Bessel Functions - 10.61 Definitions and Basic Properties
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
10.61.E1 | \Kelvinber{\nu}@@{x}+i\Kelvinbei{\nu}@@{x} = \BesselJ{\nu}@{xe^{3\pi i/4}} |
KelvinBer(nu, x)+ I*KelvinBei(nu, x) = BesselJ(nu, x*exp(3*Pi*I/4))
|
KelvinBer[\[Nu], x]+ I*KelvinBei[\[Nu], x] == BesselJ[\[Nu], x*Exp[3*Pi*I/4]]
|
Successful | Failure | Skip - symbolical successful subtest | Successful [Tested: 30] | |
10.61.E1 | \BesselJ{\nu}@{xe^{3\pi i/4}} = e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}} |
BesselJ(nu, x*exp(3*Pi*I/4)) = exp(nu*Pi*I)*BesselJ(nu, x*exp(- Pi*I/4))
|
BesselJ[\[Nu], x*Exp[3*Pi*I/4]] == Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], x*Exp[- Pi*I/4]]
|
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] | |
10.61.E1 | e^{\nu\pi i}\BesselJ{\nu}@{xe^{-\pi i/4}} = e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}} |
exp(nu*Pi*I)*BesselJ(nu, x*exp(- Pi*I/4)) = exp(nu*Pi*I/2)*BesselI(nu, x*exp(Pi*I/4))
|
Exp[\[Nu]*Pi*I]*BesselJ[\[Nu], x*Exp[- Pi*I/4]] == Exp[\[Nu]*Pi*I/2]*BesselI[\[Nu], x*Exp[Pi*I/4]]
|
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] | |
10.61.E1 | e^{\nu\pi i/2}\modBesselI{\nu}@{xe^{\pi i/4}} = e^{3\nu\pi i/2}\modBesselI{\nu}@{xe^{-3\pi i/4}} |
exp(nu*Pi*I/2)*BesselI(nu, x*exp(Pi*I/4)) = exp(3*nu*Pi*I/2)*BesselI(nu, x*exp(- 3*Pi*I/4))
|
Exp[\[Nu]*Pi*I/2]*BesselI[\[Nu], x*Exp[Pi*I/4]] == Exp[3*\[Nu]*Pi*I/2]*BesselI[\[Nu], x*Exp[- 3*Pi*I/4]]
|
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] | |
10.61.E2 | \Kelvinker{\nu}@@{x}+i\Kelvinkei{\nu}@@{x} = e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}} |
|
KelvinKer(nu, x)+ I*KelvinKei(nu, x) = exp(- nu*Pi*I/2)*BesselK(nu, x*exp(Pi*I/4))
|
KelvinKer[\[Nu], x]+ I*KelvinKei[\[Nu], x] == Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], x*Exp[Pi*I/4]]
|
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61.E2 | e^{-\nu\pi i/2}\modBesselK{\nu}@{xe^{\pi i/4}} = \tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}} |
|
exp(- nu*Pi*I/2)*BesselK(nu, x*exp(Pi*I/4)) = (1)/(2)*Pi*I*HankelH1(nu, x*exp(3*Pi*I/4))
|
Exp[- \[Nu]*Pi*I/2]*BesselK[\[Nu], x*Exp[Pi*I/4]] == Divide[1,2]*Pi*I*HankelH1[\[Nu], x*Exp[3*Pi*I/4]]
|
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61.E2 | \tfrac{1}{2}\pi i\HankelH{1}{\nu}@{xe^{3\pi i/4}} = -\tfrac{1}{2}\pi ie^{-\nu\pi i}\HankelH{2}{\nu}@{xe^{-\pi i/4}} |
|
(1)/(2)*Pi*I*HankelH1(nu, x*exp(3*Pi*I/4)) = -(1)/(2)*Pi*I*exp(- nu*Pi*I)*HankelH2(nu, x*exp(- Pi*I/4))
|
Divide[1,2]*Pi*I*HankelH1[\[Nu], x*Exp[3*Pi*I/4]] == -Divide[1,2]*Pi*I*Exp[- \[Nu]*Pi*I]*HankelH2[\[Nu], x*Exp[- Pi*I/4]]
