Airy and Related Functions - 9.8 Modulus and Phase
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
9.8.E1 | \AiryAi@{x} = \AirymodM@{x}\sin@@{\Airyphasetheta@{x}} |
|
AiryAi(x) = sqrt(AiryAi(x)^2+AiryBi(x)^2)*sin(arctan(AiryAi(x)/AiryBi(x)))
|
AiryAi[x] == Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*Sin[ArcTan[Divide[AiryAi[x], AiryBi[x]]]]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
9.8.E2 | \AiryBi@{x} = \AirymodM@{x}\cos@@{\Airyphasetheta@{x}} |
|
AiryBi(x) = sqrt(AiryAi(x)^2+AiryBi(x)^2)*cos(arctan(AiryAi(x)/AiryBi(x)))
|
AiryBi[x] == Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*Cos[ArcTan[Divide[AiryAi[x], AiryBi[x]]]]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
9.8.E3 | \AirymodM@{x} = \sqrt{\AiryAi^{2}@{x}+\AiryBi^{2}@{x}} |
|
sqrt(AiryAi(x)^2+AiryBi(x)^2) = sqrt((AiryAi(x))^(2)+ (AiryBi(x))^(2))
|
Sqrt[AiryAi[x]^2 + AiryBi[x]^2] == Sqrt[(AiryAi[x])^(2)+ (AiryBi[x])^(2)]
|
Successful | Successful | - | Successful [Tested: 3] |
9.8.E4 | \Airyphasetheta@{x} = \atan@{\AiryAi@{x}/\AiryBi@{x}} |
|
arctan(AiryAi(x)/AiryBi(x)) = arctan(AiryAi(x)/AiryBi(x))
|
ArcTan[Divide[AiryAi[x], AiryBi[x]]] == ArcTan[AiryAi[x]/AiryBi[x]]
|
Successful | Successful | - | Successful [Tested: 3] |
9.8.E5 | \AiryAi'@{x} = \AirymodderivN@{x}\sin@@{\Airyphasederivphi@{x}} |
|
diff( AiryAi(x), x$(1) ) = sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)*sin(arctan(AiryAi(1, x)/AiryBi(1, x)))
|
D[AiryAi[x], {x, 1}] == Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]*Sin[ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
9.8.E6 | \AiryBi'@{x} = \AirymodderivN@{x}\cos@@{\Airyphasederivphi@{x}} |
|
diff( AiryBi(x), x$(1) ) = sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)*cos(arctan(AiryAi(1, x)/AiryBi(1, x)))
|
D[AiryBi[x], {x, 1}] == Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]*Cos[ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
9.8.E7 | \AirymodderivN@{x} = \sqrt{\AiryAi'^{2}@{x}+\AiryBi'^{2}@{x}} |
|
sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2) = sqrt((diff( AiryAi(x), x$(1) ))^(2)+ (diff( AiryBi(x), x$(1) ))^(2))
|
Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2] == Sqrt[(D[AiryAi[x], {x, 1}])^(2)+ (D[AiryBi[x], {x, 1}])^(2)]
|
Successful | Successful | - | Successful [Tested: 3] |
9.8.E8 | \Airyphasederivphi@{x} = \atan@{\AiryAi'@{x}/\AiryBi'@{x}} |
|
arctan(AiryAi(1, x)/AiryBi(1, x)) = arctan(diff( AiryAi(x), x$(1) )/diff( AiryBi(x), x$(1) ))
|
ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]] == ArcTan[D[AiryAi[x], {x, 1}]/D[AiryBi[x], {x, 1}]]
|
Successful | Successful | - | Successful [Tested: 3] |
9.8.E9 | |x|^{1/2}\AirymodM^{2}@{x} = \tfrac{1}{2}\xi\left(\BesselJ{1/3}^{2}@{\xi}+\BesselY{1/3}^{2}@{\xi}\right) |
|
(abs(x))^(1/2)* (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2) = (1)/(2)*xi*((BesselJ(1/3, xi))^(2)+ (BesselY(1/3, xi))^(2))
|
(Abs[x])^(1/2)* (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2) == Divide[1,2]*\[Xi]*((BesselJ[1/3, \[Xi]])^(2)+ (BesselY[1/3, \[Xi]])^(2))
|
Failure | Failure | Failed [30 / 30] Result: 4.021808267-.8614613375e-2*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I}
Result: 3.972124824-.1350954874e-1*I
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [30 / 30]
Result: Complex[4.021808267868023, -0.008614613397096321]
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[3.972124824572757, -0.01350954875717339]
