Incomplete Gamma and Related Functions - 8.18 Asymptotic Expansions of
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
8.18.E2 | \xi = -\ln@@{x} |
|
xi = - ln(x)
|
\[Xi] == - Log[x]
|
Failure | Failure | Failed [30 / 30] Result: 1.271490512+.5000000000*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I}
Result: -.945348919e-1+.8660254040*I
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [30 / 30]
Result: Complex[1.271490511892603, 0.49999999999999994]
Test Values: {Rule[x, 1.5], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.0945348918918354, 0.8660254037844387]
Test Values: {Rule[x, 1.5], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
8.18.E4 | aF_{k+1} = (k+b-a\xi)F_{k}+k\xi F_{k-1} |
|
a*F[k + 1] = (k + b - a*xi)*F[k]+ k*xi*F[k - 1] |
a*Subscript[F, k + 1] == (k + b - a*\[Xi])*Subscript[F, k]+ k*\[Xi]*Subscript[F, k - 1] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.18#Ex1 | F_{0} = a^{-b}\normincGammaQ@{b}{a\xi} |
F[0] = (a)^(- b)* GAMMA(b, a*xi)/GAMMA(b)
|
Subscript[F, 0] == (a)^(- b)* GammaRegularized[b, a*\[Xi]]
|
Failure | Failure | Failed [300 / 300] Result: 1.253924788+1.407498490*I
Test Values: {a = -1.5, b = -1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I}
Result: -.1121006157+1.773523894*I
Test Values: {a = -1.5, b = -1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.2539247882576399, 1.4074984905445393]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.11210061552679867, 1.7735238943289782]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
8.18#Ex2 | F_{1} = \frac{b-a\xi}{a}F_{0}+\frac{\xi^{b}e^{-a\xi}}{a\EulerGamma@{b}} |
F[1] = (b - a*xi)/(a)*F[0]+((xi)^(b)* exp(- a*xi))/(a*GAMMA(b))
|
Subscript[F, 1] == Divide[b - a*\[Xi],a]*Subscript[F, 0]+Divide[\[Xi]^(b)* Exp[- a*\[Xi]],a*Gamma[b]]
|
Failure | Failure | Failed [300 / 300] Result: 2.329643864+4.621882749*I
Test Values: {a = -1.5, b = 1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I, F[1] = 1/2*3^(1/2)+1/2*I}
Result: .9636184598+4.987908153*I
Test Values: {a = -1.5, b = 1.5, xi = 1/2*3^(1/2)+1/2*I, F[0] = 1/2*3^(1/2)+1/2*I, F[1] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[2.32964386182885, 4.621882746395113]
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 1], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.9636184580444114, 4.9879081501795515]
Test Values: {Rule[a, -1.5], Rule[b, 1.5], Rule[ΞΎ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[F, 1], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
8.18.E6 | \left(\frac{1-e^{-t}}{t}\right)^{b-1} = \sum_{k=0}^{\infty}d_{k}(t-\xi)^{k} |
|
((1 - exp(- t))/(t))^(b - 1) = sum(d[k]*(t - xi)^(k), k = 0..infinity) |
(Divide[1 - Exp[- t],t])^(b - 1) == Sum[Subscript[d, k]*(t - \[Xi])^(k), {k, 0, Infinity}, GenerateConditions->None] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.18#Ex3 | d_{0} = \left(\frac{1-x}{\xi}\right)^{b-1} |
|
d[0] = ((1 - x)/(xi))^(b - 1) |
Subscript[d, 0] == (Divide[1 - x,\[Xi]])^(b - 1) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.18#Ex4 | d_{1} = \frac{x\xi+x-1}{(1-x)\xi}(b-1)d_{0} |
|
d[1] = (x*xi + x - 1)/((1 - x)*xi)*(b - 1)*d[0] |
Subscript[d, 1] == Divide[x*\[Xi]+ x - 1,(1 - x)*\[Xi]]*(b - 1)*Subscript[d, 0] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.18.E8 | x_{0} = a/(a+b) |
|
x[0] = a/(a + b) |
Subscript[x, 0] == a/(a + b) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.18.E10 | -\tfrac{1}{2}\eta^{2} = x_{0}\ln@{\frac{x}{x_{0}}}+(1-x_{0})\ln@{\frac{1-x}{1-x_{0}}} |
