Bessel Functions - 10.27 Connection Formulas

From testwiki
Revision as of 12:24, 28 June 2021 by Admin (talk | contribs) (Admin moved page Main Page to Verifying DLMF with Maple and Mathematica)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search


DLMF Formula Constraints Maple Mathematica Symbolic
Maple
Symbolic
Mathematica
Numeric
Maple
Numeric
Mathematica
10.27.E1 I - n ⁑ ( z ) = I n ⁑ ( z ) modified-Bessel-first-kind 𝑛 𝑧 modified-Bessel-first-kind 𝑛 𝑧 {\displaystyle{\displaystyle I_{-n}\left(z\right)=I_{n}\left(z\right)}}
\modBesselI{-n}@{z} = \modBesselI{n}@{z}
β„œ ⁑ ( ( - n ) + k + 1 ) > 0 , β„œ ⁑ ( n + k + 1 ) > 0 formulae-sequence 𝑛 π‘˜ 1 0 𝑛 π‘˜ 1 0 {\displaystyle{\displaystyle\Re((-n)+k+1)>0,\Re(n+k+1)>0}}
BesselI(- n, z) = BesselI(n, z)
BesselI[- n, z] == BesselI[n, z]
Failure Failure Successful [Tested: 21] Successful [Tested: 21]
10.27.E2 I - Ξ½ ⁑ ( z ) = I Ξ½ ⁑ ( z ) + ( 2 / Ο€ ) ⁒ sin ⁑ ( Ξ½ ⁒ Ο€ ) ⁒ K Ξ½ ⁑ ( z ) modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 2 πœ‹ 𝜈 πœ‹ modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle I_{-\nu}\left(z\right)=I_{\nu}\left(z\right)+(2/% \pi)\sin\left(\nu\pi\right)K_{\nu}\left(z\right)}}
\modBesselI{-\nu}@{z} = \modBesselI{\nu}@{z}+(2/\pi)\sin@{\nu\pi}\modBesselK{\nu}@{z}
β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 , β„œ ⁑ ( Ξ½ + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0}}
BesselI(- nu, z) = BesselI(nu, z)+(2/Pi)*sin(nu*Pi)*BesselK(nu, z)
BesselI[- \[Nu], z] == BesselI[\[Nu], z]+(2/Pi)*Sin[\[Nu]*Pi]*BesselK[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.27.E3 K - Ξ½ ⁑ ( z ) = K Ξ½ ⁑ ( z ) modified-Bessel-second-kind 𝜈 𝑧 modified-Bessel-second-kind 𝜈 𝑧 {\displaystyle{\displaystyle K_{-\nu}\left(z\right)=K_{\nu}\left(z\right)}}
\modBesselK{-\nu}@{z} = \modBesselK{\nu}@{z}

BesselK(- nu, z) = BesselK(nu, z)
BesselK[- \[Nu], z] == BesselK[\[Nu], z]
Successful Successful - Successful [Tested: 70]
10.27.E4 K Ξ½ ⁑ ( z ) = 1 2 ⁒ Ο€ ⁒ I - Ξ½ ⁑ ( z ) - I Ξ½ ⁑ ( z ) sin ⁑ ( Ξ½ ⁒ Ο€ ) modified-Bessel-second-kind 𝜈 𝑧 1 2 πœ‹ modified-Bessel-first-kind 𝜈 𝑧 modified-Bessel-first-kind 𝜈 𝑧 𝜈 πœ‹ {\displaystyle{\displaystyle K_{\nu}\left(z\right)=\tfrac{1}{2}\pi\frac{I_{-% \nu}\left(z\right)-I_{\nu}\left(z\right)}{\sin\left(\nu\pi\right)}}}
\modBesselK{\nu}@{z} = \tfrac{1}{2}\pi\frac{\modBesselI{-\nu}@{z}-\modBesselI{\nu}@{z}}{\sin@{\nu\pi}}
β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 , β„œ ⁑ ( Ξ½ + k + 1 ) > 0 formulae-sequence 𝜈 π‘˜ 1 0 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle\Re((-\nu)+k+1)>0,\Re(\nu+k+1)>0}}
BesselK(nu, z) = (1)/(2)*Pi*(BesselI(- nu, z)- BesselI(nu, z))/(sin(nu*Pi))
BesselK[\[Nu], z] == Divide[1,2]*Pi*Divide[BesselI[- \[Nu], z]- BesselI[\[Nu], z],Sin[\[Nu]*Pi]]
Successful Successful -
Failed [14 / 70]
Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, -2]}

Result: Indeterminate
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, 2]}

... skip entries to safe data
