Struve and Related Functions - 11.4 Basic Properties
DLMF | Formula | Constraints | Maple | Mathematica | Symbolic Maple |
Symbolic Mathematica |
Numeric Maple |
Numeric Mathematica |
---|---|---|---|---|---|---|---|---|
11.4.E1 | \StruveK{n+\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sum_{m=0}^{n}\frac{(2m)!\,2^{-2m}}{m!\,(n-m)!}\,(\tfrac{1}{2}z)^{n-2m} |
StruveH(n +(1)/(2), z) - BesselY(n +(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sum((factorial(2*m)*(2)^(- 2*m))/(factorial(m)*factorial(n - m))*((1)/(2)*z)^(n - 2*m), m = 0..n)
|
StruveH[n +Divide[1,2], z] - BesselY[n +Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sum[Divide[(2*m)!*(2)^(- 2*m),(m)!*(n - m)!]*(Divide[1,2]*z)^(n - 2*m), {m, 0, n}, GenerateConditions->None]
|
Error | Failure | - | Failed [6 / 21]
Result: Plus[0.9229158558166265, Times[-0.4886025119029198, DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[4, ο [ο ]], Times[Plus[-18, Times[-8, ο ]], ο [Plus[1, ο ]]], Times[Plus[30, Times[22, ο ], Times[4, Power[ο , 2]], Power[1.5, 2]], ο [Plus[2, ο ]]], Times[-1, Plus[3, ο ], Power[1.5, 2], ο [Plus[3, ο ]]]], 0], Equal[ο [1], Plus[1, Times[2, Power[1.5, -2]]]], Equal[ο [2], Plus[Rational[1, 2], Times[12, Power[1.5, -4]], Times[2, Power[1.5, -2]]]], Equal[ο [3], Plus[Rational[1, 6], Times[120, Power[1.5, -6]], Times[12, Power[1.5, -4]], Power[1.5, -2]]], Equal[ο [4], Plus[Rational[1, 24], Times[1680, Power[1.5, -8]], Times[120, Power[1.5, -6]], Times[6, Power[1.5, -4]], Times[Rational[1, 3], Power[1.5, -2]]]]}]][1.0]]], {Rule[n, 1], Rule[z, 1.5]}
Result: Plus[1.3775876377262881, Times[-0.36645188392718997, DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[4, ο [ο ]], Times[Plus[-18, Times[-8, ο ]], ο [Plus[1, ο ]]], Times[Plus[30, Times[22, ο ], Times[4, Power[ο , 2]], Power[1.5, 2]], ο [Plus[2, ο ]]], Times[-1, Plus[3, ο ], Power[1.5, 2], ο [Plus[3, ο ]]]], 0], Equal[ο [1], Plus[1, Times[2, Power[1.5, -2]]]], Equal[ο [2], Plus[Rational[1, 2], Times[12, Power[1.5, -4]], Times[2, Power[1.5, -2]]]], Equal[ο [3], Plus[Rational[1, 6], Times[120, Power[1.5, -6]], Times[12, Power[1.5, -4]], Power[1.5, -2]]], Equal[ο [4], Plus[Rational[1, 24], Times[1680, Power[1.5, -8]], Times[120, Power[1.5, -6]], Times[6, Power[1.5, -4]], Times[Rational[1, 3], Power[1.5, -2]]]]}]][2.0]]], {Rule[n, 2], Rule[z, 1.5]}
... skip entries to safe data | |
11.4.E2 | \modStruveL{n+\frac{1}{2}}@{z} = \modBesselI{-n-\frac{1}{2}}@{z}-\left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sum_{m=0}^{n}\frac{(-1)^{m}(2m)!\,2^{-2m}}{m!\,(n-m)!}\,(\tfrac{1}{2}z)^{n-2m} |
StruveL(n +(1)/(2), z) = BesselI(- n -(1)/(2), z)-((2)/(Pi*z))^((1)/(2))* sum(((- 1)^(m)*factorial(2*m)*(2)^(- 2*m))/(factorial(m)*factorial(n - m))*((1)/(2)*z)^(n - 2*m), m = 0..n)
|
StruveL[n +Divide[1,2], z] == BesselI[- n -Divide[1,2], z]-(Divide[2,Pi*z])^(Divide[1,2])* Sum[Divide[(- 1)^(m)*(2*m)!*(2)^(- 2*m),(m)!*(n - m)!]*(Divide[1,2]*z)^(n - 2*m), {m, 0, n}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 21] | Failed [6 / 21]