|
-(1)/(2)*(eta)^(2) = x[0]*ln((x)/(x[0]))+(1 - x[0])*ln((1 - x)/(1 - x[0]))
|
-Divide[1,2]*\[Eta]^(2) == Subscript[x, 0]*Log[Divide[x,Subscript[x, 0]]]+(1 - Subscript[x, 0])*Log[Divide[1 - x,1 - Subscript[x, 0]]]
|
Failure | Failure | Failed [300 / 300] Result: .580000474e-1+.458917392e-1*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, x = 1.5, x[0] = 1/2*3^(1/2)+1/2*I}
Result: 2.269862383+1.019641337*I
Test Values: {eta = 1/2*3^(1/2)+1/2*I, x = 1.5, x[0] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[0.058000047924774145, 0.04589173995258988]
Test Values: {Rule[x, 1.5], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[2.2698623824536366, 1.0196413375539057]
Test Values: {Rule[x, 1.5], Rule[Ξ·, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[x, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
8.18.E11 | c_{0}(\eta) = \frac{1}{\eta}-\frac{\sqrt{x_{0}(1-x_{0})}}{x-x_{0}} |
|
c[0](eta) = (1)/(eta)-(sqrt(x[0]*(1 - x[0])))/(x - x[0]) |
Subscript[c, 0][\[Eta]] == Divide[1,\[Eta]]-Divide[Sqrt[Subscript[x, 0]*(1 - Subscript[x, 0])],x - Subscript[x, 0]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.18.E12 | c_{0}(0) = \frac{1-2x_{0}}{3\sqrt{x_{0}(1-x_{0})}} |
|
c[0](0) = (1 - 2*x[0])/(3*sqrt(x[0]*(1 - x[0]))) |
Subscript[c, 0][0] == Divide[1 - 2*Subscript[x, 0],3*Sqrt[Subscript[x, 0]*(1 - Subscript[x, 0])]] |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.18.E15 | \mu\ln@@{\zeta}-\zeta = \ln@@{x}+\mu\ln@{1-x}+(1+\mu)\ln@{1+\mu}-\mu |
|
mu*ln(zeta)- zeta = ln(x)+ mu*ln(1 - x)+(1 + mu)*ln(1 + mu)- mu
|
\[Mu]*Log[\[Zeta]]- \[Zeta] == Log[x]+ \[Mu]*Log[1 - x]+(1 + \[Mu])*Log[1 + \[Mu]]- \[Mu]
|
Failure | Failure | Failed [299 / 300] Result: .405976146-2.738439399*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 1.5, zeta = 1/2*3^(1/2)+1/2*I}
Result: .9866033870-1.744115280*I
Test Values: {mu = 1/2*3^(1/2)+1/2*I, x = 1.5, zeta = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [299 / 300]
Result: Complex[0.4059761460255107, -2.7384393975724306]
Test Values: {Rule[x, 1.5], Rule[ΞΆ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΌ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.0560847852373059, 1.7517066341083583]
Test Values: {Rule[x, 1.5], Rule[ΞΆ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ΞΌ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
8.18.E16 | h_{0}(\zeta,\mu) = \mu\left(\frac{1}{\zeta-\mu}-\frac{(1+\mu)^{-3/2}}{x_{0}-x}\right) |
|
h[0](zeta , mu) = mu*((1)/(zeta - mu)-((1 + mu)^(- 3/2))/(x[0]- x)) |
Subscript[h, 0][\[Zeta], \[Mu]] == \[Mu]*(Divide[1,\[Zeta]- \[Mu]]-Divide[(1 + \[Mu])^(- 3/2),Subscript[x, 0]- x]) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.18.E17 | h_{0}(\mu,\mu) = \frac{1}{3}\left(\frac{1-\mu}{\sqrt{1+\mu}}-1\right) |
|
h[0](mu , mu) = (1)/(3)*((1 - mu)/(sqrt(1 + mu))- 1) |
Subscript[h, 0][\[Mu], \[Mu]] == Divide[1,3]*(Divide[1 - \[Mu],Sqrt[1 + \[Mu]]]- 1) |
Skipped - no semantic math | Skipped - no semantic math | - | - |
8.18.E18 | \normincBetaI{x}@{a}{b} = p |
Error
|
BetaRegularized[x, a, b] == p
|
Missing Macro Error | Failure | - | Failed [105 / 108]
Result: DirectedInfinity[]
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[p, 0.5], Rule[x, 1.5]}
Result: Indeterminate
Test Values: {Rule[a, -1.5], Rule[b, -1.5], Rule[p, 0.5], Rule[x, 0.5]}
... skip entries to safe data |