10.27.E6 I Ξ½ ⁑ ( z ) = e - Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ J Ξ½ ⁑ ( z ⁒ e + Ο€ ⁒ i / 2 ) modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝜈 πœ‹ 𝑖 2 Bessel-J 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=e^{-\nu\pi i/2}J_{\nu}\left% (ze^{+\pi i/2}\right)}}
\modBesselI{\nu}@{z} = e^{-\nu\pi i/2}\BesselJ{\nu}@{ze^{+\pi i/2}}
- Ο€ ≀ + ph ⁑ z , - Ο€ ≀ - ph ⁑ z , + ph ⁑ z ≀ 1 2 ⁒ Ο€ , - ph ⁑ z ≀ 1 2 ⁒ Ο€ , β„œ ⁑ ( Ξ½ + k + 1 ) > 0 formulae-sequence πœ‹ phase 𝑧 formulae-sequence πœ‹ phase 𝑧 formulae-sequence phase 𝑧 1 2 πœ‹ formulae-sequence phase 𝑧 1 2 πœ‹ 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = exp(- nu*Pi*I/2)*BesselJ(nu, z*exp(+ Pi*I/2))
BesselI[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[+ Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E6 I Ξ½ ⁑ ( z ) = e + Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ J Ξ½ ⁑ ( z ⁒ e - Ο€ ⁒ i / 2 ) modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 𝜈 πœ‹ 𝑖 2 Bessel-J 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=e^{+\nu\pi i/2}J_{\nu}\left% (ze^{-\pi i/2}\right)}}
\modBesselI{\nu}@{z} = e^{+\nu\pi i/2}\BesselJ{\nu}@{ze^{-\pi i/2}}
- Ο€ ≀ + ph ⁑ z , - Ο€ ≀ - ph ⁑ z , + ph ⁑ z ≀ 1 2 ⁒ Ο€ , - ph ⁑ z ≀ 1 2 ⁒ Ο€ , β„œ ⁑ ( Ξ½ + k + 1 ) > 0 formulae-sequence πœ‹ phase 𝑧 formulae-sequence πœ‹ phase 𝑧 formulae-sequence phase 𝑧 1 2 πœ‹ formulae-sequence phase 𝑧 1 2 πœ‹ 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = exp(+ nu*Pi*I/2)*BesselJ(nu, z*exp(- Pi*I/2))
BesselI[\[Nu], z] == Exp[+ \[Nu]*Pi*I/2]*BesselJ[\[Nu], z*Exp[- Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E7 I Ξ½ ⁑ ( z ) = 1 2 ⁒ e - Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ ( H Ξ½ ( 1 ) ⁑ ( z ⁒ e + Ο€ ⁒ i / 2 ) + H Ξ½ ( 2 ) ⁑ ( z ⁒ e + Ο€ ⁒ i / 2 ) ) modified-Bessel-first-kind 𝜈 𝑧 1 2 superscript 𝑒 𝜈 πœ‹ 𝑖 2 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\tfrac{1}{2}e^{-\nu\pi i/2}% \left({H^{(1)}_{\nu}}\left(ze^{+\pi i/2}\right)+{H^{(2)}_{\nu}}\left(ze^{+\pi i% /2}\right)\right)}}
\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{-\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{+\pi i/2}}+\HankelH{2}{\nu}@{ze^{+\pi i/2}}\right)
- Ο€ ≀ + ph ⁑ z , - Ο€ ≀ - ph ⁑ z , + ph ⁑ z ≀ 1 2 ⁒ Ο€ , - ph ⁑ z ≀ 1 2 ⁒ Ο€ , β„œ ⁑ ( Ξ½ + k + 1 ) > 0 formulae-sequence πœ‹ phase 𝑧 formulae-sequence πœ‹ phase 𝑧 formulae-sequence phase 𝑧 1 2 πœ‹ formulae-sequence phase 𝑧 1 2 πœ‹ 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = (1)/(2)*exp(- nu*Pi*I/2)*(HankelH1(nu, z*exp(+ Pi*I/2))+ HankelH2(nu, z*exp(+ Pi*I/2)))
BesselI[\[Nu], z] == Divide[1,2]*Exp[- \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[+ Pi*I/2]]+ HankelH2[\[Nu], z*Exp[+ Pi*I/2]])
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E7 I Ξ½ ⁑ ( z ) = 1 2 ⁒ e + Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ ( H Ξ½ ( 1 ) ⁑ ( z ⁒ e - Ο€ ⁒ i / 2 ) + H Ξ½ ( 2 ) ⁑ ( z ⁒ e - Ο€ ⁒ i / 2 ) ) modified-Bessel-first-kind 𝜈 𝑧 1 2 superscript 𝑒 𝜈 πœ‹ 𝑖 2 Hankel-H-1-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 Hankel-H-2-Bessel-third-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 {\displaystyle{\displaystyle I_{\nu}\left(z\right)=\tfrac{1}{2}e^{+\nu\pi i/2}% \left({H^{(1)}_{\nu}}\left(ze^{-\pi i/2}\right)+{H^{(2)}_{\nu}}\left(ze^{-\pi i% /2}\right)\right)}}