Result: Plus[-0.05428916798921324, Times[0.4886025119029198, DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[4, ο [ο ]], Times[Plus[-18, Times[-8, ο ]], ο [Plus[1, ο ]]], Times[Plus[30, Times[22, ο ], Times[4, Power[ο , 2]], Times[-1, Power[1.5, 2]]], ο [Plus[2, ο ]]], Times[Plus[3, ο ], Power[1.5, 2], ο [Plus[3, ο ]]]], 0], Equal[ο [1], Plus[1, Times[-2, Power[1.5, -2]]]], Equal[ο [2], Plus[Rational[1, 2], Times[12, Power[1.5, -4]], Times[-2, Power[1.5, -2]]]], Equal[ο [3], Plus[Rational[1, 6], Times[-120, Power[1.5, -6]], Times[12, Power[1.5, -4]], Times[-1, Power[1.5, -2]]]], Equal[ο [4], Plus[Rational[1, 24], Times[1680, Power[1.5, -8]], Times[-120, Power[1.5, -6]], Times[6, Power[1.5, -4]], Times[Rational[-1, 3], Power[1.5, -2]]]]}]][1.0]]], {Rule[n, 1], Rule[z, 1.5]}
Result: Plus[-0.726117621855728, Times[0.36645188392718997, DifferenceRoot[Function[{ο , ο }
Test Values: {Equal[Plus[Times[4, ο [ο ]], Times[Plus[-18, Times[-8, ο ]], ο [Plus[1, ο ]]], Times[Plus[30, Times[22, ο ], Times[4, Power[ο , 2]], Times[-1, Power[1.5, 2]]], ο [Plus[2, ο ]]], Times[Plus[3, ο ], Power[1.5, 2], ο [Plus[3, ο ]]]], 0], Equal[ο [1], Plus[1, Times[-2, Power[1.5, -2]]]], Equal[ο [2], Plus[Rational[1, 2], Times[12, Power[1.5, -4]], Times[-2, Power[1.5, -2]]]], Equal[ο [3], Plus[Rational[1, 6], Times[-120, Power[1.5, -6]], Times[12, Power[1.5, -4]], Times[-1, Power[1.5, -2]]]], Equal[ο [4], Plus[Rational[1, 24], Times[1680, Power[1.5, -8]], Times[-120, Power[1.5, -6]], Times[6, Power[1.5, -4]], Times[Rational[-1, 3], Power[1.5, -2]]]]}]][2.0]]], {Rule[n, 2], Rule[z, 1.5]}
... skip entries to safe data | |
11.4.E3 | \StruveH{-n-\frac{1}{2}}@{z} = (-1)^{n}\BesselJ{n+\frac{1}{2}}@{z} |
StruveH(- n -(1)/(2), z) = (- 1)^(n)* BesselJ(n +(1)/(2), z)
|
StruveH[- n -Divide[1,2], z] == (- 1)^(n)* BesselJ[n +Divide[1,2], z]
|
Failure | Failure | Successful [Tested: 21] | Successful [Tested: 21] | |
11.4.E4 | \modStruveL{-n-\frac{1}{2}}@{z} = \modBesselI{n+\frac{1}{2}}@{z} |
StruveL(- n -(1)/(2), z) = BesselI(n +(1)/(2), z)
|
StruveL[- n -Divide[1,2], z] == BesselI[n +Divide[1,2], z]
|
Failure | Failure | Error | Successful [Tested: 21] | |
11.4.E5 | \StruveH{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}(1-\cos@@{z}) |
StruveH((1)/(2), z) = ((2)/(Pi*z))^((1)/(2))*(1 - cos(z))
|
StruveH[Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])*(1 - Cos[z])
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
11.4.E6 | \StruveH{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sin@@{z} |
StruveH(-(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sin(z)
|
StruveH[-Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sin[z]
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
11.4.E7 | \modStruveL{\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}(\cosh@@{z}-1) |
StruveL((1)/(2), z) = ((2)/(Pi*z))^((1)/(2))*(cosh(z)- 1)
|
