Incomplete Gamma and Related Functions - 8.21 Generalized Sine and Cosine Integrals

From testwiki
Revision as of 12:19, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
8.21.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}}
\int_{0}^{\infty}t^{a-1}e^{+\iunit t}\diff{t} = e^{+\frac{1}{2}\pi\iunit a}\EulerGamma@{a}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < \realpart@@{a}, \realpart@@{a} < 1, \realpart@@{a} > 0}
int((t)^(a - 1)* exp(+ I*t), t = 0..infinity) = exp(+(1)/(2)*Pi*I*a)*GAMMA(a)
Integrate[(t)^(a - 1)* Exp[+ I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[+Divide[1,2]*Pi*I*a]*Gamma[a]
Successful Aborted - Successful [Tested: 1]
8.21.E3 Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle \int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}}
\int_{0}^{\infty}t^{a-1}e^{-\iunit t}\diff{t} = e^{-\frac{1}{2}\pi\iunit a}\EulerGamma@{a}
Failed to parse (LaTeXML (experimental; uses MathML): Invalid response ("") from server "http://latexml:8080/convert/":): {\displaystyle 0 < \realpart@@{a}, \realpart@@{a} < 1, \realpart@@{a} > 0}
int((t)^(a - 1)* exp(- I*t), t = 0..infinity) = exp(-(1)/(2)*Pi*I*a)*GAMMA(a)
Integrate[(t)^(a - 1)* Exp[- I*t], {t, 0, Infinity}, GenerateConditions->None] == Exp[-Divide[1,2]*Pi*I*a]*Gamma[a]
Successful Aborted - Successful [Tested: 1]