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
9.8.E10 | |x|^{-1/2}\AirymodderivN^{2}@{x} = \tfrac{1}{2}\xi\left(\BesselJ{2/3}^{2}@{\xi}+\BesselY{2/3}^{2}@{\xi}\right) |
|
(abs(x))^(- 1/2)* (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2) = (1)/(2)*xi*((BesselJ(2/3, xi))^(2)+ (BesselY(2/3, xi))^(2))
|
(Abs[x])^(- 1/2)* (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2) == Divide[1,2]*\[Xi]*((BesselJ[2/3, \[Xi]])^(2)+ (BesselY[2/3, \[Xi]])^(2))
|
Failure | Failure | Failed [30 / 30] Result: 2.579966574+.1365442595e-1*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I}
Result: 2.649043945+.8067203529e-2*I
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [30 / 30]
Result: Complex[2.579966572371216, 0.013654425864881942]
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[2.6490439435787625, 0.00806720349537901]
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
9.8.E11 | \Airyphasetheta@{x} = \tfrac{2}{3}\pi+\atan@{\BesselY{1/3}@{\xi}/\BesselJ{1/3}@{\xi}} |
|
arctan(AiryAi(x)/AiryBi(x)) = (2)/(3)*Pi + arctan(BesselY(1/3, xi)/BesselJ(1/3, xi))
|
ArcTan[Divide[AiryAi[x], AiryBi[x]]] == Divide[2,3]*Pi + ArcTan[BesselY[1/3, \[Xi]]/BesselJ[1/3, \[Xi]]]
|
Failure | Failure | Failed [30 / 30] Result: -1.560189280-.5213615815*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I}
Result: -3.390111334-.9722564139*I
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [30 / 30]
Result: Complex[-1.5601892780520927, -0.5213615814894055]
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-3.390111332221422, -0.9722564141048874]
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
9.8.E12 | \Airyphasederivphi@{x} = \tfrac{1}{3}\pi+\atan@{\BesselY{2/3}@{\xi}/\BesselJ{2/3}@{\xi}} |
|
arctan(AiryAi(1, x)/AiryBi(1, x)) = (1)/(3)*Pi + arctan(BesselY(2/3, xi)/BesselJ(2/3, xi))
|
ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]] == Divide[1,3]*Pi + ArcTan[BesselY[2/3, \[Xi]]/BesselJ[2/3, \[Xi]]]
|
Failure | Failure | Failed [30 / 30] Result: -.2068569407-.4703554156*I
Test Values: {x = 1.5, xi = 1/2*3^(1/2)+1/2*I}
Result: -1.895355428-.7064271023*I
Test Values: {x = 1.5, xi = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [30 / 30]
Result: Complex[-0.20685694111550512, -0.47035541563882277]
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-1.8953554288661256, -0.7064271020951838]
Test Values: {Rule[x, 1.5], Rule[ξ, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
9.8.E13 | \AirymodM@{x}\AirymodderivN@{x}\sin@{\Airyphasetheta@{x}-\Airyphasederivphi@{x}} = \pi^{-1} |
|
sqrt(AiryAi(x)^2+AiryBi(x)^2)*sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)*sin(arctan(AiryAi(x)/AiryBi(x))- arctan(AiryAi(1, x)/AiryBi(1, x))) = (Pi)^(- 1)
|
Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]*Sin[ArcTan[Divide[AiryAi[x], AiryBi[x]]]- ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]] == (Pi)^(- 1)
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
9.8#Ex1 | \AirymodM^{2}@{x}\Airyphasetheta'@{x} = -\pi^{-1} |
|
(sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)* diff( arctan(AiryAi(x)/AiryBi(x)), x$(1) ) = - (Pi)^(- 1)
|
(Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)* D[ArcTan[Divide[AiryAi[x], AiryBi[x]]], {x, 1}] == - (Pi)^(- 1)
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
9.8#Ex2 | \AirymodderivN^{2}@{x}\Airyphasederivphi'@{x} = \pi^{-1}x |
|
(sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2)* diff( arctan(AiryAi(1, x)/AiryBi(1, x)), x$(1) ) = (Pi)^(- 1)* x
|
(Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2)* D[ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]], {x, 1}] == (Pi)^(- 1)* x
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
9.8#Ex3 | \AirymodderivN@{x}\AirymodderivN'@{x} = x\AirymodM@{x}\AirymodM'@{x} |
|
sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2)*diff( sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2), x$(1) ) = x*sqrt(AiryAi(x)^2+AiryBi(x)^2)*diff( sqrt(AiryAi(x)^2+AiryBi(x)^2), x$(1) )
|
Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2]*D[Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2], {x, 1}] == x*Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*D[Sqrt[AiryAi[x]^2 + AiryBi[x]^2], {x, 1}]
|
Successful | Successful | - | Successful [Tested: 3] |
9.8.E15 | \AirymodderivN^{2}@{x} = \AirymodM'^{2}@{x}+\AirymodM^{2}@{x}\Airyphasetheta'^{2}@{x} |
|
(sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2) = (diff( sqrt(AiryAi(x)^2+AiryBi(x)^2), x$(1) ))^(2)+ (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)* (diff( arctan(AiryAi(x)/AiryBi(x)), x$(1) ))^(2)
|
(Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2) == (D[Sqrt[AiryAi[x]^2 + AiryBi[x]^2], {x, 1}])^(2)+ (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)* (D[ArcTan[Divide[AiryAi[x], AiryBi[x]]], {x, 1}])^(2)
|
Successful | Successful | - | Successful [Tested: 3] |
9.8.E15 | \AirymodM'^{2}@{x}+\AirymodM^{2}@{x}\Airyphasetheta'^{2}@{x} = \AirymodM'^{2}(x)+\pi^{-2}\AirymodM^{-2}@{x} |
|
(diff( sqrt(AiryAi(x)^2+AiryBi(x)^2), x$(1) ))^(2)+ (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2)* (diff( arctan(AiryAi(x)/AiryBi(x)), x$(1) ))^(2) = (subs( temp=(x), diff( sqrt(AiryAi(temp)^2+AiryBi(temp)^2), temp$(1) ) ))^(2)+ (Pi)^(- 2)* (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(- 2)
|
(D[Sqrt[AiryAi[x]^2 + AiryBi[x]^2], {x, 1}])^(2)+ (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2)* (D[ArcTan[Divide[AiryAi[x], AiryBi[x]]], {x, 1}])^(2) == ((D[Sqrt[AiryAi[temp]^2 + AiryBi[temp]^2], {temp, 1}]/.temp-> (x)))^(2)+ (Pi)^(- 2)* (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(- 2)
|
Translation Error | Translation Error | - | - |
9.8.E16 | x^{2}\AirymodM^{2}@{x} = \AirymodderivN'^{2}@{x}+\AirymodderivN^{2}@{x}\Airyphasederivphi'^{2}@{x} |
|
(x)^(2)* (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2) = (diff( sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2), x$(1) ))^(2)+ (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2)* (diff( arctan(AiryAi(1, x)/AiryBi(1, x)), x$(1) ))^(2)
|
(x)^(2)* (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2) == (D[Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2], {x, 1}])^(2)+ (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2)* (D[ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]], {x, 1}])^(2)
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 3] |
9.8.E16 | \AirymodderivN'^{2}@{x}+\AirymodderivN^{2}@{x}\Airyphasederivphi'^{2}@{x} = \AirymodderivN'^{2}@{x}+\pi^{-2}x^{2}\AirymodderivN^{-2}@{x} |
|
(diff( sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2), x$(1) ))^(2)+ (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(2)* (diff( arctan(AiryAi(1, x)/AiryBi(1, x)), x$(1) ))^(2) = (diff( sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2), x$(1) ))^(2)+ (Pi)^(- 2)* (x)^(2)* (sqrt(AiryAi(1, x)^2+AiryBi(1, x)^2))^(- 2)
