Incomplete Gamma and Related Functions - 9.2 Differential Equation
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
9.2.E2 | w = \AiryAi@{z},\;\AiryBi@{z},\;\AiryAi@{ze^{- 2\pi\iunit/3}} |
|
w = AiryAi(z); AiryBi(z), AiryAi(z*exp(- 2*Pi*I/3))
|
w == AiryAi[z]
AiryBi[z], AiryAi[z*Exp[- 2*Pi*I/3]]
|
Failure | Failure | Error | Error |
9.2.E2 | w = \AiryAi@{z},\;\AiryBi@{z},\;\AiryAi@{ze^{+ 2\pi\iunit/3}} |
|
w = AiryAi(z); AiryBi(z), AiryAi(z*exp(+ 2*Pi*I/3))
|
w == AiryAi[z]
AiryBi[z], AiryAi[z*Exp[+ 2*Pi*I/3]]
|
Failure | Failure | Error | Error |
9.2.E3 | \AiryAi@{0} = \frac{1}{3^{2/3}\EulerGamma@{\tfrac{2}{3}}} |
|
AiryAi(0) = (1)/((3)^(2/3)* GAMMA((2)/(3)))
|
AiryAi[0] == Divide[1,(3)^(2/3)* Gamma[Divide[2,3]]]
|
Successful | Successful | - | Successful [Tested: 1] |
9.2.E3 | \frac{1}{3^{2/3}\EulerGamma@{\tfrac{2}{3}}} = 0.35502\;80538\ldots |
|
(1)/((3)^(2/3)* GAMMA((2)/(3))) = 0.3550280538
|
Divide[1,(3)^(2/3)* Gamma[Divide[2,3]]] == 0.3550280538
|
Successful | Failure | - | Successful [Tested: 1] |
9.2.E4 | \AiryAi'@{0} = -\frac{1}{3^{1/3}\EulerGamma@{\tfrac{1}{3}}} |
|
subs( temp=0, diff( AiryAi(temp), temp$(1) ) ) = -(1)/((3)^(1/3)* GAMMA((1)/(3)))
|
(D[AiryAi[temp], {temp, 1}]/.temp-> 0) == -Divide[1,(3)^(1/3)* Gamma[Divide[1,3]]]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 1] |
9.2.E4 | -\frac{1}{3^{1/3}\EulerGamma@{\tfrac{1}{3}}} = -0.25881\;94037\ldots |
|
-(1)/((3)^(1/3)* GAMMA((1)/(3))) = - 0.2588194037
|
-Divide[1,(3)^(1/3)* Gamma[Divide[1,3]]] == - 0.2588194037
|
Failure | Failure | Successful [Tested: 0] | Successful [Tested: 1] |
9.2.E5 | \AiryBi@{0} = \frac{1}{3^{1/6}\EulerGamma@{\tfrac{2}{3}}} |
|
AiryBi(0) = (1)/((3)^(1/6)* GAMMA((2)/(3)))
|
AiryBi[0] == Divide[1,(3)^(1/6)* Gamma[Divide[2,3]]]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 1] |
9.2.E5 | \frac{1}{3^{1/6}\EulerGamma@{\tfrac{2}{3}}} = 0.61492\;66274\ldots |
|
(1)/((3)^(1/6)* GAMMA((2)/(3))) = 0.6149266274
|
Divide[1,(3)^(1/6)* Gamma[Divide[2,3]]] == 0.6149266274
|
Failure | Failure | Successful [Tested: 0] | Successful [Tested: 1] |
9.2.E6 | \AiryBi'@{0} = \frac{3^{1/6}}{\EulerGamma@{\tfrac{1}{3}}} |
|
subs( temp=0, diff( AiryBi(temp), temp$(1) ) ) = ((3)^(1/6))/(GAMMA((1)/(3)))
|
(D[AiryBi[temp], {temp, 1}]/.temp-> 0) == Divide[(3)^(1/6),Gamma[Divide[1,3]]]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 1] |
9.2.E6 | \frac{3^{1/6}}{\EulerGamma@{\tfrac{1}{3}}} = 0.44828\;83573\ldots |
|
((3)^(1/6))/(GAMMA((1)/(3))) = 0.4482883573
|
Divide[(3)^(1/6),Gamma[Divide[1,3]]] == 0.4482883573
|
Failure | Failure | Successful [Tested: 0] | Successful [Tested: 1] |
9.2.E7 | \Wronskian@{\AiryAi@{z},\AiryBi@{z}} = \frac{1}{\pi} |
|
(AiryAi(z))*diff(AiryBi(z), z)-diff(AiryAi(z), z)*(AiryBi(z)) = (1)/(Pi)
|
Wronskian[{AiryAi[z], AiryBi[z]}, z] == Divide[1,Pi]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
9.2.E8 | \Wronskian@{\AiryAi@{z},\AiryAi@{ze^{- 2\pi i/3}}} = \frac{e^{+\pi i/6}}{2\pi} |
|
(AiryAi(z))*diff(AiryAi(z*exp(- 2*Pi*I/3)), z)-diff(AiryAi(z), z)*(AiryAi(z*exp(- 2*Pi*I/3))) = (exp(+ Pi*I/6))/(2*Pi)
|