StruveL[Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])*(Cosh[z]- 1)
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
11.4.E8 | \modStruveL{-\frac{1}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\sinh@@{z} |
StruveL(-(1)/(2), z) = ((2)/(Pi*z))^((1)/(2))* sinh(z)
|
StruveL[-Divide[1,2], z] == (Divide[2,Pi*z])^(Divide[1,2])* Sinh[z]
|
Failure | Failure | Error | Successful [Tested: 7] | |
11.4.E9 | \StruveH{\frac{3}{2}}@{z} = \left(\frac{z}{2\pi}\right)^{\frac{1}{2}}\left(1+\frac{2}{z^{2}}\right)-\left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\left(\sin@@{z}+\frac{\cos@@{z}}{z}\right) |
StruveH((3)/(2), z) = ((z)/(2*Pi))^((1)/(2))*(1 +(2)/((z)^(2)))-((2)/(Pi*z))^((1)/(2))*(sin(z)+(cos(z))/(z))
|
StruveH[Divide[3,2], z] == (Divide[z,2*Pi])^(Divide[1,2])*(1 +Divide[2,(z)^(2)])-(Divide[2,Pi*z])^(Divide[1,2])*(Sin[z]+Divide[Cos[z],z])
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
11.4.E10 | \StruveH{-\frac{3}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\left(\cos@@{z}-\frac{\sin@@{z}}{z}\right) |
StruveH(-(3)/(2), z) = ((2)/(Pi*z))^((1)/(2))*(cos(z)-(sin(z))/(z))
|
StruveH[-Divide[3,2], z] == (Divide[2,Pi*z])^(Divide[1,2])*(Cos[z]-Divide[Sin[z],z])
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
11.4.E11 | \modStruveL{\frac{3}{2}}@{z} = -\left(\frac{z}{2\pi}\right)^{\frac{1}{2}}\left(1-\frac{2}{z^{2}}\right)+\left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\left(\sinh@@{z}-\frac{\cosh@@{z}}{z}\right) |
StruveL((3)/(2), z) = -((z)/(2*Pi))^((1)/(2))*(1 -(2)/((z)^(2)))+((2)/(Pi*z))^((1)/(2))*(sinh(z)-(cosh(z))/(z))
|
StruveL[Divide[3,2], z] == -(Divide[z,2*Pi])^(Divide[1,2])*(1 -Divide[2,(z)^(2)])+(Divide[2,Pi*z])^(Divide[1,2])*(Sinh[z]-Divide[Cosh[z],z])
|
Failure | Failure | Successful [Tested: 7] | Successful [Tested: 7] | |
11.4.E12 | \modStruveL{-\frac{3}{2}}@{z} = \left(\frac{2}{\pi z}\right)^{\frac{1}{2}}\left(\cosh@@{z}-\frac{\sinh@@{z}}{z}\right) |
StruveL(-(3)/(2), z) = ((2)/(Pi*z))^((1)/(2))*(cosh(z)-(sinh(z))/(z))
|
StruveL[-Divide[3,2], z] == (Divide[2,Pi*z])^(Divide[1,2])*(Cosh[z]-Divide[Sinh[z],z])
|
Failure | Failure | Error | Successful [Tested: 7] | |
11.4.E13 | \StruveH{\nu}@{x} \geq 0 |
StruveH(nu, x) >= 0
|
StruveH[\[Nu], x] >= 0
|
Failure | Failure | Successful [Tested: 9] | Successful [Tested: 9] | |
11.4.E14 | \StruveH{\nu}@{z} = \frac{2(\tfrac{1}{2}z)^{\nu+1}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}(1+\vartheta) |
StruveH(nu, z) = (2*((1)/(2)*z)^(nu + 1))/(sqrt(Pi)*GAMMA(nu +(3)/(2)))*(1 + vartheta)
|
StruveH[\[Nu], z] == Divide[2*(Divide[1,2]*z)^(\[Nu]+ 1),Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]*(1 + \[CurlyTheta])
|
Failure | Failure | Failed [300 / 300] Result: -.1471445522-.1672488986*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, vartheta = 1/2*3^(1/2)+1/2*I}
Result: .1483631977-.1537807385*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, vartheta = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: Complex[-0.14714455195987888, -0.16724889870966364]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.8437410873580948, -0.4272690725617171]