|
(D[Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2], {x, 1}])^(2)+ (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(2)* (D[ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]], {x, 1}])^(2) == (D[Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2], {x, 1}])^(2)+ (Pi)^(- 2)* (x)^(2)* (Sqrt[AiryAiPrime[x]^2 + AiryBiPrime[x]^2])^(- 2)
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
9.8.E17 | \tan@{\Airyphasetheta@{x}-\Airyphasederivphi@{x}} = 1/(\pi\AirymodM@{x}\AirymodM'@{x}) |
|
tan(arctan(AiryAi(x)/AiryBi(x))- arctan(AiryAi(1, x)/AiryBi(1, x))) = 1/(Pi*sqrt(AiryAi(x)^2+AiryBi(x)^2)*diff( sqrt(AiryAi(x)^2+AiryBi(x)^2), x$(1) ))
|
Tan[ArcTan[Divide[AiryAi[x], AiryBi[x]]]- ArcTan[Divide[AiryAiPrime[x], AiryBiPrime[x]]]] == 1/(Pi*Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*D[Sqrt[AiryAi[x]^2 + AiryBi[x]^2], {x, 1}])
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
9.8.E17 | 1/(\pi\AirymodM@{x}\AirymodM'@{x}) = -\AirymodM@{x}\Airyphasetheta'@{x}/\AirymodM'@{x} |
|
1/(Pi*sqrt(AiryAi(x)^2+AiryBi(x)^2)*diff( sqrt(AiryAi(x)^2+AiryBi(x)^2), x$(1) )) = - sqrt(AiryAi(x)^2+AiryBi(x)^2)*diff( arctan(AiryAi(x)/AiryBi(x)), x$(1) )/diff( sqrt(AiryAi(x)^2+AiryBi(x)^2), x$(1) )
|
1/(Pi*Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*D[Sqrt[AiryAi[x]^2 + AiryBi[x]^2], {x, 1}]) == - Sqrt[AiryAi[x]^2 + AiryBi[x]^2]*D[ArcTan[Divide[AiryAi[x], AiryBi[x]]], {x, 1}]/D[Sqrt[AiryAi[x]^2 + AiryBi[x]^2], {x, 1}]
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
9.8#Ex4 | \AirymodM''@{x} = x\AirymodM@{x}+\pi^{-2}\AirymodM^{-3}@{x} |
|
diff( sqrt(AiryAi(x)^2+AiryBi(x)^2), x$(2) ) = x*sqrt(AiryAi(x)^2+AiryBi(x)^2)+ (Pi)^(- 2)* (sqrt(AiryAi(x)^2+AiryBi(x)^2))^(- 3)
|
D[Sqrt[AiryAi[x]^2 + AiryBi[x]^2], {x, 2}] == x*Sqrt[AiryAi[x]^2 + AiryBi[x]^2]+ (Pi)^(- 2)* (Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(- 3)
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
9.8#Ex5 | \AirymodM^{2}'''@{x}-4x\AirymodM^{2}'@{x}-2\AirymodM^{2}@{x} = 0 |
|
(diff( sqrt(AiryAi(x)^2+AiryBi(x)^2), x$(3) ))^(2)- 4*x*(diff( sqrt(AiryAi(x)^2+AiryBi(x)^2), x$(1) ))^(2)- 2*(sqrt(AiryAi(x)^2+AiryBi(x)^2))^(2) = 0
|
(D[Sqrt[AiryAi[x]^2 + AiryBi[x]^2], {x, 3}])^(2)- 4*x*(D[Sqrt[AiryAi[x]^2 + AiryBi[x]^2], {x, 1}])^(2)- 2*(Sqrt[AiryAi[x]^2 + AiryBi[x]^2])^(2) == 0
|
Failure | Aborted | Failed [3 / 3] Result: -6.622186001
Test Values: {x = 1.5}
Result: -1.215136643
Test Values: {x = .5}
... skip entries to safe data |
Failed [3 / 3]
Result: -6.622186137209987
Test Values: {Rule[x, 1.5]}
Result: -1.2151366442842328
Test Values: {Rule[x, 0.5]}
... skip entries to safe data |
9.8.E19 | \Airyphasetheta'^{2}@{x}+\tfrac{1}{2}(\Airyphasetheta'''@{x}/\Airyphasetheta'@{x})-\tfrac{3}{4}(\Airyphasetheta''@{x}/\Airyphasetheta'@{x})^{2} = -x |
|
(diff( arctan(AiryAi(x)/AiryBi(x)), x$(1) ))^(2)+(1)/(2)*(diff( arctan(AiryAi(x)/AiryBi(x)), x$(3) )/diff( arctan(AiryAi(x)/AiryBi(x)), x$(1) ))-(3)/(4)*(diff( arctan(AiryAi(x)/AiryBi(x)), x$(2) )/diff( arctan(AiryAi(x)/AiryBi(x)), x$(1) ))^(2) = - x
|
(D[ArcTan[Divide[AiryAi[x], AiryBi[x]]], {x, 1}])^(2)+Divide[1,2]*(D[ArcTan[Divide[AiryAi[x], AiryBi[x]]], {x, 3}]/D[ArcTan[Divide[AiryAi[x], AiryBi[x]]], {x, 1}])-Divide[3,4]*(D[ArcTan[Divide[AiryAi[x], AiryBi[x]]], {x, 2}]/D[ArcTan[Divide[AiryAi[x], AiryBi[x]]], {x, 1}])^(2) == - x
|
Successful | Successful | - | Successful [Tested: 3] |