Wronskian[{AiryAi[z], AiryAi[z*Exp[- 2*Pi*I/3]]}, z] == Divide[Exp[+ Pi*I/6],2*Pi]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
9.2.E8 | \Wronskian@{\AiryAi@{z},\AiryAi@{ze^{+ 2\pi i/3}}} = \frac{e^{-\pi i/6}}{2\pi} |
|
(AiryAi(z))*diff(AiryAi(z*exp(+ 2*Pi*I/3)), z)-diff(AiryAi(z), z)*(AiryAi(z*exp(+ 2*Pi*I/3))) = (exp(- Pi*I/6))/(2*Pi)
|
Wronskian[{AiryAi[z], AiryAi[z*Exp[+ 2*Pi*I/3]]}, z] == Divide[Exp[- Pi*I/6],2*Pi]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
9.2.E9 | \Wronskian@{\AiryAi@{ze^{-2\pi i/3}},\AiryAi@{ze^{2\pi i/3}}} = \frac{1}{2\pi i} |
|
(AiryAi(z*exp(- 2*Pi*I/3)))*diff(AiryAi(z*exp(2*Pi*I/3)), z)-diff(AiryAi(z*exp(- 2*Pi*I/3)), z)*(AiryAi(z*exp(2*Pi*I/3))) = (1)/(2*Pi*I)
|
Wronskian[{AiryAi[z*Exp[- 2*Pi*I/3]], AiryAi[z*Exp[2*Pi*I/3]]}, z] == Divide[1,2*Pi*I]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
9.2.E10 | \AiryBi@{z} = e^{-\pi i/6}\AiryAi@{ze^{-2\pi i/3}}+e^{\pi i/6}\AiryAi@{ze^{2\pi i/3}} |
|
AiryBi(z) = exp(- Pi*I/6)*AiryAi(z*exp(- 2*Pi*I/3))+ exp(Pi*I/6)*AiryAi(z*exp(2*Pi*I/3))
|
AiryBi[z] == Exp[- Pi*I/6]*AiryAi[z*Exp[- 2*Pi*I/3]]+ Exp[Pi*I/6]*AiryAi[z*Exp[2*Pi*I/3]]
|
Successful | Successful | - | Successful [Tested: 7] |
9.2.E11 | \AiryAi@{ze^{- 2\pi i/3}} = \tfrac{1}{2}e^{-\pi i/3}\left(\AiryAi@{z}+ i\AiryBi@{z}\right) |
|
AiryAi(z*exp(- 2*Pi*I/3)) = (1)/(2)*exp(- Pi*I/3)*(AiryAi(z)+ I*AiryBi(z))
|
AiryAi[z*Exp[- 2*Pi*I/3]] == Divide[1,2]*Exp[- Pi*I/3]*(AiryAi[z]+ I*AiryBi[z])
|
Successful | Successful | - | Successful [Tested: 7] |
9.2.E11 | \AiryAi@{ze^{+ 2\pi i/3}} = \tfrac{1}{2}e^{+\pi i/3}\left(\AiryAi@{z}- i\AiryBi@{z}\right) |
|
AiryAi(z*exp(+ 2*Pi*I/3)) = (1)/(2)*exp(+ Pi*I/3)*(AiryAi(z)- I*AiryBi(z))
|
AiryAi[z*Exp[+ 2*Pi*I/3]] == Divide[1,2]*Exp[+ Pi*I/3]*(AiryAi[z]- I*AiryBi[z])
|
Successful | Successful | - | Successful [Tested: 7] |
9.2.E12 | \AiryAi@{z}+e^{-2\pi i/3}\AiryAi@{ze^{-2\pi i/3}}+e^{2\pi i/3}\AiryAi@{ze^{2\pi i/3}} = 0 |
|
AiryAi(z)+ exp(- 2*Pi*I/3)*AiryAi(z*exp(- 2*Pi*I/3))+ exp(2*Pi*I/3)*AiryAi(z*exp(2*Pi*I/3)) = 0
|
AiryAi[z]+ Exp[- 2*Pi*I/3]*AiryAi[z*Exp[- 2*Pi*I/3]]+ Exp[2*Pi*I/3]*AiryAi[z*Exp[2*Pi*I/3]] == 0
|
Successful | Successful | - | Successful [Tested: 7] |
9.2.E13 | \AiryBi@{z}+e^{-2\pi i/3}\AiryBi@{ze^{-2\pi i/3}}+e^{2\pi i/3}\AiryBi@{ze^{2\pi i/3}} = 0 |
|
AiryBi(z)+ exp(- 2*Pi*I/3)*AiryBi(z*exp(- 2*Pi*I/3))+ exp(2*Pi*I/3)*AiryBi(z*exp(2*Pi*I/3)) = 0
|
AiryBi[z]+ Exp[- 2*Pi*I/3]*AiryBi[z*Exp[- 2*Pi*I/3]]+ Exp[2*Pi*I/3]*AiryBi[z*Exp[2*Pi*I/3]] == 0
|
Successful | Successful | - | Successful [Tested: 7] |
9.2.E14 | \AiryAi@{-z} = e^{\pi i/3}\AiryAi@{ze^{\pi i/3}}+e^{-\pi i/3}\AiryAi@{ze^{-\pi i/3}} |
|
AiryAi(- z) = exp(Pi*I/3)*AiryAi(z*exp(Pi*I/3))+ exp(- Pi*I/3)*AiryAi(z*exp(- Pi*I/3))
|
AiryAi[- z] == Exp[Pi*I/3]*AiryAi[z*Exp[Pi*I/3]]+ Exp[- Pi*I/3]*AiryAi[z*Exp[- Pi*I/3]]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |
9.2.E15 | \AiryBi@{-z} = e^{-\pi i/6}\AiryAi@{ze^{\pi i/3}}+e^{\pi i/6}\AiryAi@{ze^{-\pi i/3}} |
|
AiryBi(- z) = exp(- Pi*I/6)*AiryAi(z*exp(Pi*I/3))+ exp(Pi*I/6)*AiryAi(z*exp(- Pi*I/3))
|
AiryBi[- z] == Exp[- Pi*I/6]*AiryAi[z*Exp[Pi*I/3]]+ Exp[Pi*I/6]*AiryAi[z*Exp[- Pi*I/3]]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] |