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.4.E15 | |\vartheta| < \frac{2}{3}\exp@{\frac{\tfrac{1}{4}|z|^{2}}{|\nu_{0}+\tfrac{3}{2}|}-1} |
|
abs(vartheta) < (2)/(3)*exp(((1)/(4)*(abs(z))^(2))/(abs(nu[0]+(3)/(2)))- 1)
|
Abs[\[CurlyTheta]] < Divide[2,3]*Exp[Divide[Divide[1,4]*(Abs[z])^(2),Abs[Subscript[\[Nu], 0]+Divide[3,2]]]- 1]
|
Failure | Failure | Failed [300 / 300] Result: 1. < .2719639306
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, vartheta = 1/2*3^(1/2)+1/2*I, nu[0] = 1/2*3^(1/2)+1/2*I}
Result: 1. < .2962703575
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, vartheta = 1/2*3^(1/2)+1/2*I, nu[0] = -1/2+1/2*I*3^(1/2)}
... skip entries to safe data |
Failed [300 / 300]
Result: False
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[Ξ½, 0], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: False
Test Values: {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ο, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Subscript[Ξ½, 0], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data |
11.4.E16 | \StruveH{\nu}@{ze^{m\pi i}} = e^{m\pi i(\nu+1)}\StruveH{\nu}@{z} |
StruveH(nu, z*exp(m*Pi*I)) = exp(m*Pi*I*(nu + 1))*StruveH(nu, z)
|
StruveH[\[Nu], z*Exp[m*Pi*I]] == Exp[m*Pi*I*(\[Nu]+ 1)]*StruveH[\[Nu], z]
|
Failure | Failure | Failed [36 / 70] Result: .7482205956+.6031447740*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 3}
Result: -.4043537260-.2594960110*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2), m = 3}
... skip entries to safe data |
Failed [48 / 70]
Result: Complex[0.7482205967366697, 0.6031447730973842]
Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[-0.8264714651575658, -11.333535783044978]
Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.4.E17 | \modStruveL{\nu}@{ze^{m\pi i}} = e^{m\pi i(\nu+1)}\modStruveL{\nu}@{z} |
StruveL(nu, z*exp(m*Pi*I)) = exp(m*Pi*I*(nu + 1))*StruveL(nu, z)
|
StruveL[\[Nu], z*Exp[m*Pi*I]] == Exp[m*Pi*I*(\[Nu]+ 1)]*StruveL[\[Nu], z]
|
Failure | Failure | Failed [36 / 70] Result: .7484016339+.7418531852*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = 1/2*3^(1/2)+1/2*I, m = 3}
Result: -.3910618545-.1976660760*I
Test Values: {nu = 1/2*3^(1/2)+1/2*I, z = -1/2+1/2*I*3^(1/2), m = 3}
... skip entries to safe data |
Failed [48 / 70]
Result: Complex[0.7484016356562583, 0.741853184386289]
Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Complex[0.1393494415684403, -14.42209495054837]
Test Values: {Rule[m, 3], Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.4.E18 | \StruveH{\nu}@{z} = \frac{4}{\pi^{1/2}\EulerGamma@{\nu+\tfrac{1}{2}}}\*\sum_{k=0}^{\infty}\frac{(2k+\nu+1)\EulerGamma@{k+\nu+1}}{k!(2k+1)(2k+2\nu+1)}\BesselJ{2k+\nu+1}@{z} |
StruveH(nu, z) = (4)/((Pi)^(1/2)* GAMMA(nu +(1)/(2)))* sum(((2*k + nu + 1)*GAMMA(k + nu + 1))/(factorial(k)*(2*k + 1)*(2*k + 2*nu + 1))*BesselJ(2*k + nu + 1, z), k = 0..infinity)