\modBesselI{\nu}@{z} = \tfrac{1}{2}e^{+\nu\pi i/2}\left(\HankelH{1}{\nu}@{ze^{-\pi i/2}}+\HankelH{2}{\nu}@{ze^{-\pi i/2}}\right)
- Ο€ ≀ + ph ⁑ z , - Ο€ ≀ - ph ⁑ z , + ph ⁑ z ≀ 1 2 ⁒ Ο€ , - ph ⁑ z ≀ 1 2 ⁒ Ο€ , β„œ ⁑ ( Ξ½ + k + 1 ) > 0 formulae-sequence πœ‹ phase 𝑧 formulae-sequence πœ‹ phase 𝑧 formulae-sequence phase 𝑧 1 2 πœ‹ formulae-sequence phase 𝑧 1 2 πœ‹ 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle-\pi\leq+\operatorname{ph}z,-\pi\leq-\operatorname% {ph}z,+\operatorname{ph}z\leq\tfrac{1}{2}\pi,-\operatorname{ph}z\leq\tfrac{1}{% 2}\pi,\Re(\nu+k+1)>0}}
BesselI(nu, z) = (1)/(2)*exp(+ nu*Pi*I/2)*(HankelH1(nu, z*exp(- Pi*I/2))+ HankelH2(nu, z*exp(- Pi*I/2)))
BesselI[\[Nu], z] == Divide[1,2]*Exp[+ \[Nu]*Pi*I/2]*(HankelH1[\[Nu], z*Exp[- Pi*I/2]]+ HankelH2[\[Nu], z*Exp[- Pi*I/2]])
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E9 Ο€ ⁒ i ⁒ J Ξ½ ⁑ ( z ) = e - Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ K Ξ½ ⁑ ( z ⁒ e - Ο€ ⁒ i / 2 ) - e Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ K Ξ½ ⁑ ( z ⁒ e Ο€ ⁒ i / 2 ) πœ‹ 𝑖 Bessel-J 𝜈 𝑧 superscript 𝑒 𝜈 πœ‹ 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 superscript 𝑒 𝜈 πœ‹ 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 {\displaystyle{\displaystyle\pi iJ_{\nu}\left(z\right)=e^{-\nu\pi i/2}K_{\nu}% \left(ze^{-\pi i/2}\right)-e^{\nu\pi i/2}K_{\nu}\left(ze^{\pi i/2}\right)}}
\pi i\BesselJ{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}-e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}
| ph ⁑ z | ≀ 1 2 ⁒ Ο€ , β„œ ⁑ ( Ξ½ + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 πœ‹ 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\tfrac{1}{2}\pi,\Re(\nu+k+% 1)>0}}
Pi*I*BesselJ(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))- exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))
Pi*I*BesselJ[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]- Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E10 - Ο€ ⁒ Y Ξ½ ⁑ ( z ) = e - Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ K Ξ½ ⁑ ( z ⁒ e - Ο€ ⁒ i / 2 ) + e Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ K Ξ½ ⁑ ( z ⁒ e Ο€ ⁒ i / 2 ) πœ‹ Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 πœ‹ 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 superscript 𝑒 𝜈 πœ‹ 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 {\displaystyle{\displaystyle-\pi Y_{\nu}\left(z\right)=e^{-\nu\pi i/2}K_{\nu}% \left(ze^{-\pi i/2}\right)+e^{\nu\pi i/2}K_{\nu}\left(ze^{\pi i/2}\right)}}
-\pi\BesselY{\nu}@{z} = e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}+e^{\nu\pi i/2}\modBesselK{\nu}@{ze^{\pi i/2}}
| ph ⁑ z | ≀ 1 2 ⁒ Ο€ , β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 formulae-sequence phase 𝑧 1 2 πœ‹ formulae-sequence 𝜈 π‘˜ 1 0 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle|\operatorname{ph}z|\leq\tfrac{1}{2}\pi,\Re(\nu+k+% 1)>0,\Re((-\nu)+k+1)>0}}
- Pi*BesselY(nu, z) = exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))+ exp(nu*Pi*I/2)*BesselK(nu, z*exp(Pi*I/2))