|
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] |
10.61.E3 | x^{2}\deriv[2]{w}{x}+x\deriv{w}{x}-(ix^{2}+\nu^{2})w = 0 |
|
(x)^(2)* diff(w, [x$(2)])+ x*diff(w, x)-(I*(x)^(2)+ (nu)^(2))*w = 0
|
(x)^(2)* D[w, {x, 2}]+ x*D[w, x]-(I*(x)^(2)+ \[Nu]^(2))*w == 0
|
Failure | Failure | Failed [300 / 300] Result: 1.125000000-2.948557160*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 3/2}
Result: .1249999997-1.216506352*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, w = 1/2*3^(1/2)+1/2*I, x = 1/2}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[1.1249999999999996, -2.948557158514987]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[1.1249999999999996, -0.9485571585149869]
Test Values: {Rule[w, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[x, 1.5], Rule[ν, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
10.61.E4 | x^{4}\deriv[4]{w}{x}+2x^{3}\deriv[3]{w}{x}-(1+2\nu^{2})\left(x^{2}\deriv[2]{w}{x}-x\deriv{w}{x}\right)+(\nu^{4}-4\nu^{2}+x^{4})w = 0 |
(x)^(4)* diff(w, [x$(4)])+ 2*(x)^(3)* diff(w, [x$(3)])-(1 + 2*(nu)^(2))*((x)^(2)* diff(w, [x$(2)])- x*diff(w, x))+((nu)^(4)- 4*(nu)^(2)+ (x)^(4))*w = 0
|
(x)^(4)* D[w, {x, 4}]+ 2*(x)^(3)* D[w, {x, 3}]-(1 + 2*\[Nu]^(2))*((x)^(2)* D[w, {x, 2}]- x*D[w, x])+(\[Nu]^(4)- 4*\[Nu]^(2)+ (x)^(4))*w == 0
|
Error | Failure | - | Skip - No test values generated | |
10.61#Ex1 | \Kelvinber{n}@{-x} = (-1)^{n}\Kelvinber{n}@@{x} |
KelvinBer(n, - x) = (- 1)^(n)* KelvinBer(n, x)
|
KelvinBer[n, - x] == (- 1)^(n)* KelvinBer[n, x]
|
Successful | Failure | - | Successful [Tested: 9] | |
10.61#Ex2 | \Kelvinbei{n}@{-x} = (-1)^{n}\Kelvinbei{n}@@{x} |
|
KelvinBei(n, - x) = (- 1)^(n)* KelvinBei(n, x)
|
KelvinBei[n, - x] == (- 1)^(n)* KelvinBei[n, x]
|
Successful | Failure | - | Successful [Tested: 9] |
10.61#Ex3 | \Kelvinber{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinber{\nu}@@{x}+\sin@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinker{\nu}@@{x} |
KelvinBer(- nu, x) = cos(nu*Pi)*KelvinBer(nu, x)+ sin(nu*Pi)*KelvinBei(nu, x)+(2/Pi)*sin(nu*Pi)*KelvinKer(nu, x)
|
KelvinBer[- \[Nu], x] == Cos[\[Nu]*Pi]*KelvinBer[\[Nu], x]+ Sin[\[Nu]*Pi]*KelvinBei[\[Nu], x]+(2/Pi)*Sin[\[Nu]*Pi]*KelvinKer[\[Nu], x]
|
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] | |
10.61#Ex4 | \Kelvinbei{-\nu}@@{x} = -\sin@{\nu\pi}\Kelvinber{\nu}@@{x}+\cos@{\nu\pi}\Kelvinbei{\nu}@@{x}+(2/\pi)\sin@{\nu\pi}\Kelvinkei{\nu}@@{x} |
KelvinBei(- nu, x) = - sin(nu*Pi)*KelvinBer(nu, x)+ cos(nu*Pi)*KelvinBei(nu, x)+(2/Pi)*sin(nu*Pi)*KelvinKei(nu, x)
|