|
StruveH[\[Nu], z] == Divide[4,(Pi)^(1/2)* Gamma[\[Nu]+Divide[1,2]]]* Sum[Divide[(2*k + \[Nu]+ 1)*Gamma[k + \[Nu]+ 1],(k)!*(2*k + 1)*(2*k + 2*\[Nu]+ 1)]*BesselJ[2*k + \[Nu]+ 1, z], {k, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 7] | Failed [35 / 35]
Result: Plus[Complex[0.19324594490102928, 0.050519652606000824], Times[Complex[-2.8810800784728325, -0.07996643500485433], NSum[Times[Power[Plus[1, Times[2, k]], -1], Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[2, k]], Power[Plus[1, Times[2, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Times[2, k]], -1], BesselJ[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k]]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-0.11400577441337441, 0.7764453237975459], Times[Complex[-3.5865453830779916, 1.1372180444285063], NSum[Times[Power[Plus[1, Times[2, k]], -1], Plus[1, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]], Times[2, k]], Power[Plus[1, Times[2, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]], Times[2, k]], -1], BesselJ[Plus[1, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]], Times[2, k]], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1], Gamma[Plus[1, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]], k]]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data | |
11.4.E19 | \StruveH{\nu}@{z} = \left(\frac{z}{2\pi}\right)^{1/2}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{2}z)^{k}}{k!(k+\tfrac{1}{2})}\BesselJ{k+\nu+\frac{1}{2}}@{z} |
StruveH(nu, z) = ((z)/(2*Pi))^(1/2)* sum((((1)/(2)*z)^(k))/(factorial(k)*(k +(1)/(2)))*BesselJ(k + nu +(1)/(2), z), k = 0..infinity)
|
StruveH[\[Nu], z] == (Divide[z,2*Pi])^(1/2)* Sum[Divide[(Divide[1,2]*z)^(k),(k)!*(k +Divide[1,2])]*BesselJ[k + \[Nu]+Divide[1,2], z], {k, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Skipped - Because timed out | Failed [70 / 70]
Result: Plus[Complex[0.19324594490102928, 0.050519652606000824], Times[Complex[-0.38534865183839906, -0.10325386006452089], NSum[Times[Power[2, Times[-1, k]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], Power[Plus[Rational[1, 2], k], -1], BesselJ[Plus[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[0.7460861755377195, -0.054406581179451755], Times[Complex[-0.38534865183839906, -0.10325386006452089], NSum[Times[Power[2, Times[-1, k]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], Power[Plus[Rational[1, 2], k], -1], BesselJ[Plus[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.4.E20 | \StruveH{\nu}@{z} = \frac{(\tfrac{1}{2}z)^{\nu+\frac{1}{2}}}{\EulerGamma@{\nu+\tfrac{1}{2}}}\sum_{k=0}^{\infty}\frac{(\tfrac{1}{2}z)^{k}}{k!(k+\nu+\tfrac{1}{2})}\BesselJ{k+\frac{1}{2}}@{z} |
StruveH(nu, z) = (((1)/(2)*z)^(nu +(1)/(2)))/(GAMMA(nu +(1)/(2)))*sum((((1)/(2)*z)^(k))/(factorial(k)*(k + nu +(1)/(2)))*BesselJ(k +(1)/(2), z), k = 0..infinity)
|
StruveH[\[Nu], z] == Divide[(Divide[1,2]*z)^(\[Nu]+Divide[1,2]),Gamma[\[Nu]+Divide[1,2]]]*Sum[Divide[(Divide[1,2]*z)^(k),(k)!*(k + \[Nu]+Divide[1,2])]*BesselJ[k +Divide[1,2], z], {k, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 35] | Failed [35 / 35]