- Pi*BesselY[\[Nu], z] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]+ Exp[\[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E11 Y Ξ½ ⁑ ( z ) = e + ( Ξ½ + 1 ) ⁒ Ο€ ⁒ i / 2 ⁒ I Ξ½ ⁑ ( z ⁒ e - Ο€ ⁒ i / 2 ) - ( 2 / Ο€ ) ⁒ e - Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ K Ξ½ ⁑ ( z ⁒ e - Ο€ ⁒ i / 2 ) Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 1 πœ‹ 𝑖 2 modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 2 πœ‹ superscript 𝑒 𝜈 πœ‹ 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=e^{+(\nu+1)\pi i/2}I_{\nu}% \left(ze^{-\pi i/2}\right)-(2/\pi)e^{-\nu\pi i/2}K_{\nu}\left(ze^{-\pi i/2}% \right)}}
\BesselY{\nu}@{z} = e^{+(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{-\pi i/2}}-(2/\pi)e^{-\nu\pi i/2}\modBesselK{\nu}@{ze^{-\pi i/2}}
- 1 2 ⁒ Ο€ ≀ + ph ⁑ z , - 1 2 ⁒ Ο€ ≀ - ph ⁑ z , + ph ⁑ z ≀ Ο€ , - ph ⁑ z ≀ Ο€ , β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 formulae-sequence 1 2 πœ‹ phase 𝑧 formulae-sequence 1 2 πœ‹ phase 𝑧 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 𝑧 πœ‹ formulae-sequence 𝜈 π‘˜ 1 0 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle-\tfrac{1}{2}\pi\leq+\operatorname{ph}z,-\tfrac{1}% {2}\pi\leq-\operatorname{ph}z,+\operatorname{ph}z\leq\pi,-\operatorname{ph}z% \leq\pi,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = exp(+(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(- Pi*I/2))-(2/Pi)*exp(- nu*Pi*I/2)*BesselK(nu, z*exp(- Pi*I/2))
BesselY[\[Nu], z] == Exp[+(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[- Pi*I/2]]-(2/Pi)*Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[- Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]
10.27.E11 Y Ξ½ ⁑ ( z ) = e - ( Ξ½ + 1 ) ⁒ Ο€ ⁒ i / 2 ⁒ I Ξ½ ⁑ ( z ⁒ e + Ο€ ⁒ i / 2 ) - ( 2 / Ο€ ) ⁒ e + Ξ½ ⁒ Ο€ ⁒ i / 2 ⁒ K Ξ½ ⁑ ( z ⁒ e + Ο€ ⁒ i / 2 ) Bessel-Y-Weber 𝜈 𝑧 superscript 𝑒 𝜈 1 πœ‹ 𝑖 2 modified-Bessel-first-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 2 πœ‹ superscript 𝑒 𝜈 πœ‹ 𝑖 2 modified-Bessel-second-kind 𝜈 𝑧 superscript 𝑒 πœ‹ 𝑖 2 {\displaystyle{\displaystyle Y_{\nu}\left(z\right)=e^{-(\nu+1)\pi i/2}I_{\nu}% \left(ze^{+\pi i/2}\right)-(2/\pi)e^{+\nu\pi i/2}K_{\nu}\left(ze^{+\pi i/2}% \right)}}
\BesselY{\nu}@{z} = e^{-(\nu+1)\pi i/2}\modBesselI{\nu}@{ze^{+\pi i/2}}-(2/\pi)e^{+\nu\pi i/2}\modBesselK{\nu}@{ze^{+\pi i/2}}
- 1 2 ⁒ Ο€ ≀ + ph ⁑ z , - 1 2 ⁒ Ο€ ≀ - ph ⁑ z , + ph ⁑ z ≀ Ο€ , - ph ⁑ z ≀ Ο€ , β„œ ⁑ ( Ξ½ + k + 1 ) > 0 , β„œ ⁑ ( ( - Ξ½ ) + k + 1 ) > 0 formulae-sequence 1 2 πœ‹ phase 𝑧 formulae-sequence 1 2 πœ‹ phase 𝑧 formulae-sequence phase 𝑧 πœ‹ formulae-sequence phase 𝑧 πœ‹ formulae-sequence 𝜈 π‘˜ 1 0 𝜈 π‘˜ 1 0 {\displaystyle{\displaystyle-\tfrac{1}{2}\pi\leq+\operatorname{ph}z,-\tfrac{1}% {2}\pi\leq-\operatorname{ph}z,+\operatorname{ph}z\leq\pi,-\operatorname{ph}z% \leq\pi,\Re(\nu+k+1)>0,\Re((-\nu)+k+1)>0}}
BesselY(nu, z) = exp(-(nu + 1)*Pi*I/2)*BesselI(nu, z*exp(+ Pi*I/2))-(2/Pi)*exp(+ nu*Pi*I/2)*BesselK(nu, z*exp(+ Pi*I/2))
BesselY[\[Nu], z] == Exp[-(\[Nu]+ 1)*Pi*I/2]*BesselI[\[Nu], z*Exp[+ Pi*I/2]]-(2/Pi)*Exp[+ \[Nu]*Pi*I/2]*BesselK[\[Nu], z*Exp[+ Pi*I/2]]
Failure Failure Successful [Tested: 50] Successful [Tested: 50]