KelvinBei[- \[Nu], x] == - Sin[\[Nu]*Pi]*KelvinBer[\[Nu], x]+ Cos[\[Nu]*Pi]*KelvinBei[\[Nu], x]+(2/Pi)*Sin[\[Nu]*Pi]*KelvinKei[\[Nu], x]
|
Failure | Failure | Successful [Tested: 30] | Successful [Tested: 30] | |
10.61#Ex5 | \Kelvinker{-\nu}@@{x} = \cos@{\nu\pi}\Kelvinker{\nu}@@{x}-\sin@{\nu\pi}\Kelvinkei{\nu}@@{x} |
|
KelvinKer(- nu, x) = cos(nu*Pi)*KelvinKer(nu, x)- sin(nu*Pi)*KelvinKei(nu, x)
|
KelvinKer[- \[Nu], x] == Cos[\[Nu]*Pi]*KelvinKer[\[Nu], x]- Sin[\[Nu]*Pi]*KelvinKei[\[Nu], x]
|
Successful | Failure | - | Successful [Tested: 30] |
10.61#Ex6 | \Kelvinkei{-\nu}@@{x} = \sin@{\nu\pi}\Kelvinker{\nu}@@{x}+\cos@{\nu\pi}\Kelvinkei{\nu}@@{x} |
|
KelvinKei(- nu, x) = sin(nu*Pi)*KelvinKer(nu, x)+ cos(nu*Pi)*KelvinKei(nu, x)
|
KelvinKei[- \[Nu], x] == Sin[\[Nu]*Pi]*KelvinKer[\[Nu], x]+ Cos[\[Nu]*Pi]*KelvinKei[\[Nu], x]
|
Successful | Failure | - | Successful [Tested: 30] |
10.61#Ex7 | \Kelvinber{-n}@@{x} = (-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x} |
KelvinBer(- n, x) = (- 1)^(n)* KelvinBer(n, x); *KelvinBei(- n, x)
|
KelvinBer[- n, x] == (- 1)^(n)* KelvinBer[n, x]
*KelvinBei[- n, x]
|
Error | Failure | - | Error | |
10.61#Ex7 | (-1)^{n}\Kelvinber{n}@@{x},~{}\Kelvinbei{-n}@@{x} = (-1)^{n}\Kelvinbei{n}@@{x} |
(- 1)^(n)* KelvinBer(n, x),*KelvinBei(- n, x) = (- 1)^(n)* KelvinBei(n, x)
|
(- 1)^(n)* KelvinBer[n, x],*KelvinBei[- n, x] == (- 1)^(n)* KelvinBei[n, x]
|
Error | Failure | - | Error | |
10.61#Ex8 | \Kelvinker{-n}@@{x} = (-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x} |
|
KelvinKer(- n, x) = (- 1)^(n)* KelvinKer(n, x); *KelvinKei(- n, x)
|
KelvinKer[- n, x] == (- 1)^(n)* KelvinKer[n, x]
*KelvinKei[- n, x]
|
Error | Failure | - | Error |
10.61#Ex8 | (-1)^{n}\Kelvinker{n}@@{x},~{}\Kelvinkei{-n}@@{x} = (-1)^{n}\Kelvinkei{n}@@{x} |
|
(- 1)^(n)* KelvinKer(n, x),*KelvinKei(- n, x) = (- 1)^(n)* KelvinKei(n, x)
|
(- 1)^(n)* KelvinKer[n, x],*KelvinKei[- n, x] == (- 1)^(n)* KelvinKei[n, x]
|
Error | Failure | - | Error |
10.61#Ex9 | \Kelvinber{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}-e^{-x}\cos@{x-\frac{\pi}{8}}\right) |
KelvinBer((1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*cos(x +(Pi)/(8))- exp(- x)*cos(x -(Pi)/(8)))
|
KelvinBer[Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Cos[x +Divide[Pi,8]]- Exp[- x]*Cos[x -Divide[Pi,8]])
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] | |
10.61#Ex10 | \Kelvinbei{\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}+\,e^{-x}\sin@{x-\frac{\pi}{8}}\right) |
|
KelvinBei((1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*sin(x +(Pi)/(8))+ exp(- x)*sin(x -(Pi)/(8)))