Result: Plus[Complex[0.19324594490102928, 0.050519652606000824], Times[Complex[-0.35177626861232025, -0.14724813153619726], NSum[Times[Power[2, Times[-1, k]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], Power[Plus[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], -1], BesselJ[Plus[Rational[1, 2], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-0.11400577441337441, 0.7764453237975459], Times[Complex[-0.8980289919269182, -0.9563358827585198], NSum[Times[Power[2, Times[-1, k]], Power[Power[E, Times[Complex[0, Rational[1, 6]], Pi]], k], Power[Plus[Rational[1, 2], Power[E, Times[Complex[0, Rational[-1, 3]], Pi]], k], -1], BesselJ[Plus[Rational[1, 2], k], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Power[Factorial[k], -1]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]], Rule[Ξ½, Power[E, Times[Complex[0, Rational[-1, 3]], Pi]]]}
... skip entries to safe data | |
11.4.E21 | \StruveH{0}@{z} = \frac{4}{\pi}\sum_{k=0}^{\infty}\frac{\BesselJ{2k+1}@{z}}{2k+1} |
StruveH(0, z) = (4)/(Pi)*sum((BesselJ(2*k + 1, z))/(2*k + 1), k = 0..infinity)
|
StruveH[0, z] == Divide[4,Pi]*Sum[Divide[BesselJ[2*k + 1, z],2*k + 1], {k, 0, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
11.4.E21 | \frac{4}{\pi}\sum_{k=0}^{\infty}\frac{\BesselJ{2k+1}@{z}}{2k+1} = 2\sum_{k=0}^{\infty}(-1)^{k}\BesselJ{k+\frac{1}{2}}^{2}@{\tfrac{1}{2}z} |
(4)/(Pi)*sum((BesselJ(2*k + 1, z))/(2*k + 1), k = 0..infinity) = 2*sum((- 1)^(k)* (BesselJ(k +(1)/(2), (1)/(2)*z))^(2), k = 0..infinity)
|
Divide[4,Pi]*Sum[Divide[BesselJ[2*k + 1, z],2*k + 1], {k, 0, Infinity}, GenerateConditions->None] == 2*Sum[(- 1)^(k)* (BesselJ[k +Divide[1,2], Divide[1,2]*z])^(2), {k, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 7] | Failed [7 / 7]
Result: Plus[Complex[0.5489285468594604, 0.24901722825393072], Times[-2.0, NSum[Times[Power[-1, k], Power[BesselJ[Plus[Rational[1, 2], k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], 2]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]}
Result: Plus[Complex[-0.39043053959878776, 0.5488285427518664], Times[-2.0, NSum[Times[Power[-1, k], Power[BesselJ[Plus[Rational[1, 2], k], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], 2]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]}
... skip entries to safe data | |
11.4.E22 | \StruveH{1}@{z} = \frac{2}{\pi}(1-\BesselJ{0}@{z})+\frac{4}{\pi}\sum_{k=1}^{\infty}\frac{\BesselJ{2k}@{z}}{4k^{2}-1} |
StruveH(1, z) = (2)/(Pi)*(1 - BesselJ(0, z))+(4)/(Pi)*sum((BesselJ(2*k, z))/(4*(k)^(2)- 1), k = 1..infinity)
|
StruveH[1, z] == Divide[2,Pi]*(1 - BesselJ[0, z])+Divide[4,Pi]*Sum[Divide[BesselJ[2*k, z],4*(k)^(2)- 1], {k, 1, Infinity}, GenerateConditions->None]
|
Failure | Successful | Successful [Tested: 7] | Successful [Tested: 7] | |
