DLMF
|
Formula
|
Constraints
|
Maple
|
Mathematica
|
Symbolic Maple
|
Symbolic Mathematica
|
Numeric Maple
|
Numeric Mathematica
|
10.4#Ex1 |
\BesselJ{-n}@{z} = (-1)^{n}\BesselJ{n}@{z} |
|
BesselJ(- n, z) = (- 1)^(n)* BesselJ(n, z)
|
BesselJ[- n, z] == (- 1)^(n)* BesselJ[n, z]
|
Failure |
Failure |
Successful [Tested: 21] |
Successful [Tested: 21]
|
10.4#Ex2 |
\BesselY{-n}@{z} = (-1)^{n}\BesselY{n}@{z} |
|
BesselY(- n, z) = (- 1)^(n)* BesselY(n, z)
|
BesselY[- n, z] == (- 1)^(n)* BesselY[n, z]
|
Failure |
Failure |
Successful [Tested: 21] |
Successful [Tested: 21]
|
10.4#Ex3 |
\HankelH{1}{-n}@{z} = (-1)^{n}\HankelH{1}{n}@{z} |
|
HankelH1(- n, z) = (- 1)^(n)* HankelH1(n, z)
|
HankelH1[- n, z] == (- 1)^(n)* HankelH1[n, z]
|
Failure |
Failure |
Successful [Tested: 21] |
Successful [Tested: 21]
|
10.4#Ex4 |
\HankelH{2}{-n}@{z} = (-1)^{n}\HankelH{2}{n}@{z} |
|
HankelH2(- n, z) = (- 1)^(n)* HankelH2(n, z)
|
HankelH2[- n, z] == (- 1)^(n)* HankelH2[n, z]
|
Failure |
Failure |
Successful [Tested: 21] |
Successful [Tested: 21]
|
10.4#Ex5 |
\HankelH{1}{\nu}@{z} = \BesselJ{\nu}@{z}+i\BesselY{\nu}@{z} |
|
HankelH1(nu, z) = BesselJ(nu, z)+ I*BesselY(nu, z)
|
HankelH1[\[Nu], z] == BesselJ[\[Nu], z]+ I*BesselY[\[Nu], z]
|
Successful |
Successful |
- |
Successful [Tested: 70]
|
10.4#Ex6 |
\HankelH{2}{\nu}@{z} = \BesselJ{\nu}@{z}-i\BesselY{\nu}@{z} |
|
HankelH2(nu, z) = BesselJ(nu, z)- I*BesselY(nu, z)
|
HankelH2[\[Nu], z] == BesselJ[\[Nu], z]- I*BesselY[\[Nu], z]
|
Successful |
Successful |
- |
Successful [Tested: 70]
|
10.4#Ex7 |
\BesselJ{\nu}@{z} = \frac{1}{2}\left(\HankelH{1}{\nu}@{z}+\HankelH{2}{\nu}@{z}\right) |
|
BesselJ(nu, z) = (1)/(2)*(HankelH1(nu, z)+ HankelH2(nu, z))
|
BesselJ[\[Nu], z] == Divide[1,2]*(HankelH1[\[Nu], z]+ HankelH2[\[Nu], z])
|
Successful |
Successful |
- |
Successful [Tested: 70]
|
10.4#Ex8 |
\BesselY{\nu}@{z} = \frac{1}{2i}\left(\HankelH{1}{\nu}@{z}-\HankelH{2}{\nu}@{z}\right) |
|
BesselY(nu, z) = (1)/(2*I)*(HankelH1(nu, z)- HankelH2(nu, z))
|
BesselY[\[Nu], z] == Divide[1,2*I]*(HankelH1[\[Nu], z]- HankelH2[\[Nu], z])
|
Successful |
Successful |
- |
Successful [Tested: 70]
|
10.4.E5 |
\BesselJ{\nu}@{z} = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-\BesselY{\nu}@{z}\cos@{\nu\pi}\right) |
|
BesselJ(nu, z) = csc(nu*Pi)*(BesselY(- nu, z)- BesselY(nu, z)*cos(nu*Pi))
|
BesselJ[\[Nu], z] == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- BesselY[\[Nu], z]*Cos[\[Nu]*Pi])
|
Successful |
Successful |
- |
Failed [14 / 70] Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
... skip entries to safe data
|
10.4#Ex9 |
\HankelH{1}{-\nu}@{z} = e^{\nu\pi i}\HankelH{1}{\nu}@{z} |
|
HankelH1(- nu, z) = exp(nu*Pi*I)*HankelH1(nu, z)
|
HankelH1[- \[Nu], z] == Exp[\[Nu]*Pi*I]*HankelH1[\[Nu], z]
|
Successful |
Failure |
- |
Successful [Tested: 70]
|
10.4#Ex10 |
\HankelH{2}{-\nu}@{z} = e^{-\nu\pi i}\HankelH{2}{\nu}@{z} |
|
HankelH2(- nu, z) = exp(- nu*Pi*I)*HankelH2(nu, z)
|
HankelH2[- \[Nu], z] == Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], z]
|
Successful |
Failure |
- |
Successful [Tested: 70]
|
10.4.E7 |
\HankelH{1}{\nu}@{z} = i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) |
|
HankelH1(nu, z) = I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z))
|
HankelH1[\[Nu], z] == I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z])
|
Successful |
Successful |
- |
Failed [14 / 70] Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
... skip entries to safe data
|
10.4.E7 |
i\csc@{\nu\pi}\left(e^{-\nu\pi i}\BesselJ{\nu}@{z}-\BesselJ{-\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{-\nu\pi i}\BesselY{\nu}@{z}\right) |
|
I*csc(nu*Pi)*(exp(- nu*Pi*I)*BesselJ(nu, z)- BesselJ(- nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(- nu*Pi*I)*BesselY(nu, z))
|
I*Csc[\[Nu]*Pi]*(Exp[- \[Nu]*Pi*I]*BesselJ[\[Nu], z]- BesselJ[- \[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[- \[Nu]*Pi*I]*BesselY[\[Nu], z])
|
Successful |
Successful |
- |
Failed [14 / 70] Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
... skip entries to safe data
|
10.4.E8 |
\HankelH{2}{\nu}@{z} = i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) |
|
HankelH2(nu, z) = I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z))
|
HankelH2[\[Nu], z] == I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z])
|
Successful |
Successful |
- |
Failed [14 / 70] Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
... skip entries to safe data
|
10.4.E8 |
i\csc@{\nu\pi}\left(\BesselJ{-\nu}@{z}-e^{\nu\pi i}\BesselJ{\nu}@{z}\right) = \csc@{\nu\pi}\left(\BesselY{-\nu}@{z}-e^{\nu\pi i}\BesselY{\nu}@{z}\right) |
|
I*csc(nu*Pi)*(BesselJ(- nu, z)- exp(nu*Pi*I)*BesselJ(nu, z)) = csc(nu*Pi)*(BesselY(- nu, z)- exp(nu*Pi*I)*BesselY(nu, z))
|
I*Csc[\[Nu]*Pi]*(BesselJ[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], z]) == Csc[\[Nu]*Pi]*(BesselY[- \[Nu], z]- Exp[\[Nu]*Pi*I]*BesselY[\[Nu], z])
|
Successful |
Successful |
- |
Failed [14 / 70] Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, -2]}
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[ν, 2]}
... skip entries to safe data
|