|
KelvinBei[Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Sin[x +Divide[Pi,8]]+ Exp[- x]*Sin[x -Divide[Pi,8]])
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
10.61#Ex11 | \Kelvinber{-\frac{1}{2}}@{x\sqrt{2}} = \frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\sin@{x+\frac{\pi}{8}}-e^{-x}\sin@{x-\frac{\pi}{8}}\right) |
KelvinBer(-(1)/(2), x*sqrt(2)) = ((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*sin(x +(Pi)/(8))- exp(- x)*sin(x -(Pi)/(8)))
|
KelvinBer[-Divide[1,2], x*Sqrt[2]] == Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Sin[x +Divide[Pi,8]]- Exp[- x]*Sin[x -Divide[Pi,8]])
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] | |
10.61#Ex12 | \Kelvinbei{-\frac{1}{2}}@{x\sqrt{2}} = -\frac{2^{-\frac{3}{4}}}{\sqrt{\pi x}}\left(e^{x}\cos@{x+\frac{\pi}{8}}+e^{-x}\cos@{x-\frac{\pi}{8}}\right) |
|
KelvinBei(-(1)/(2), x*sqrt(2)) = -((2)^(-(3)/(4)))/(sqrt(Pi*x))*(exp(x)*cos(x +(Pi)/(8))+ exp(- x)*cos(x -(Pi)/(8)))
|
KelvinBei[-Divide[1,2], x*Sqrt[2]] == -Divide[(2)^(-Divide[3,4]),Sqrt[Pi*x]]*(Exp[x]*Cos[x +Divide[Pi,8]]+ Exp[- x]*Cos[x -Divide[Pi,8]])
|
Failure | Successful | Successful [Tested: 3] | Successful [Tested: 3] |
10.61.E11 | \Kelvinker{\frac{1}{2}}@{x\sqrt{2}} = \Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}} |
|
KelvinKer((1)/(2), x*sqrt(2)) = KelvinKei(-(1)/(2), x*sqrt(2))
|
KelvinKer[Divide[1,2], x*Sqrt[2]] == KelvinKei[-Divide[1,2], x*Sqrt[2]]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 3] |
10.61.E11 | \Kelvinkei{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\sin@{x-\frac{\pi}{8}} |
|
KelvinKei(-(1)/(2), x*sqrt(2)) = - (2)^(-(3)/(4))*sqrt((Pi)/(x))*exp(- x)*sin(x -(Pi)/(8))
|
KelvinKei[-Divide[1,2], x*Sqrt[2]] == - (2)^(-Divide[3,4])*Sqrt[Divide[Pi,x]]*Exp[- x]*Sin[x -Divide[Pi,8]]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |
10.61.E12 | \Kelvinkei{\frac{1}{2}}@{x\sqrt{2}} = -\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}} |
|
KelvinKei((1)/(2), x*sqrt(2)) = - KelvinKer(-(1)/(2), x*sqrt(2))
|
KelvinKei[Divide[1,2], x*Sqrt[2]] == - KelvinKer[-Divide[1,2], x*Sqrt[2]]
|
Successful | Successful | Skip - symbolical successful subtest | Successful [Tested: 3] |
10.61.E12 | -\Kelvinker{-\frac{1}{2}}@{x\sqrt{2}} = -2^{-\frac{3}{4}}\sqrt{\frac{\pi}{x}}e^{-x}\cos@{x-\frac{\pi}{8}} |
|
- KelvinKer(-(1)/(2), x*sqrt(2)) = - (2)^(-(3)/(4))*sqrt((Pi)/(x))*exp(- x)*cos(x -(Pi)/(8))
|
- KelvinKer[-Divide[1,2], x*Sqrt[2]] == - (2)^(-Divide[3,4])*Sqrt[Divide[Pi,x]]*Exp[- x]*Cos[x -Divide[Pi,8]]
|
Failure | Failure | Successful [Tested: 3] | Successful [Tested: 3] |