11.4.E22 | \frac{2}{\pi}(1-\BesselJ{0}@{z})+\frac{4}{\pi}\sum_{k=1}^{\infty}\frac{\BesselJ{2k}@{z}}{4k^{2}-1} = 4\sum_{k=0}^{\infty}\BesselJ{2k+\frac{1}{2}}@{\tfrac{1}{2}z}\BesselJ{2k+\frac{3}{2}}@{\tfrac{1}{2}z} |
(2)/(Pi)*(1 - BesselJ(0, z))+(4)/(Pi)*sum((BesselJ(2*k, z))/(4*(k)^(2)- 1), k = 1..infinity) = 4*sum(BesselJ(2*k +(1)/(2), (1)/(2)*z)*BesselJ(2*k +(3)/(2), (1)/(2)*z), k = 0..infinity)
|
Divide[2,Pi]*(1 - BesselJ[0, z])+Divide[4,Pi]*Sum[Divide[BesselJ[2*k, z],4*(k)^(2)- 1], {k, 1, Infinity}, GenerateConditions->None] == 4*Sum[BesselJ[2*k +Divide[1,2], Divide[1,2]*z]*BesselJ[2*k +Divide[3,2], Divide[1,2]*z], {k, 0, Infinity}, GenerateConditions->None]
|
Failure | Failure | Successful [Tested: 7] | Failed [7 / 7]
Result: Plus[Complex[0.11277588530299563, 0.1715300454702578], Times[-4.0, NSum[Times[BesselJ[Plus[Rational[1, 2], Times[2, k]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]], BesselJ[Plus[Rational[3, 2], Times[2, k]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[1, 6]], Pi]]]} Result: Plus[Complex[-0.09862236423565694, -0.19602243923212043], Times[-4.0, NSum[Times[BesselJ[Plus[Rational[1, 2], Times[2, k]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]], BesselJ[Plus[Rational[3, 2], Times[2, k]], Times[Rational[1, 2], Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]]]
Test Values: {k, 0, DirectedInfinity[1]}, Rule[GenerateConditions, None]]]], {Rule[z, Power[E, Times[Complex[0, Rational[2, 3]], Pi]]]} ... skip entries to safe data | |
11.4.E23 | \StruveH{\nu-1}@{z}+\StruveH{\nu+1}@{z} = \frac{2\nu}{z}\StruveH{\nu}@{z}+\frac{(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}} |
StruveH(nu - 1, z)+ StruveH(nu + 1, z) = (2*nu)/(z)*StruveH(nu, z)+(((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(3)/(2))) |
StruveH[\[Nu]- 1, z]+ StruveH[\[Nu]+ 1, z] == Divide[2*\[Nu],z]*StruveH[\[Nu], z]+Divide[(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]] |
Failure | Successful | Successful [Tested: 56] | Successful [Tested: 56] | |
11.4.E24 | \StruveH{\nu-1}@{z}-\StruveH{\nu+1}@{z} = 2\StruveH{\nu}'@{z}-\frac{(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}} |
StruveH(nu - 1, z)- StruveH(nu + 1, z) = 2*diff( StruveH(nu, z), z$(1) )-(((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(3)/(2))) |
StruveH[\[Nu]- 1, z]- StruveH[\[Nu]+ 1, z] == 2*D[StruveH[\[Nu], z], {z, 1}]-Divide[(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]] |
Failure | Successful | Successful [Tested: 56] | Successful [Tested: 56] | |
11.4.E25 | \modStruveL{\nu-1}@{z}-\modStruveL{\nu+1}@{z} = \frac{2\nu}{z}\modStruveL{\nu}@{z}+\frac{(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}} |
StruveL(nu - 1, z)- StruveL(nu + 1, z) = (2*nu)/(z)*StruveL(nu, z)+(((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(3)/(2))) |
StruveL[\[Nu]- 1, z]- StruveL[\[Nu]+ 1, z] == Divide[2*\[Nu],z]*StruveL[\[Nu], z]+Divide[(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]] |
Failure | Successful | Successful [Tested: 56] | Successful [Tested: 56] | |
