a + 1, x]
|
Failure |
Successful |
Skipped - Because timed out |
Failed [15 / 108] Result: Indeterminate
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[x, 1.5]}
Result: Indeterminate
Test Values: {Rule[a, -2], Rule[b, -1.5], Rule[x, 0.5]}
... skip entries to safe data
|
8.17.E9 |
\incBeta{x}@{a}{b} = \frac{x^{a}(1-x)^{b-1}}{a}\hyperF@@{1}{1-b}{a+1}{\frac{x}{x-1}} |
|
int(t^(a-1)*(1-t)^(b-1), t = 0 .. x) = ((x)^(a)*(1 - x)^(b - 1))/(a)*hypergeom([1, 1 - b], [a + 1], (x)/(x - 1))
|
Beta[x, a, b] == Divide[(x)^(a)*(1 - x)^(b - 1),a]*Hypergeometric2F1[1, 1 - b, a + 1, Divide[x,x - 1]]
|
Failure |
Failure |
Skipped - Because timed out |
Failed [46 / 108] Result: Complex[4.9960036108132044*^-15, -27.48893571891068]
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[x, 1.5]}
Result: Complex[3.191891195797325*^-15, -27.48893571891068]
Test Values: {Rule[a, -1.5], Rule[b, -2], Rule[x, 2]}
... skip entries to safe data
|
8.17.E10 |
\normincBetaI{x}@{a}{b} = \frac{x^{a}(1-x)^{b}}{2\pi i}\int_{c-i\infty}^{c+i\infty}s^{-a}(1-s)^{-b}\frac{\diff{s}}{s-x} |
|
|
BetaRegularized[x, a, b] == Divide[(x)^(a)*(1 - x)^(b),2*Pi*I]*Integrate[(s)^(- a)*(1 - s)^(- b)*Divide[1,s - x], {s, c - I*Infinity, c + I*Infinity}, GenerateConditions->None]
|
Missing Macro Error |
Aborted |
- |
Skipped - Because timed out
|
8.17.E12 |
\normincBetaI{x}@{a}{b} = x\normincBetaI{x}@{a-1}{b}+x^{\prime}\normincBetaI{x}@{a}{b-1} |
|
|
BetaRegularized[x, a, b] == x*BetaRegularized[x, a - 1, b]+(1 - x)*BetaRegularized[x, a, b - 1]
|
Missing Macro Error |
Failure |
- |
Error
|
8.17.E13 |
(a+b)\normincBetaI{x}@{a}{b} = a\normincBetaI{x}@{a+1}{b}+b\normincBetaI{x}@{a}{b+1} |
|
|
(a + b)*BetaRegularized[x, a, b] == a*BetaRegularized[x, a + 1, b]+ b*BetaRegularized[x, a, b + 1]
|
Missing Macro Error |
Successful |
- |
Failed [33 / 108] Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[x, 1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[x, 0.5]}
... skip entries to safe data
|
8.17.E14 |
(a+bx)\normincBetaI{x}@{a}{b} = xb\normincBetaI{x}@{a-1}{b+1}+a\normincBetaI{x}@{a+1}{b} |
|
|
(a + b*x)*BetaRegularized[x, a, b] == x*b*BetaRegularized[x, a - 1, b + 1]+ a*BetaRegularized[x, a + 1, b]
|
Missing Macro Error |
Successful |
- |
Failed [36 / 108] Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[x, 1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[x, 0.5]}
... skip entries to safe data
|
8.17.E16 |
a\normincBetaI{x}@{a+1}{b} = (a+cx)\normincBetaI{x}@{a}{b}-cx\normincBetaI{x}@{a-1}{b} |
|
|
a*BetaRegularized[x, a + 1, b] == (a + c*x)*BetaRegularized[x, a, b]- c*x*BetaRegularized[x, a - 1, b]
|
Missing Macro Error |
Failure |
- |
Failed [246 / 300] Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[x, 1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[c, -1.5], Rule[x, 0.5]}
... skip entries to safe data
|
8.17.E18 |
\normincBetaI{x}@{a}{b} = \normincBetaI{x}@{a+1}{b-1}+\frac{x^{a}(x^{\prime})^{b-1}}{a\EulerBeta@{a}{b}} |
|
|
BetaRegularized[x, a, b] == BetaRegularized[x, a + 1, b - 1]+Divide[(x)^(a)*((1 - x))^(b - 1),a*Beta[a, b]]
|
Missing Macro Error |
Failure |
- |
Error
|
8.17.E19 |
\normincBetaI{x}@{a}{b} = \normincBetaI{x}@{a-1}{b+1}-\frac{x^{a-1}(x^{\prime})^{b}}{b\EulerBeta@{a}{b}} |
|
|
BetaRegularized[x, a, b] == BetaRegularized[x, a - 1, b + 1]-Divide[(x)^(a - 1)*((1 - x))^(b),b*Beta[a, b]]
|
Missing Macro Error |
Failure |
- |
Error
|
8.17.E20 |
\normincBetaI{x}@{a}{b} = \normincBetaI{x}@{a+1}{b}+\frac{x^{a}(x^{\prime})^{b}}{a\EulerBeta@{a}{b}} |
|
|
BetaRegularized[x, a, b] == BetaRegularized[x, a + 1, b]+Divide[(x)^(a)*((1 - x))^(b),a*Beta[a, b]]
|
Missing Macro Error |
Failure |
- |
Error
|
8.17.E21 |
\normincBetaI{x}@{a}{b} = \normincBetaI{x}@{a}{b+1}-\frac{x^{a}(x^{\prime})^{b}}{b\EulerBeta@{a}{b}} |
|
|
BetaRegularized[x, a, b] == BetaRegularized[x, a, b + 1]-Divide[(x)^(a)*((1 - x))^(b),b*Beta[a, b]]
|
Missing Macro Error |
Failure |
- |
Error
|
8.17#Ex3 |
d_{2m} = \frac{m(b-m)x}{(a+2m-1)(a+2m)} |
|
d[2*m] = (m*(b - m)*x)/((a + 2*m - 1)*(a + 2*m)) |
Subscript[d, 2*m] == Divide[m*(b - m)*x,(a + 2*m - 1)*(a + 2*m)] |
Skipped - no semantic math |
Skipped - no semantic math |
- |
-
|
8.17#Ex4 |
d_{2m+1} = -\frac{(a+m)(a+b+m)x}{(a+2m)(a+2m+1)} |
|
d[2*m + 1] = -((a + m)*(a + b + m)*x)/((a + 2*m)*(a + 2*m + 1)) |
Subscript[d, 2*m + 1] == -Divide[(a + m)*(a + b + m)*x,(a + 2*m)*(a + 2*m + 1)] |
Skipped - no semantic math |
Skipped - no semantic math |
- |
-
|
8.17.E24 |
\normincBetaI{x}@{m}{n} = (1-x)^{n}\sum_{j=m}^{\infty}\binom{n+j-1}{j}x^{j} |
|
|
BetaRegularized[x, m, n] == (1 - x)^(n)* Sum[Binomial[n + j - 1,j]*(x)^(j), {j, m, Infinity}, GenerateConditions->None]
|
Missing Macro Error |
Failure |
- |
Successful [Tested: 9]
|