11.4.E26 | \modStruveL{\nu-1}@{z}+\modStruveL{\nu+1}@{z} = 2\modStruveL{\nu}'@{z}-\frac{(\tfrac{1}{2}z)^{\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}} |
StruveL(nu - 1, z)+ StruveL(nu + 1, z) = 2*diff( StruveL(nu, z), z$(1) )-(((1)/(2)*z)^(nu))/(sqrt(Pi)*GAMMA(nu +(3)/(2))) |
StruveL[\[Nu]- 1, z]+ StruveL[\[Nu]+ 1, z] == 2*D[StruveL[\[Nu], z], {z, 1}]-Divide[(Divide[1,2]*z)^\[Nu],Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]] |
Failure | Successful | Successful [Tested: 56] | Successful [Tested: 56] | |
11.4.E27 | \deriv{}{z}\left(z^{\nu}\StruveH{\nu}@{z}\right) = z^{\nu}\StruveH{\nu-1}@{z} |
diff((z)^(nu)* StruveH(nu, z), z) = (z)^(nu)* StruveH(nu - 1, z) |
D[(z)^\[Nu]* StruveH[\[Nu], z], z] == (z)^\[Nu]* StruveH[\[Nu]- 1, z] |
Failure | Successful | Successful [Tested: 70] | Successful [Tested: 70] | |
11.4.E28 | \deriv{}{z}\left(z^{-\nu}\StruveH{\nu}@{z}\right) = \frac{2^{-\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}-z^{-\nu}\StruveH{\nu+1}@{z} |
diff((z)^(- nu)* StruveH(nu, z), z) = ((2)^(- nu))/(sqrt(Pi)*GAMMA(nu +(3)/(2)))- (z)^(- nu)* StruveH(nu + 1, z) |
D[(z)^(- \[Nu])* StruveH[\[Nu], z], z] == Divide[(2)^(- \[Nu]),Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]- (z)^(- \[Nu])* StruveH[\[Nu]+ 1, z] |
Successful | Successful | - | Successful [Tested: 56] | |
11.4.E29 | \deriv{}{z}\left(z^{\nu}\modStruveL{\nu}@{z}\right) = z^{\nu}\modStruveL{\nu-1}@{z} |
diff((z)^(nu)* StruveL(nu, z), z) = (z)^(nu)* StruveL(nu - 1, z) |
D[(z)^\[Nu]* StruveL[\[Nu], z], z] == (z)^\[Nu]* StruveL[\[Nu]- 1, z] |
Failure | Successful | Successful [Tested: 70] | Successful [Tested: 70] | |
11.4.E30 | \deriv{}{z}\left(z^{-\nu}\modStruveL{\nu}@{z}\right) = \frac{2^{-\nu}}{\sqrt{\pi}\EulerGamma@{\nu+\tfrac{3}{2}}}+z^{-\nu}\modStruveL{\nu+1}@{z} |
diff((z)^(- nu)* StruveL(nu, z), z) = ((2)^(- nu))/(sqrt(Pi)*GAMMA(nu +(3)/(2)))+ (z)^(- nu)* StruveL(nu + 1, z) |
D[(z)^(- \[Nu])* StruveL[\[Nu], z], z] == Divide[(2)^(- \[Nu]),Sqrt[Pi]*Gamma[\[Nu]+Divide[3,2]]]+ (z)^(- \[Nu])* StruveL[\[Nu]+ 1, z] |
Successful | Successful | - | Successful [Tested: 56] | |
11.4#Ex1 | \StruveH{0}'@{z} = \frac{2}{\pi}-\StruveH{1}@{z} |
diff( StruveH(0, z), z$(1) ) = (2)/(Pi)- StruveH(1, z) |
D[StruveH[0, z], {z, 1}] == Divide[2,Pi]- StruveH[1, z] |
Successful | Successful | - | Successful [Tested: 7] | |
11.4#Ex2 | \deriv{}{z}(z\StruveH{1}@{z}) = z\StruveH{0}@{z} |
diff(z*StruveH(1, z), z) = z*StruveH(0, z) |
D[z*StruveH[1, z], z] == z*StruveH[0, z] |
Successful | Successful | - | Successful [Tested: 7] | |
11.4#Ex3 | \modStruveL{0}'@{z} = \frac{2}{\pi}+\modStruveL{1}@{z} |
diff( StruveL(0, z), z$(1) ) = (2)/(Pi)+ StruveL(1, z) |
D[StruveL[0, z], {z, 1}] == Divide[2,Pi]+ StruveL[1, z] |
Successful | Successful | - | Successful [Tested: 7] | |
11.4#Ex4 | \deriv{}{z}(z\modStruveL{1}@{z}) = z\modStruveL{0}@{z} |
diff(z*StruveL(1, z), z) = z*StruveL(0, z) |
D[z*StruveL[1, z], z] == z*StruveL[0, z] |
Successful | Successful | - | Successful [Tested: 7] |